Andrei Aioanei commited on
Commit
abc4451
·
1 Parent(s): f92bc7f

Update chemistry domain with 15 ontologies

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ chebi/chebi.owl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - OntoLearner
8
+ - ontology-learning
9
+ - chemistry
10
+ pretty_name: Agricultural
11
+ ---
12
+ <div>
13
+ <img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
14
+ style="display: block; margin: 0 auto; width: 500px; height: auto;">
15
+ <h1 style="text-align: center; margin-top: 1em;">Chemistry Domain Ontologies</h1>
16
+ </div>
17
+
18
+ ## Overview
19
+ The domain of chemistry ontologies encompasses the structured representation and formalization of chemical knowledge, including entities, reactions, processes, and methodologies. It plays a critical role in facilitating interoperability, data integration, and advanced computational modeling across diverse chemical disciplines. By providing a standardized framework, these ontologies enhance the precision and efficiency of information exchange and support the advancement of research and innovation in the chemical sciences.
20
+
21
+ ## Ontologies
22
+ | Ontology ID | Full Name | Classes | Properties | Last Updated |
23
+ |-------------|-----------|---------|------------|--------------|
24
+ | AFO | Allotrope Foundation Ontology (AFO) | 3871 | 318 | 2024-06-28|
25
+ | ChEBI | Chemical Entities of Biological Interest (ChEBI) | 220816 | 10 | 01/01/2025|
26
+ | CHEMINF | Chemical Information Ontology (CHEMINF) | 358 | 52 | None|
27
+ | CHIRO | CHEBI Integrated Role Ontology (CHIRO) | 13930 | 15 | 2015-11-23|
28
+ | ChMO | Chemical Methods Ontology (ChMO) | 3202 | 27 | 2022-04-19|
29
+ | FIX | FIX Ontology (FIX) | 1163 | 5 | 2020-04-13|
30
+ | MassSpectrometry | Mass Spectrometry Ontology (MassSpectrometry) | 3636 | 12 | 12:02:2025|
31
+ | MOP | Molecular Process Ontology (MOP) | 3717 | 11 | 2022-05-11|
32
+ | NMRCV | Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV) | 757 | 0 | 2017-10-19|
33
+ | OntoKin | Chemical Kinetics Ontology (OntoKin) | 83 | 136 | 08 February 2022|
34
+ | PROCO | PROcess Chemistry Ontology (PROCO) | 970 | 61 | 04-14-2022|
35
+ | PSIMOD | Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD) | 2098 | 4 | 2022-06-13|
36
+ | REX | Physico-chemical process ontology (REX) | 552 | 6 | 2025-03-11|
37
+ | RXNO | Reaction Ontology (RXNO) | 1109 | 14 | 2021-12-16|
38
+ | VIBSO | Vibrational Spectroscopy Ontology (VIBSO) | 598 | 53 | 2024-09-23|
39
+
40
+ ## Dataset Files
41
+ Each ontology directory contains the following files:
42
+ 1. `<ontology_id>.<format>` - The original ontology file
43
+ 2. `term_typings.json` - Dataset of term to type mappings
44
+ 3. `taxonomies.json` - Dataset of taxonomic relations
45
+ 4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
46
+ 5. `<ontology_id>.rst` - Documentation describing the ontology
47
+
48
+ ## Usage
49
+ These datasets are intended for ontology learning research and applications.
50
+
afo/afo.rst ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Allotrope Foundation Ontology (AFO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ The AFO is an ontology suite that provides a standard vocabulary and semantic model
7
+ for the representation of laboratory analytical processes. The AFO suite is aligned at the upper layer
8
+ to the Basic Formal Ontology (BFO). The core domains modeled include, Equipment, Material, Process, and Results.
9
+ This artifact contains all triples of Allotrope Foundation Merged Without QUDT Ontology Suite (REC/2023/12)
10
+ together with triples inferred with HermiT.
11
+
12
+ :Domain: Chemistry
13
+ :Category: Laboratory Analytical Processes
14
+ :Current Version: 2024-06
15
+ :Last Updated: 2024-06-28
16
+ :Creator: Allotrope Foundation
17
+ :License: CC BY 4.0
18
+ :Format: TTL
19
+ :Download: `Allotrope Foundation Ontology (AFO) Homepage <https://terminology.tib.eu/ts/ontologies/AFO>`_
20
+
21
+ Graph Metrics
22
+ -------------
23
+ - **Total Nodes**: 15547
24
+ - **Total Edges**: 36699
25
+ - **Root Nodes**: 142
26
+ - **Leaf Nodes**: 8003
27
+
28
+ Knowledge coverage
29
+ ------------------
30
+ - Classes: 3871
31
+ - Individuals: 38
32
+ - Properties: 318
33
+
34
+ Hierarchical metrics
35
+ --------------------
36
+ - **Maximum Depth**: 24
37
+ - **Minimum Depth**: 0
38
+ - **Average Depth**: 5.14
39
+ - **Depth Variance**: 22.60
40
+
41
+ Breadth metrics
42
+ ------------------
43
+ - **Maximum Breadth**: 368
44
+ - **Minimum Breadth**: 1
45
+ - **Average Breadth**: 75.84
46
+ - **Breadth Variance**: 8251.25
47
+
48
+ Dataset Statistics
49
+ ------------------
50
+ Generated Benchmarks:
51
+ - **Term Types**: 38
52
+ - **Taxonomic Relations**: 9889
53
+ - **Non-taxonomic Relations**: 34
54
+ - **Average Terms per Type**: 3.45
55
+
56
+ Usage Example
57
+ -------------
58
+ .. code-block:: python
59
+
60
+ from ontolearner.ontology import AFO
61
+
62
+ # Initialize and load ontology
63
+ ontology = AFO()
64
+ ontology.load("path/to/ontology.owl")
65
+
66
+ # Extract datasets
67
+ data = ontology.extract()
68
+
69
+ # Access specific relations
70
+ term_types = data.term_typings
71
+ taxonomic_relations = data.type_taxonomies
72
+ non_taxonomic_relations = data.type_non_taxonomic_relations
afo/afo.ttl ADDED
The diff for this file is too large to render. See raw diff
 
