Andrei Aioanei
commited on
Commit
·
abc4451
1
Parent(s):
f92bc7f
Update chemistry domain with 15 ontologies
Browse files- .gitattributes +1 -0
- README.md +50 -0
- afo/afo.rst +72 -0
- afo/afo.ttl +0 -0
- chebi/chebi.owl +3 -0
- chebi/chebi.rst +74 -0
- cheminf/cheminf.owl +0 -0
- cheminf/cheminf.rst +71 -0
- chiro/chiro.owl +0 -0
- chiro/chiro.rst +71 -0
- chmo/chmo.owl +0 -0
- chmo/chmo.rst +72 -0
- dataset_infos.json +27 -0
- fix/fix.owl +0 -0
- fix/fix.rst +68 -0
- massspectrometry/massspectrometry.owl +0 -0
- massspectrometry/massspectrometry.rst +68 -0
- mop/mop.owl +0 -0
- mop/mop.rst +69 -0
- nmrcv/nmrcv.owl +0 -0
- nmrcv/nmrcv.rst +82 -0
- ontokin/ontokin.owl +0 -0
- ontokin/ontokin.rst +68 -0
- proco/proco.owl +0 -0
- proco/proco.rst +69 -0
- psimod/psimod.owl +0 -0
- psimod/psimod.rst +72 -0
- rex/rex.owl +0 -0
- rex/rex.rst +70 -0
- rxno/rxno.owl +0 -0
- rxno/rxno.rst +69 -0
- vibso/vibso.owl +0 -0
- vibso/vibso.rst +69 -0
.gitattributes
CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
chebi/chebi.owl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- OntoLearner
|
8 |
+
- ontology-learning
|
9 |
+
- chemistry
|
10 |
+
pretty_name: Agricultural
|
11 |
+
---
|
12 |
+
<div>
|
13 |
+
<img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
|
14 |
+
style="display: block; margin: 0 auto; width: 500px; height: auto;">
|
15 |
+
<h1 style="text-align: center; margin-top: 1em;">Chemistry Domain Ontologies</h1>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
## Overview
|
19 |
+
The domain of chemistry ontologies encompasses the structured representation and formalization of chemical knowledge, including entities, reactions, processes, and methodologies. It plays a critical role in facilitating interoperability, data integration, and advanced computational modeling across diverse chemical disciplines. By providing a standardized framework, these ontologies enhance the precision and efficiency of information exchange and support the advancement of research and innovation in the chemical sciences.
|
20 |
+
|
21 |
+
## Ontologies
|
22 |
+
| Ontology ID | Full Name | Classes | Properties | Last Updated |
|
23 |
+
|-------------|-----------|---------|------------|--------------|
|
24 |
+
| AFO | Allotrope Foundation Ontology (AFO) | 3871 | 318 | 2024-06-28|
|
25 |
+
| ChEBI | Chemical Entities of Biological Interest (ChEBI) | 220816 | 10 | 01/01/2025|
|
26 |
+
| CHEMINF | Chemical Information Ontology (CHEMINF) | 358 | 52 | None|
|
27 |
+
| CHIRO | CHEBI Integrated Role Ontology (CHIRO) | 13930 | 15 | 2015-11-23|
|
28 |
+
| ChMO | Chemical Methods Ontology (ChMO) | 3202 | 27 | 2022-04-19|
|
29 |
+
| FIX | FIX Ontology (FIX) | 1163 | 5 | 2020-04-13|
|
30 |
+
| MassSpectrometry | Mass Spectrometry Ontology (MassSpectrometry) | 3636 | 12 | 12:02:2025|
|
31 |
+
| MOP | Molecular Process Ontology (MOP) | 3717 | 11 | 2022-05-11|
|
32 |
+
| NMRCV | Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV) | 757 | 0 | 2017-10-19|
|
33 |
+
| OntoKin | Chemical Kinetics Ontology (OntoKin) | 83 | 136 | 08 February 2022|
|
34 |
+
| PROCO | PROcess Chemistry Ontology (PROCO) | 970 | 61 | 04-14-2022|
|
35 |
+
| PSIMOD | Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD) | 2098 | 4 | 2022-06-13|
|
36 |
+
| REX | Physico-chemical process ontology (REX) | 552 | 6 | 2025-03-11|
|
37 |
+
| RXNO | Reaction Ontology (RXNO) | 1109 | 14 | 2021-12-16|
|
38 |
+
| VIBSO | Vibrational Spectroscopy Ontology (VIBSO) | 598 | 53 | 2024-09-23|
|
39 |
+
|
40 |
+
## Dataset Files
|
41 |
+
Each ontology directory contains the following files:
|
42 |
+
1. `<ontology_id>.<format>` - The original ontology file
|
43 |
+
2. `term_typings.json` - Dataset of term to type mappings
|
44 |
+
3. `taxonomies.json` - Dataset of taxonomic relations
|
45 |
+
4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
|
46 |
+
5. `<ontology_id>.rst` - Documentation describing the ontology
|
47 |
+
|
48 |
+
## Usage
|
49 |
+
These datasets are intended for ontology learning research and applications.
