|
Chemical Methods Ontology (ChMO) |
|
======================================================================================================================== |
|
|
|
Overview |
|
-------- |
|
The Chemical Methods Ontology contains more than 3000 classes and describes methods used to: |
|
- collect data in chemical experiments, such as mass spectrometry and electron microscopy. |
|
- prepare and separate material for further analysis, such as sample ionisation, chromatography, and electrophoresis |
|
- synthesise materials, such as epitaxy and continuous vapour deposition It also describes the instruments used |
|
in these experiments, such as mass spectrometers and chromatography columns and their outputs. |
|
|
|
:Domain: Chemistry |
|
:Category: Chemistry |
|
:Current Version: None |
|
:Last Updated: 2022-04-19 |
|
:Creator: None |
|
:License: Creative Commons 4.0 |
|
:Format: OWL, TTL, CSV, NT |
|
:Download: `Chemical Methods Ontology (ChMO) Homepage <https://github.com/rsc-ontologies/rsc-cmo>`_ |
|
|
|
Graph Metrics |
|
------------- |
|
- **Total Nodes**: 24075 |
|
- **Total Edges**: 44651 |
|
- **Root Nodes**: 3100 |
|
- **Leaf Nodes**: 17250 |
|
|
|
Knowledge coverage |
|
------------------ |
|
- Classes: 3202 |
|
- Individuals: 0 |
|
- Properties: 27 |
|
|
|
Hierarchical metrics |
|
-------------------- |
|
- **Maximum Depth**: 7 |
|
- **Minimum Depth**: 0 |
|
- **Average Depth**: 1.49 |
|
- **Depth Variance**: 0.63 |
|
|
|
Breadth metrics |
|
------------------ |
|
- **Maximum Breadth**: 13439 |
|
- **Minimum Breadth**: 1 |
|
- **Average Breadth**: 2993.88 |
|
- **Breadth Variance**: 20855464.86 |
|
|
|
Dataset Statistics |
|
------------------ |
|
Generated Benchmarks: |
|
- **Term Types**: 0 |
|
- **Taxonomic Relations**: 4268 |
|
- **Non-taxonomic Relations**: 114 |
|
- **Average Terms per Type**: 0.00 |
|
|
|
Usage Example |
|
------------- |
|
.. code-block:: python |
|
|
|
from ontolearner.ontology import ChMO |
|
|
|
# Initialize and load ontology |
|
ontology = ChMO() |
|
ontology.load("path/to/ontology.owl") |
|
|
|
# Extract datasets |
|
data = ontology.extract() |
|
|
|
# Access specific relations |
|
term_types = data.term_typings |
|
taxonomic_relations = data.type_taxonomies |
|
non_taxonomic_relations = data.type_non_taxonomic_relations |
|
|