chebi/chebi.owl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3df51b665dfa54499a41482a2456851983f50b709cefb4c5e9aaeb71a95e6814
3
+ size 814872764
chebi/chebi.rst ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Chemical Entities of Biological Interest (ChEBI)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ Chemical Entities of Biological Interest (ChEBI) is a dictionary of molecular entities
7
+ focused on ‘small’ chemical compounds. The term ‘molecular entity’ refers to any constitutionally
8
+ or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc.,
9
+ identifiable as a separately distinguishable entity. The molecular entities in question
10
+ are either products of nature or synthetic products used to intervene in the processes of living organisms.
11
+ ChEBI incorporates an ontological classification, whereby the relationships between molecular entities
12
+ or classes of entities and their parents and/or children are specified.
13
+
14
+ :Domain: Chemistry
15
+ :Category: Chemical Entities
16
+ :Current Version: 239
17
+ :Last Updated: 01/01/2025
18
+ :Creator: None
19
+ :License: Creative Commons 4.0
20
+ :Format: OWL, OBO, JSON
21
+ :Download: `Chemical Entities of Biological Interest (ChEBI) Homepage <https://www.ebi.ac.uk/chebi/>`_
22
+
23
+ Graph Metrics
24
+ -------------
25
+ - **Total Nodes**: 2433610
26
+ - **Total Edges**: 6913389
27
+ - **Root Nodes**: 609907
28
+ - **Leaf Nodes**: 1528418
29
+
30
+ Knowledge coverage
31
+ ------------------
32
+ - Classes: 220816
33
+ - Individuals: 0
34
+ - Properties: 10
35
+
36
+ Hierarchical metrics
37
+ --------------------
38
+ - **Maximum Depth**: 6
39
+ - **Minimum Depth**: 0
40
+ - **Average Depth**: 1.14
41
+ - **Depth Variance**: 0.69
42
+
43
+ Breadth metrics
44
+ ------------------
45
+ - **Maximum Breadth**: 908127
46
+ - **Minimum Breadth**: 26
47
+ - **Average Breadth**: 310545.00
48
+ - **Breadth Variance**: 135103408992.57
49
+
50
+ Dataset Statistics
51
+ ------------------
52
+ Generated Benchmarks:
53
+ - **Term Types**: 0
54
+ - **Taxonomic Relations**: 1200620
55
+ - **Non-taxonomic Relations**: 18607
56
+ - **Average Terms per Type**: 0.00
57
+
58
+ Usage Example
59
+ -------------
60
+ .. code-block:: python
61
+
62
+ from ontolearner.ontology import ChEBI
63
+
64
+ # Initialize and load ontology
65
+ ontology = ChEBI()
66
+ ontology.load("path/to/ontology.owl")
67
+
68
+ # Extract datasets
69
+ data = ontology.extract()
70
+
71
+ # Access specific relations
72
+ term_types = data.term_typings
73
+ taxonomic_relations = data.type_taxonomies
74
+ non_taxonomic_relations = data.type_non_taxonomic_relations
cheminf/cheminf.owl ADDED
The diff for this file is too large to render. See raw diff
 
cheminf/cheminf.rst ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Chemical Information Ontology (CHEMINF)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ The chemical information ontology (cheminf) describes information entities about chemical entities.
7
+ It provides qualitative and quantitative attributes to richly describe chemicals.
8
+ Includes terms for the descriptors commonly used in cheminformatics software applications
9
+ and the algorithms which generate them.
10
+
11
+ :Domain: Chemistry
12
+ :Category: Chemistry
13
+ :Current Version: 2.1.0
14
+ :Last Updated: None
15
+ :Creator: Egon Willighagen, Nina Jeliazkova, Ola Spjuth, Valery Tkachenko
16
+ :License: Creative Commons 1.0
17
+ :Format: OWL
18
+ :Download: `Chemical Information Ontology (CHEMINF) Homepage <https://terminology.tib.eu/ts/ontologies/CHEMINF>`_
19
+
20
+ Graph Metrics
21
+ -------------
22
+ - **Total Nodes**: 1467
23
+ - **Total Edges**: 2837
24
+ - **Root Nodes**: 213
25
+ - **Leaf Nodes**: 435
26
+
27
+ Knowledge coverage
28
+ ------------------
29
+ - Classes: 358
30
+ - Individuals: 0
31
+ - Properties: 52
32
+
33
+ Hierarchical metrics
34
+ --------------------
35
+ - **Maximum Depth**: 16
36
+ - **Minimum Depth**: 0
37
+ - **Average Depth**: 1.73
38
+ - **Depth Variance**: 9.21
39
+
40
+ Breadth metrics
41
+ ------------------
42
+ - **Maximum Breadth**: 213
43
+ - **Minimum Breadth**: 1
44
+ - **Average Breadth**: 29.24
45
+ - **Breadth Variance**: 3411.59
46
+
47
+ Dataset Statistics
48
+ ------------------
49
+ Generated Benchmarks:
50
+ - **Term Types**: 0
51
+ - **Taxonomic Relations**: 594
52
+ - **Non-taxonomic Relations**: 1
53
+ - **Average Terms per Type**: 0.00
54
+
55
+ Usage Example
56
+ -------------
57
+ .. code-block:: python
58
+
59
+ from ontolearner.ontology import CHEMINF
60
+
61
+ # Initialize and load ontology
62
+ ontology = CHEMINF()
63
+ ontology.load("path/to/ontology.owl")
64
+
65
+ # Extract datasets
66
+ data = ontology.extract()
67
+
68
+ # Access specific relations
69
+ term_types = data.term_typings
70
+ taxonomic_relations = data.type_taxonomies
71
+ non_taxonomic_relations = data.type_non_taxonomic_relations
chiro/chiro.owl ADDED
The diff for this file is too large to render. See raw diff
 