|
50 |
+
|
afo/afo.rst
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Allotrope Foundation Ontology (AFO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
The AFO is an ontology suite that provides a standard vocabulary and semantic model
|
7 |
+
for the representation of laboratory analytical processes. The AFO suite is aligned at the upper layer
|
8 |
+
to the Basic Formal Ontology (BFO). The core domains modeled include, Equipment, Material, Process, and Results.
|
9 |
+
This artifact contains all triples of Allotrope Foundation Merged Without QUDT Ontology Suite (REC/2023/12)
|
10 |
+
together with triples inferred with HermiT.
|
11 |
+
|
12 |
+
:Domain: Chemistry
|
13 |
+
:Category: Laboratory Analytical Processes
|
14 |
+
:Current Version: 2024-06
|
15 |
+
:Last Updated: 2024-06-28
|
16 |
+
:Creator: Allotrope Foundation
|
17 |
+
:License: CC BY 4.0
|
18 |
+
:Format: TTL
|
19 |
+
:Download: `Allotrope Foundation Ontology (AFO) Homepage <https://terminology.tib.eu/ts/ontologies/AFO>`_
|
20 |
+
|
21 |
+
Graph Metrics
|
22 |
+
-------------
|
23 |
+
- **Total Nodes**: 15547
|
24 |
+
- **Total Edges**: 36699
|
25 |
+
- **Root Nodes**: 142
|
26 |
+
- **Leaf Nodes**: 8003
|
27 |
+
|
28 |
+
Knowledge coverage
|
29 |
+
------------------
|
30 |
+
- Classes: 3871
|
31 |
+
- Individuals: 38
|
32 |
+
- Properties: 318
|
33 |
+
|
34 |
+
Hierarchical metrics
|
35 |
+
--------------------
|
36 |
+
- **Maximum Depth**: 24
|
37 |
+
- **Minimum Depth**: 0
|
38 |
+
- **Average Depth**: 5.14
|
39 |
+
- **Depth Variance**: 22.60
|
40 |
+
|
41 |
+
Breadth metrics
|
42 |
+
------------------
|
43 |
+
- **Maximum Breadth**: 368
|
44 |
+
- **Minimum Breadth**: 1
|
45 |
+
- **Average Breadth**: 75.84
|
46 |
+
- **Breadth Variance**: 8251.25
|
47 |
+
|
48 |
+
Dataset Statistics
|
49 |
+
------------------
|
50 |
+
Generated Benchmarks:
|
51 |
+
- **Term Types**: 38
|
52 |
+
- **Taxonomic Relations**: 9889
|
53 |
+
- **Non-taxonomic Relations**: 34
|
54 |
+
- **Average Terms per Type**: 3.45
|
55 |
+
|
56 |
+
Usage Example
|
57 |
+
-------------
|
58 |
+
.. code-block:: python
|
59 |
+
|
60 |
+
from ontolearner.ontology import AFO
|
61 |
+
|
62 |
+
# Initialize and load ontology
|
63 |
+
ontology = AFO()
|
64 |
+
ontology.load("path/to/ontology.owl")
|
65 |
+
|
66 |
+
# Extract datasets
|
67 |
+
data = ontology.extract()
|
68 |
+
|
69 |
+
# Access specific relations
|
70 |
+
term_types = data.term_typings
|
71 |
+
taxonomic_relations = data.type_taxonomies
|
72 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
afo/afo.ttl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
chebi/chebi.owl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3df51b665dfa54499a41482a2456851983f50b709cefb4c5e9aaeb71a95e6814
|
3 |
+
size 814872764
|
chebi/chebi.rst
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chemical Entities of Biological Interest (ChEBI)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
Chemical Entities of Biological Interest (ChEBI) is a dictionary of molecular entities
|
7 |
+
focused on ‘small’ chemical compounds. The term ‘molecular entity’ refers to any constitutionally
|
8 |
+
or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer, etc.,
|
9 |
+
identifiable as a separately distinguishable entity. The molecular entities in question
|
10 |
+
are either products of nature or synthetic products used to intervene in the processes of living organisms.
|
11 |
+
ChEBI incorporates an ontological classification, whereby the relationships between molecular entities
|
12 |
+
or classes of entities and their parents and/or children are specified.
|
13 |
+
|
14 |
+
:Domain: Chemistry
|
15 |
+
:Category: Chemical Entities
|
16 |
+
:Current Version: 239
|
17 |
+
:Last Updated: 01/01/2025
|
18 |
+
:Creator: None
|
19 |
+
:License: Creative Commons 4.0
|
20 |
+
:Format: OWL, OBO, JSON
|
21 |
+
:Download: `Chemical Entities of Biological Interest (ChEBI) Homepage <https://www.ebi.ac.uk/chebi/>`_
|
22 |
+
|
23 |
+
Graph Metrics
|
24 |
+
-------------
|
25 |
+
- **Total Nodes**: 2433610
|
26 |
+
- **Total Edges**: 6913389
|
27 |
+
- **Root Nodes**: 609907
|
28 |
+
- **Leaf Nodes**: 1528418
|
29 |
+
|
30 |
+
Knowledge coverage
|
31 |
+
------------------
|
32 |
+
- Classes: 220816
|
33 |
+
- Individuals: 0
|
34 |
+
- Properties: 10
|
35 |
+
|
36 |
+
Hierarchical metrics
|
37 |
+
--------------------
|
38 |
+
- **Maximum Depth**: 6
|
39 |
+
- **Minimum Depth**: 0
|
40 |
+
- **Average Depth**: 1.14
|
41 |
+
- **Depth Variance**: 0.69
|
42 |
+
|
43 |
+
Breadth metrics
|
44 |
+
------------------
|
45 |
+
- **Maximum Breadth**: 908127
|
46 |
+
- **Minimum Breadth**: 26
|
47 |
+
- **Average Breadth**: 310545.00
|
48 |
+
- **Breadth Variance**: 135103408992.57
|
49 |
+
|
50 |
+
Dataset Statistics
|
51 |
+
------------------
|
52 |
+
Generated Benchmarks:
|
53 |
+
- **Term Types**: 0
|
54 |
+
- **Taxonomic Relations**: 1200620
|
55 |
+
- **Non-taxonomic Relations**: 18607
|
56 |
+
- **Average Terms per Type**: 0.00
|
57 |
+
|
58 |
+
Usage Example
|
59 |
+
-------------
|
60 |
+
.. code-block:: python
|
61 |
+
|
62 |
+
from ontolearner.ontology import ChEBI
|
63 |
+
|
64 |
+
# Initialize and load ontology
|
65 |
+
ontology = ChEBI()
|
66 |
+
ontology.load("path/to/ontology.owl")
|
67 |
+
|
68 |
+
# Extract datasets
|
69 |
+
data = ontology.extract()
|
70 |
+
|
71 |
+
# Access specific relations
|
72 |
+
term_types = data.term_typings
|
73 |
+
taxonomic_relations = data.type_taxonomies
|
74 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
cheminf/cheminf.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cheminf/cheminf.rst
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chemical Information Ontology (CHEMINF)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
The chemical information ontology (cheminf) describes information entities about chemical entities.
|
7 |
+
It provides qualitative and quantitative attributes to richly describe chemicals.
|
8 |
+
Includes terms for the descriptors commonly used in cheminformatics software applications
|
9 |
+
and the algorithms which generate them.