chiro/chiro.rst ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CHEBI Integrated Role Ontology (CHIRO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ CHEBI provides a distinct role hierarchy. Chemicals in the structural hierarchy are connected via a 'has role' relation.
7
+ CHIRO provides links from these roles to useful other classes in other ontologies.
8
+ This will allow direct connection between chemical structures (small molecules, drugs) and what they do.
9
+ This could be formalized using 'capable of', in the same way Uberon and the Cell Ontology link structures to processes.
10
+
11
+ :Domain: Chemistry
12
+ :Category: Chemicals, Roles
13
+ :Current Version: 2015-11-23
14
+ :Last Updated: 2015-11-23
15
+ :Creator: None
16
+ :License: Creative Commons 1.0
17
+ :Format: OWL
18
+ :Download: `CHEBI Integrated Role Ontology (CHIRO) Homepage <https://terminology.tib.eu/ts/ontologies/chiro>`_
19
+
20
+ Graph Metrics
21
+ -------------
22
+ - **Total Nodes**: 81778
23
+ - **Total Edges**: 197071
24
+ - **Root Nodes**: 14636
25
+ - **Leaf Nodes**: 50439
26
+
27
+ Knowledge coverage
28
+ ------------------
29
+ - Classes: 13930
30
+ - Individuals: 0
31
+ - Properties: 15
32
+
33
+ Hierarchical metrics
34
+ --------------------
35
+ - **Maximum Depth**: 16
36
+ - **Minimum Depth**: 0
37
+ - **Average Depth**: 1.36
38
+ - **Depth Variance**: 1.13
39
+
40
+ Breadth metrics
41
+ ------------------
42
+ - **Maximum Breadth**: 34719
43
+ - **Minimum Breadth**: 2
44
+ - **Average Breadth**: 4620.24
45
+ - **Breadth Variance**: 105924794.30
46
+
47
+ Dataset Statistics
48
+ ------------------
49
+ Generated Benchmarks:
50
+ - **Term Types**: 0
51
+ - **Taxonomic Relations**: 27299
52
+ - **Non-taxonomic Relations**: 0
53
+ - **Average Terms per Type**: 0.00
54
+
55
+ Usage Example
56
+ -------------
57
+ .. code-block:: python
58
+
59
+ from ontolearner.ontology import CHIRO
60
+
61
+ # Initialize and load ontology
62
+ ontology = CHIRO()
63
+ ontology.load("path/to/ontology.owl")
64
+
65
+ # Extract datasets
66
+ data = ontology.extract()
67
+
68
+ # Access specific relations
69
+ term_types = data.term_typings
70
+ taxonomic_relations = data.type_taxonomies
71
+ non_taxonomic_relations = data.type_non_taxonomic_relations
chmo/chmo.owl ADDED
The diff for this file is too large to render. See raw diff
 
chmo/chmo.rst ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Chemical Methods Ontology (ChMO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ The Chemical Methods Ontology contains more than 3000 classes and describes methods used to:
7
+ - collect data in chemical experiments, such as mass spectrometry and electron microscopy.
8
+ - prepare and separate material for further analysis, such as sample ionisation, chromatography, and electrophoresis
9
+ - synthesise materials, such as epitaxy and continuous vapour deposition It also describes the instruments used
10
+ in these experiments, such as mass spectrometers and chromatography columns and their outputs.
11
+
12
+ :Domain: Chemistry
13
+ :Category: Chemistry
14
+ :Current Version: None
15
+ :Last Updated: 2022-04-19
16
+ :Creator: None
17
+ :License: Creative Commons 4.0
18
+ :Format: OWL, TTL, CSV, NT
19
+ :Download: `Chemical Methods Ontology (ChMO) Homepage <https://github.com/rsc-ontologies/rsc-cmo>`_
20
+
21
+ Graph Metrics
22
+ -------------
23
+ - **Total Nodes**: 24075
24
+ - **Total Edges**: 44651
25
+ - **Root Nodes**: 3100
26
+ - **Leaf Nodes**: 17250
27
+
28
+ Knowledge coverage
29
+ ------------------
30
+ - Classes: 3202
31
+ - Individuals: 0
32
+ - Properties: 27
33
+
34
+ Hierarchical metrics
35
+ --------------------
36
+ - **Maximum Depth**: 7
37
+ - **Minimum Depth**: 0
38
+ - **Average Depth**: 1.49
39
+ - **Depth Variance**: 0.63
40
+
41
+ Breadth metrics
42
+ ------------------
43
+ - **Maximum Breadth**: 13439
44
+ - **Minimum Breadth**: 1
45
+ - **Average Breadth**: 2993.88
46
+ - **Breadth Variance**: 20855464.86
47
+
48
+ Dataset Statistics
49
+ ------------------
50
+ Generated Benchmarks:
51
+ - **Term Types**: 0
52
+ - **Taxonomic Relations**: 4268
53
+ - **Non-taxonomic Relations**: 114
54
+ - **Average Terms per Type**: 0.00
55
+
56
+ Usage Example
57
+ -------------
58
+ .. code-block:: python
59
+
60
+ from ontolearner.ontology import ChMO
61
+
62
+ # Initialize and load ontology
63
+ ontology = ChMO()
64
+ ontology.load("path/to/ontology.owl")
65
+
66
+ # Extract datasets
67
+ data = ontology.extract()
68
+
69
+ # Access specific relations
70
+ term_types = data.term_typings
71
+ taxonomic_relations = data.type_taxonomies
72
+ non_taxonomic_relations = data.type_non_taxonomic_relations
dataset_infos.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Ontology Domain: Chemistry",
3
+ "description": "Dataset containing ontologies and processed data for the Chemistry domain",
4
+ "license": "mixed",
5
+ "tags": [
6
+ "ontology",
7
+ "chemistry",
8
+ "knowledge-graph"
9
+ ],
10
+ "ontologies": [
11
+ "AFO",
12
+ "ChEBI",
13
+ "CHEMINF",
14
+ "CHIRO",
15
+ "ChMO",
16
+ "FIX",
17
+ "MassSpectrometry",
18
+ "MOP",
19
+ "NMRCV",
20
+ "OntoKin",
21
+ "PROCO",
22
+ "PSIMOD",
23
+ "REX",
24
+ "RXNO",
25
+ "VIBSO"
26
+ ]
27
+ }
fix/fix.owl ADDED
The diff for this file is too large to render. See raw diff
 