|
10 |
+
|
11 |
+
:Domain: Chemistry
|
12 |
+
:Category: Chemistry
|
13 |
+
:Current Version: 2.1.0
|
14 |
+
:Last Updated: None
|
15 |
+
:Creator: Egon Willighagen, Nina Jeliazkova, Ola Spjuth, Valery Tkachenko
|
16 |
+
:License: Creative Commons 1.0
|
17 |
+
:Format: OWL
|
18 |
+
:Download: `Chemical Information Ontology (CHEMINF) Homepage <https://terminology.tib.eu/ts/ontologies/CHEMINF>`_
|
19 |
+
|
20 |
+
Graph Metrics
|
21 |
+
-------------
|
22 |
+
- **Total Nodes**: 1467
|
23 |
+
- **Total Edges**: 2837
|
24 |
+
- **Root Nodes**: 213
|
25 |
+
- **Leaf Nodes**: 435
|
26 |
+
|
27 |
+
Knowledge coverage
|
28 |
+
------------------
|
29 |
+
- Classes: 358
|
30 |
+
- Individuals: 0
|
31 |
+
- Properties: 52
|
32 |
+
|
33 |
+
Hierarchical metrics
|
34 |
+
--------------------
|
35 |
+
- **Maximum Depth**: 16
|
36 |
+
- **Minimum Depth**: 0
|
37 |
+
- **Average Depth**: 1.73
|
38 |
+
- **Depth Variance**: 9.21
|
39 |
+
|
40 |
+
Breadth metrics
|
41 |
+
------------------
|
42 |
+
- **Maximum Breadth**: 213
|
43 |
+
- **Minimum Breadth**: 1
|
44 |
+
- **Average Breadth**: 29.24
|
45 |
+
- **Breadth Variance**: 3411.59
|
46 |
+
|
47 |
+
Dataset Statistics
|
48 |
+
------------------
|
49 |
+
Generated Benchmarks:
|
50 |
+
- **Term Types**: 0
|
51 |
+
- **Taxonomic Relations**: 594
|
52 |
+
- **Non-taxonomic Relations**: 1
|
53 |
+
- **Average Terms per Type**: 0.00
|
54 |
+
|
55 |
+
Usage Example
|
56 |
+
-------------
|
57 |
+
.. code-block:: python
|
58 |
+
|
59 |
+
from ontolearner.ontology import CHEMINF
|
60 |
+
|
61 |
+
# Initialize and load ontology
|
62 |
+
ontology = CHEMINF()
|
63 |
+
ontology.load("path/to/ontology.owl")
|
64 |
+
|
65 |
+
# Extract datasets
|
66 |
+
data = ontology.extract()
|
67 |
+
|
68 |
+
# Access specific relations
|
69 |
+
term_types = data.term_typings
|
70 |
+
taxonomic_relations = data.type_taxonomies
|
71 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
chiro/chiro.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
chiro/chiro.rst
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CHEBI Integrated Role Ontology (CHIRO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
CHEBI provides a distinct role hierarchy. Chemicals in the structural hierarchy are connected via a 'has role' relation.
|
7 |
+
CHIRO provides links from these roles to useful other classes in other ontologies.
|
8 |
+
This will allow direct connection between chemical structures (small molecules, drugs) and what they do.
|
9 |
+
This could be formalized using 'capable of', in the same way Uberon and the Cell Ontology link structures to processes.
|
10 |
+
|
11 |
+
:Domain: Chemistry
|
12 |
+
:Category: Chemicals, Roles
|
13 |
+
:Current Version: 2015-11-23
|
14 |
+
:Last Updated: 2015-11-23
|
15 |
+
:Creator: None
|
16 |
+
:License: Creative Commons 1.0
|
17 |
+
:Format: OWL
|
18 |
+
:Download: `CHEBI Integrated Role Ontology (CHIRO) Homepage <https://terminology.tib.eu/ts/ontologies/chiro>`_
|
19 |
+
|
20 |
+
Graph Metrics
|
21 |
+
-------------
|
22 |
+
- **Total Nodes**: 81778
|
23 |
+
- **Total Edges**: 197071
|
24 |
+
- **Root Nodes**: 14636
|
25 |
+
- **Leaf Nodes**: 50439
|
26 |
+
|
27 |
+
Knowledge coverage
|
28 |
+
------------------
|
29 |
+
- Classes: 13930
|
30 |
+
- Individuals: 0
|
31 |
+
- Properties: 15
|
32 |
+
|
33 |
+
Hierarchical metrics
|
34 |
+
--------------------
|
35 |
+
- **Maximum Depth**: 16
|
36 |
+
- **Minimum Depth**: 0