fix/fix.rst ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FIX Ontology (FIX)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ An ontology of physico-chemical methods and properties.
7
+
8
+ :Domain: Chemistry
9
+ :Category: Chemicals, Properties
10
+ :Current Version: 2020-04-13
11
+ :Last Updated: 2020-04-13
12
+ :Creator: None
13
+ :License: None
14
+ :Format: OWL
15
+ :Download: `FIX Ontology (FIX) Homepage <https://terminology.tib.eu/ts/ontologies/FIX>`_
16
+
17
+ Graph Metrics
18
+ -------------
19
+ - **Total Nodes**: 3402
20
+ - **Total Edges**: 7621
21
+ - **Root Nodes**: 22
22
+ - **Leaf Nodes**: 2147
23
+
24
+ Knowledge coverage
25
+ ------------------
26
+ - Classes: 1163
27
+ - Individuals: 0
28
+ - Properties: 5
29
+
30
+ Hierarchical metrics
31
+ --------------------
32
+ - **Maximum Depth**: 7
33
+ - **Minimum Depth**: 0
34
+ - **Average Depth**: 2.46
35
+ - **Depth Variance**: 2.32
36
+
37
+ Breadth metrics
38
+ ------------------
39
+ - **Maximum Breadth**: 75
40
+ - **Minimum Breadth**: 2
41
+ - **Average Breadth**: 36.25
42
+ - **Breadth Variance**: 666.69
43
+
44
+ Dataset Statistics
45
+ ------------------
46
+ Generated Benchmarks:
47
+ - **Term Types**: 0
48
+ - **Taxonomic Relations**: 2978
49
+ - **Non-taxonomic Relations**: 0
50
+ - **Average Terms per Type**: 0.00
51
+
52
+ Usage Example
53
+ -------------
54
+ .. code-block:: python
55
+
56
+ from ontolearner.ontology import FIX
57
+
58
+ # Initialize and load ontology
59
+ ontology = FIX()
60
+ ontology.load("path/to/ontology.owl")
61
+
62
+ # Extract datasets
63
+ data = ontology.extract()
64
+
65
+ # Access specific relations
66
+ term_types = data.term_typings
67
+ taxonomic_relations = data.type_taxonomies
68
+ non_taxonomic_relations = data.type_non_taxonomic_relations
massspectrometry/massspectrometry.owl ADDED
The diff for this file is too large to render. See raw diff
 
massspectrometry/massspectrometry.rst ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Mass Spectrometry Ontology (MassSpectrometry)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ A structured controlled vocabulary for the annotation of experiments concerned with proteomics mass spectrometry.
7
+
8
+ :Domain: Chemistry
9
+ :Category: Mass Spectrometry, Proteomics
10
+ :Current Version: None
11
+ :Last Updated: 12:02:2025
12
+ :Creator: Andreas Bertsch
13
+ :License: Creative Commons 4.0
14
+ :Format: OWL
15
+ :Download: `Mass Spectrometry Ontology (MassSpectrometry) Homepage <https://terminology.tib.eu/ts/ontologies/MS>`_
16
+
17
+ Graph Metrics
18
+ -------------
19
+ - **Total Nodes**: 17851
20
+ - **Total Edges**: 51814
21
+ - **Root Nodes**: 3786
22
+ - **Leaf Nodes**: 7959
23
+
24
+ Knowledge coverage
25
+ ------------------
26
+ - Classes: 3636
27
+ - Individuals: 0
28
+ - Properties: 12
29
+
30
+ Hierarchical metrics
31
+ --------------------
32
+ - **Maximum Depth**: 6
33
+ - **Minimum Depth**: 0
34
+ - **Average Depth**: 1.16
35
+ - **Depth Variance**: 0.58
36
+
37
+ Breadth metrics
38
+ ------------------
39
+ - **Maximum Breadth**: 7345
40
+ - **Minimum Breadth**: 2
41
+ - **Average Breadth**: 2534.57
42
+ - **Breadth Variance**: 9465403.67
43
+
44
+ Dataset Statistics
45
+ ------------------
46
+ Generated Benchmarks:
47
+ - **Term Types**: 0
48
+ - **Taxonomic Relations**: 16046
49
+ - **Non-taxonomic Relations**: 2
50
+ - **Average Terms per Type**: 0.00
51
+
52
+ Usage Example
53
+ -------------
54
+ .. code-block:: python
55
+
56
+ from ontolearner.ontology import MassSpectrometry
57
+
58
+ # Initialize and load ontology
59
+ ontology = MassSpectrometry()
60
+ ontology.load("path/to/ontology.owl")
61
+
62
+ # Extract datasets
63
+ data = ontology.extract()
64
+
65
+ # Access specific relations
66
+ term_types = data.term_typings
67
+ taxonomic_relations = data.type_taxonomies
68
+ non_taxonomic_relations = data.type_non_taxonomic_relations
mop/mop.owl ADDED
The diff for this file is too large to render. See raw diff
 
mop/mop.rst ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Molecular Process Ontology (MOP)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ MOP is the molecular process ontology. It contains the molecular processes that underlie
7
+ the name reaction ontology RXNO, for example cyclization, methylation and demethylation.
8
+
9
+ :Domain: Chemistry
10
+ :Category: Chemistry, Molecular Biology
11
+ :Current Version: 2022-05-11
12
+ :Last Updated: 2022-05-11
13
+ :Creator: None
14
+ :License: Creative Commons 4.0
15
+ :Format: OWL
16
+ :Download: `Molecular Process Ontology (MOP) Homepage <https://terminology.tib.eu/ts/ontologies/MOP>`_
17
+
18
+ Graph Metrics
19
+ -------------
20
+ - **Total Nodes**: 15794
21
+ - **Total Edges**: 41157
22
+ - **Root Nodes**: 3693
23
+ - **Leaf Nodes**: 8182
24
+
25
+ Knowledge coverage
26
+ ------------------
27
+ - Classes: 3717
28
+ - Individuals: 0
29
+ - Properties: 11
30
+
31
+ Hierarchical metrics
32
+ --------------------
33
+ - **Maximum Depth**: 6
34
+ - **Minimum Depth**: 0
35
+ - **Average Depth**: 1.09
36
+ - **Depth Variance**: 0.63
37
+
38
+ Breadth metrics
39
+ ------------------
40
+ - **Maximum Breadth**: 7300
41
+ - **Minimum Breadth**: 3
42
+ - **Average Breadth**: 2253.14
43
+ - **Breadth Variance**: 7474153.55
44
+
45
+ Dataset Statistics
46
+ ------------------
47
+ Generated Benchmarks:
48
+ - **Term Types**: 0
49
+ - **Taxonomic Relations**: 4171
50
+ - **Non-taxonomic Relations**: 47
51
+ - **Average Terms per Type**: 0.00
52
+
53
+ Usage Example
54
+ -------------
55
+ .. code-block:: python
56
+
57
+ from ontolearner.ontology import MOP
58
+
59
+ # Initialize and load ontology
60
+ ontology = MOP()
61
+ ontology.load("path/to/ontology.owl")
62
+
63
+ # Extract datasets
64
+ data = ontology.extract()
65
+
66
+ # Access specific relations
67
+ term_types = data.term_typings
68
+ taxonomic_relations = data.type_taxonomies
69
+ non_taxonomic_relations = data.type_non_taxonomic_relations
nmrcv/nmrcv.owl ADDED
The diff for this file is too large to render. See raw diff
 
nmrcv/nmrcv.rst ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ This artefact is an MSI-approved controlled vocabulary primarily developed under COSMOS EU and PhenoMeNal EU governance.
7
+ The nmrCV is supporting the nmrML XML format with standardized terms. nmrML is a vendor agnostic open access NMR raw data standard.
8
+ Its primaly role is analogous to the mzCV for the PSI-approved mzML XML format. It uses BFO2.0 as its Top level.
9
+ This CV was derived from two predecessors (The NMR CV from the David Wishart Group, developed by Joseph Cruz)
10
+ and the MSI nmr CV developed by Daniel Schober at the EBI. This simple taxonomy of terms (no DL semantics used)
11
+ serves the nuclear magnetic resonance markup language (nmrML) with meaningful descriptors to amend the nmrML xml file
12
+ with CV terms. Metabolomics scientists are encouraged to use this CV to annotrate their raw and experimental context data,
13
+ i.e. within nmrML. The approach to have an exchange syntax mixed of an xsd and CV stems from the PSI mzML effort.
14
+ The reason to branch out from an xsd into a CV is, that in areas where the terminology is likely to change faster
15
+ than the nmrML xsd could be updated and aligned, an externally and decentrallised maintained CV can accompensate
16
+ for such dynamics in a more flexible way. A second reason for this set-up is that semantic validity of CV terms
17
+ used in an nmrML XML instance (allowed CV terms, position/relation to each other, cardinality) can be validated
18
+ by rule-based proprietary validators: By means of cardinality specifications and XPath expressions defined
19
+ in an XML mapping file (an instances of the CvMappingRules.xsd ), one can define what ontology terms are allowed
20
+ in a specific location of the data model.
21
+
22
+ :Domain: Chemistry
23
+ :Category: Chemistry
24
+ :Current Version: 1.1.0
25
+ :Last Updated: 2017-10-19
26
+ :Creator: Daniel Schober
27
+ :License: Creative Commons 4.0
28
+ :Format: OWL
29
+ :Download: `Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV) Homepage <https://terminology.tib.eu/ts/ontologies/NMRCV>`_
30
+
31
+ Graph Metrics
32
+ -------------
33
+ - **Total Nodes**: 1596
34
+ - **Total Edges**: 3951
35
+ - **Root Nodes**: 184
36
+ - **Leaf Nodes**: 662
37
+
38
+ Knowledge coverage
39
+ ------------------
40
+ - Classes: 757
41
+ - Individuals: 0
42
+ - Properties: 0
43
+
44
+ Hierarchical metrics
45
+ --------------------
46
+ - **Maximum Depth**: 5
47
+ - **Minimum Depth**: 0
48
+ - **Average Depth**: 1.01
49
+ - **Depth Variance**: 0.72
50
+
51
+ Breadth metrics
52
+ ------------------
53
+ - **Maximum Breadth**: 273
54
+ - **Minimum Breadth**: 2
55
+ - **Average Breadth**: 103.83
56
+ - **Breadth Variance**: 10836.47
57
+
58
+ Dataset Statistics
59
+ ------------------
60
+ Generated Benchmarks:
61
+ - **Term Types**: 0
62
+ - **Taxonomic Relations**: 792
63
+ - **Non-taxonomic Relations**: 0
64
+ - **Average Terms per Type**: 0.00
65
+
66
+ Usage Example
67
+ -------------
68
+ .. code-block:: python
69
+
70
+ from ontolearner.ontology import NMRCV
71
+
72
+ # Initialize and load ontology
73
+ ontology = NMRCV()
74
+ ontology.load("path/to/ontology.owl")
75
+
76
+ # Extract datasets
77
+ data = ontology.extract()
78
+
79
+ # Access specific relations
80
+ term_types = data.term_typings
81
+ taxonomic_relations = data.type_taxonomies
82
+ non_taxonomic_relations = data.type_non_taxonomic_relations
ontokin/ontokin.owl ADDED
The diff for this file is too large to render. See raw diff
 
ontokin/ontokin.rst ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Chemical Kinetics Ontology (OntoKin)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ OntoKin is an ontology developed for representing chemical kinetic reaction mechanisms.
7
+
8
+ :Domain: Chemistry
9
+ :Category: Chemistry
10
+ :Current Version: 1.0
11
+ :Last Updated: 08 February 2022
12
+ :Creator: IEEE
13
+ :License: Creative Commons 4.0
14
+ :Format: OWL
15
+ :Download: `Chemical Kinetics Ontology (OntoKin) Homepage <https://www.ontologyportal.org/>`_
16
+
17
+ Graph Metrics
18
+ -------------
19
+ - **Total Nodes**: 407
20
+ - **Total Edges**: 1011
21
+ - **Root Nodes**: 122
22
+ - **Leaf Nodes**: 103
23
+
24
+ Knowledge coverage
25
+ ------------------
26
+ - Classes: 83
27
+ - Individuals: 0
28
+ - Properties: 136
29
+
30
+ Hierarchical metrics
31
+ --------------------
32
+ - **Maximum Depth**: 8
33
+ - **Minimum Depth**: 0
34
+ - **Average Depth**: 1.64
35
+ - **Depth Variance**: 2.39
36
+
37
+ Breadth metrics
38
+ ------------------
39
+ - **Maximum Breadth**: 122
40
+ - **Minimum Breadth**: 1
41
+ - **Average Breadth**: 45.22
42
+ - **Breadth Variance**: 1858.40
43
+
44
+ Dataset Statistics
45
+ ------------------
46
+ Generated Benchmarks:
47
+ - **Term Types**: 0
48
+ - **Taxonomic Relations**: 138
49
+ - **Non-taxonomic Relations**: 1
50
+ - **Average Terms per Type**: 0.00
51
+
52
+ Usage Example
53
+ -------------
54
+ .. code-block:: python
55
+
56
+ from ontolearner.ontology import OntoKin
57
+
58
+ # Initialize and load ontology
59
+ ontology = OntoKin()
60
+ ontology.load("path/to/ontology.owl")
61
+
62
+ # Extract datasets
63
+ data = ontology.extract()
64
+
65
+ # Access specific relations
66
+ term_types = data.term_typings
67
+ taxonomic_relations = data.type_taxonomies
68
+ non_taxonomic_relations = data.type_non_taxonomic_relations
proco/proco.owl ADDED
The diff for this file is too large to render. See raw diff
 
proco/proco.rst ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ PROcess Chemistry Ontology (PROCO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ PROCO (PROcess Chemistry Ontology) is a formal ontology that aims to standardly represent entities
7
+ and relations among entities in the domain of process chemistry.
8
+
9
+ :Domain: Chemistry
10
+ :Category: Chemicals, Processes
11
+ :Current Version: 04-14-2022
12
+ :Last Updated: 04-14-2022
13
+ :Creator: Anna Dun, Wes A. Schafer, Yongqun "Oliver" He (YH), Zachary Dance
14
+ :License: Creative Commons 4.0
15
+ :Format: OWL
16
+ :Download: `PROcess Chemistry Ontology (PROCO) Homepage <https://github.com/proco-ontology/PROCO>`_
17
+
18
+ Graph Metrics
19
+ -------------
20
+ - **Total Nodes**: 6258
21
+ - **Total Edges**: 11796
22
+ - **Root Nodes**: 89
23
+ - **Leaf Nodes**: 4646
24
+
25
+ Knowledge coverage
26
+ ------------------
27
+ - Classes: 970
28
+ - Individuals: 14
29
+ - Properties: 61
30
+
31
+ Hierarchical metrics
32
+ --------------------
33
+ - **Maximum Depth**: 15
34
+ - **Minimum Depth**: 0
35
+ - **Average Depth**: 3.35
36
+ - **Depth Variance**: 8.54
37
+
38
+ Breadth metrics
39
+ ------------------
40
+ - **Maximum Breadth**: 228
41
+ - **Minimum Breadth**: 1
42
+ - **Average Breadth**: 60.19
43
+ - **Breadth Variance**: 4521.40
44
+
45
+ Dataset Statistics
46
+ ------------------
47
+ Generated Benchmarks:
48
+ - **Term Types**: 14
49
+ - **Taxonomic Relations**: 2975
50
+ - **Non-taxonomic Relations**: 1
51
+ - **Average Terms per Type**: 7.00
52
+
53
+ Usage Example
54
+ -------------
55
+ .. code-block:: python
56
+
57
+ from ontolearner.ontology import PROCO
58
+
59
+ # Initialize and load ontology
60
+ ontology = PROCO()
61
+ ontology.load("path/to/ontology.owl")
62
+
63
+ # Extract datasets
64
+ data = ontology.extract()
65
+
66
+ # Access specific relations
67
+ term_types = data.term_typings
68
+ taxonomic_relations = data.type_taxonomies
69
+ non_taxonomic_relations = data.type_non_taxonomic_relations
psimod/psimod.owl ADDED
The diff for this file is too large to render. See raw diff
 
psimod/psimod.rst ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ PSI-MOD is an ontology consisting of terms that describe protein chemical modifications,
7
+ logically linked by an is_a relationship in such a way as to form a direct acyclic graph (DAG).
8
+ The PSI-MOD ontology has more than 45 top-level nodes, and provides alternative hierarchical paths
9
+ for classifying protein modifications either by the molecular structure of the modification,
10
+ or by the amino acid residue that is modified.
11
+
12
+ :Domain: Chemistry
13
+ :Category: Protein Modifications
14
+ :Current Version: 1.031.6
15
+ :Last Updated: 2022-06-13
16
+ :Creator: None
17
+ :License: Creative Commons Attribution 4.0
18
+ :Format: OWL
19
+ :Download: `Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD) Homepage <https://github.com/HUPO-PSI/psi-mod-CV>`_
20
+
21
+ Graph Metrics
22
+ -------------
23
+ - **Total Nodes**: 28523
24
+ - **Total Edges**: 86380
25
+ - **Root Nodes**: 9338
26
+ - **Leaf Nodes**: 16902
27
+
28
+ Knowledge coverage
29
+ ------------------
30
+ - Classes: 2098
31
+ - Individuals: 0
32
+ - Properties: 4
33
+
34
+ Hierarchical metrics
35
+ --------------------
36
+ - **Maximum Depth**: 4
37
+ - **Minimum Depth**: 0
38
+ - **Average Depth**: 0.95
39
+ - **Depth Variance**: 0.60
40
+
41
+ Breadth metrics
42
+ ------------------
43
+ - **Maximum Breadth**: 11284
44
+ - **Minimum Breadth**: 4
45
+ - **Average Breadth**: 5684.00
46
+ - **Breadth Variance**: 22690827.20
47
+
48
+ Dataset Statistics
49
+ ------------------
50
+ Generated Benchmarks:
51
+ - **Term Types**: 0
52
+ - **Taxonomic Relations**: 8347
53
+ - **Non-taxonomic Relations**: 0
54
+ - **Average Terms per Type**: 0.00
55
+
56
+ Usage Example
57
+ -------------
58
+ .. code-block:: python
59
+
60
+ from ontolearner.ontology import PSIMOD
61
+
62
+ # Initialize and load ontology
63
+ ontology = PSIMOD()
64
+ ontology.load("path/to/ontology.owl")
65
+
66
+ # Extract datasets
67
+ data = ontology.extract()
68
+
69
+ # Access specific relations
70
+ term_types = data.term_typings
71
+ taxonomic_relations = data.type_taxonomies
72
+ non_taxonomic_relations = data.type_non_taxonomic_relations
rex/rex.owl ADDED
The diff for this file is too large to render. See raw diff
 
rex/rex.rst ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Physico-chemical process ontology (REX)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ REX is an ontology of physico-chemical processes, i.e. physico-chemical changes occurring in course of time.
7
+ REX includes both microscopic processes (involving molecular entities or subatomic particles) and macroscopic processes.
8
+ Some biochemical processes from Gene Ontology (GO Biological process) can be described as instances of REX.
9
+
10
+ :Domain: Chemistry
11
+ :Category: Chemistry
12
+ :Current Version: 1.0
13
+ :Last Updated: 2025-03-11
14
+ :Creator: University of Warsaw
15
+ :License: Creative Commons 4.0
16
+ :Format: OWL, RDF
17
+ :Download: `Physico-chemical process ontology (REX) Homepage <https://terminology.tib.eu/ts/ontologies/REX>`_
18
+
19
+ Graph Metrics
20
+ -------------
21
+ - **Total Nodes**: 2461
22
+ - **Total Edges**: 5630
23
+ - **Root Nodes**: 356
24
+ - **Leaf Nodes**: 1457
25
+
26
+ Knowledge coverage
27
+ ------------------
28
+ - Classes: 552
29
+ - Individuals: 0
30
+ - Properties: 6
31
+
32
+ Hierarchical metrics
33
+ --------------------
34
+ - **Maximum Depth**: 6
35
+ - **Minimum Depth**: 0
36
+ - **Average Depth**: 1.35
37
+ - **Depth Variance**: 0.97
38
+
39
+ Breadth metrics
40
+ ------------------
41
+ - **Maximum Breadth**: 978
42
+ - **Minimum Breadth**: 5
43
+ - **Average Breadth**: 304.57
44
+ - **Breadth Variance**: 116930.53
45
+
46
+ Dataset Statistics
47
+ ------------------
48
+ Generated Benchmarks:
49
+ - **Term Types**: 0
50
+ - **Taxonomic Relations**: 1126
51
+ - **Non-taxonomic Relations**: 0
52
+ - **Average Terms per Type**: 0.00
53
+
54
+ Usage Example
55
+ -------------
56
+ .. code-block:: python
57
+
58
+ from ontolearner.ontology import REX
59
+
60
+ # Initialize and load ontology
61
+ ontology = REX()
62
+ ontology.load("path/to/ontology.owl")
63
+
64
+ # Extract datasets
65
+ data = ontology.extract()
66
+
67
+ # Access specific relations
68
+ term_types = data.term_typings
69
+ taxonomic_relations = data.type_taxonomies
70
+ non_taxonomic_relations = data.type_non_taxonomic_relations
rxno/rxno.owl ADDED
The diff for this file is too large to render. See raw diff
 
rxno/rxno.rst ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Reaction Ontology (RXNO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ RXNO is the name reaction ontology. It contains more than 500 classes representing organic reactions
7
+ such as the Diels–Alder cyclization.
8
+
9
+ :Domain: Chemistry
10
+ :Category: Chemistry
11
+ :Current Version: None
12
+ :Last Updated: 2021-12-16
13
+ :Creator: None
14
+ :License: Creative Commons 4.0
15
+ :Format: OWL
16
+ :Download: `Reaction Ontology (RXNO) Homepage <https://github.com/rsc-ontologies/rxno>`_
17
+
18
+ Graph Metrics
19
+ -------------
20
+ - **Total Nodes**: 5676
21
+ - **Total Edges**: 14841
22
+ - **Root Nodes**: 845
23
+ - **Leaf Nodes**: 2924
24
+
25
+ Knowledge coverage
26
+ ------------------
27
+ - Classes: 1109
28
+ - Individuals: 0
29
+ - Properties: 14
30
+
31
+ Hierarchical metrics
32
+ --------------------
33
+ - **Maximum Depth**: 8
34
+ - **Minimum Depth**: 0
35
+ - **Average Depth**: 1.71
36
+ - **Depth Variance**: 1.67
37
+
38
+ Breadth metrics
39
+ ------------------
40
+ - **Maximum Breadth**: 2230
41
+ - **Minimum Breadth**: 12
42
+ - **Average Breadth**: 623.00
43
+ - **Breadth Variance**: 588146.89
44
+
45
+ Dataset Statistics
46
+ ------------------
47
+ Generated Benchmarks:
48
+ - **Term Types**: 0
49
+ - **Taxonomic Relations**: 3757
50
+ - **Non-taxonomic Relations**: 16
51
+ - **Average Terms per Type**: 0.00
52
+
53
+ Usage Example
54
+ -------------
55
+ .. code-block:: python
56
+
57
+ from ontolearner.ontology import RXNO
58
+
59
+ # Initialize and load ontology
60
+ ontology = RXNO()
61
+ ontology.load("path/to/ontology.owl")
62
+
63
+ # Extract datasets
64
+ data = ontology.extract()
65
+
66
+ # Access specific relations
67
+ term_types = data.term_typings
68
+ taxonomic_relations = data.type_taxonomies
69
+ non_taxonomic_relations = data.type_non_taxonomic_relations
vibso/vibso.owl ADDED
The diff for this file is too large to render. See raw diff
 
vibso/vibso.rst ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Vibrational Spectroscopy Ontology (VIBSO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ The Vibration Spectroscopy Ontology defines technical terms with which research data produced
7
+ in vibrational spectroscopy experiments can be semantically enriched, made machine readable and FAIR.
8
+
9
+ :Domain: Chemistry
10
+ :Category: Spectroscopy
11
+ :Current Version: 2024-09-23
12
+ :Last Updated: 2024-09-23
13
+ :Creator: VIBSO Workgroup
14
+ :License: Creative Commons Attribution 4.0
15
+ :Format: OWL
16
+ :Download: `Vibrational Spectroscopy Ontology (VIBSO) Homepage <https://terminology.tib.eu/ts/ontologies/vibso>`_
17
+
18
+ Graph Metrics
19
+ -------------
20
+ - **Total Nodes**: 4007
21
+ - **Total Edges**: 8009
22
+ - **Root Nodes**: 328
23
+ - **Leaf Nodes**: 2547
24
+
25
+ Knowledge coverage
26
+ ------------------
27
+ - Classes: 598
28
+ - Individuals: 40
29
+ - Properties: 53
30
+
31
+ Hierarchical metrics
32
+ --------------------
33
+ - **Maximum Depth**: 13
34
+ - **Minimum Depth**: 0
35
+ - **Average Depth**: 2.03
36
+ - **Depth Variance**: 2.77
37
+
38
+ Breadth metrics
39
+ ------------------
40
+ - **Maximum Breadth**: 1131
41
+ - **Minimum Breadth**: 1
42
+ - **Average Breadth**: 188.29
43
+ - **Breadth Variance**: 98075.49
44
+
45
+ Dataset Statistics
46
+ ------------------
47
+ Generated Benchmarks:
48
+ - **Term Types**: 40
49
+ - **Taxonomic Relations**: 856
50
+ - **Non-taxonomic Relations**: 23
51
+ - **Average Terms per Type**: 2.35
52
+
53
+ Usage Example
54
+ -------------
55
+ .. code-block:: python
56
+
57
+ from ontolearner.ontology import VIBSO
58
+
59
+ # Initialize and load ontology
60
+ ontology = VIBSO()
61
+ ontology.load("path/to/ontology.owl")
62
+
63
+ # Extract datasets
64
+ data = ontology.extract()
65
+
66
+ # Access specific relations
67
+ term_types = data.term_typings
68
+ taxonomic_relations = data.type_taxonomies
69
+ non_taxonomic_relations = data.type_non_taxonomic_relations