|
37 |
+
- **Average Depth**: 1.36
|
38 |
+
- **Depth Variance**: 1.13
|
39 |
+
|
40 |
+
Breadth metrics
|
41 |
+
------------------
|
42 |
+
- **Maximum Breadth**: 34719
|
43 |
+
- **Minimum Breadth**: 2
|
44 |
+
- **Average Breadth**: 4620.24
|
45 |
+
- **Breadth Variance**: 105924794.30
|
46 |
+
|
47 |
+
Dataset Statistics
|
48 |
+
------------------
|
49 |
+
Generated Benchmarks:
|
50 |
+
- **Term Types**: 0
|
51 |
+
- **Taxonomic Relations**: 27299
|
52 |
+
- **Non-taxonomic Relations**: 0
|
53 |
+
- **Average Terms per Type**: 0.00
|
54 |
+
|
55 |
+
Usage Example
|
56 |
+
-------------
|
57 |
+
.. code-block:: python
|
58 |
+
|
59 |
+
from ontolearner.ontology import CHIRO
|
60 |
+
|
61 |
+
# Initialize and load ontology
|
62 |
+
ontology = CHIRO()
|
63 |
+
ontology.load("path/to/ontology.owl")
|
64 |
+
|
65 |
+
# Extract datasets
|
66 |
+
data = ontology.extract()
|
67 |
+
|
68 |
+
# Access specific relations
|
69 |
+
term_types = data.term_typings
|
70 |
+
taxonomic_relations = data.type_taxonomies
|
71 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
chmo/chmo.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
chmo/chmo.rst
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chemical Methods Ontology (ChMO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
The Chemical Methods Ontology contains more than 3000 classes and describes methods used to:
|
7 |
+
- collect data in chemical experiments, such as mass spectrometry and electron microscopy.
|
8 |
+
- prepare and separate material for further analysis, such as sample ionisation, chromatography, and electrophoresis
|
9 |
+
- synthesise materials, such as epitaxy and continuous vapour deposition It also describes the instruments used
|
10 |
+
in these experiments, such as mass spectrometers and chromatography columns and their outputs.
|
11 |
+
|
12 |
+
:Domain: Chemistry
|
13 |
+
:Category: Chemistry
|
14 |
+
:Current Version: None
|
15 |
+
:Last Updated: 2022-04-19
|
16 |
+
:Creator: None
|
17 |
+
:License: Creative Commons 4.0
|
18 |
+
:Format: OWL, TTL, CSV, NT
|
19 |
+
:Download: `Chemical Methods Ontology (ChMO) Homepage <https://github.com/rsc-ontologies/rsc-cmo>`_
|
20 |
+
|
21 |
+
Graph Metrics
|
22 |
+
-------------
|
23 |
+
- **Total Nodes**: 24075
|
24 |
+
- **Total Edges**: 44651
|
25 |
+
- **Root Nodes**: 3100
|
26 |
+
- **Leaf Nodes**: 17250
|
27 |
+
|
28 |
+
Knowledge coverage
|
29 |
+
------------------
|
30 |
+
- Classes: 3202
|
31 |
+
- Individuals: 0
|
32 |
+
- Properties: 27
|
33 |
+
|
34 |
+
Hierarchical metrics
|
35 |
+
--------------------
|
36 |
+
- **Maximum Depth**: 7
|
37 |
+
- **Minimum Depth**: 0
|
38 |
+
- **Average Depth**: 1.49
|
39 |
+
- **Depth Variance**: 0.63
|
40 |
+
|
41 |
+
Breadth metrics
|
42 |
+
------------------
|
43 |
+
- **Maximum Breadth**: 13439
|
44 |
+
- **Minimum Breadth**: 1
|
45 |
+
- **Average Breadth**: 2993.88
|
46 |
+
- **Breadth Variance**: 20855464.86
|
47 |
+
|
48 |
+
Dataset Statistics
|
49 |
+
------------------
|
50 |
+
Generated Benchmarks:
|
51 |
+
- **Term Types**: 0
|
52 |
+
- **Taxonomic Relations**: 4268
|
53 |
+
- **Non-taxonomic Relations**: 114
|
54 |
+
- **Average Terms per Type**: 0.00
|
55 |
+
|
56 |
+
Usage Example
|
57 |
+
-------------
|
58 |
+
.. code-block:: python
|
59 |
+
|
60 |
+
from ontolearner.ontology import ChMO
|
61 |
+
|
62 |
+
# Initialize and load ontology
|
63 |
+
ontology = ChMO()
|
64 |
+
ontology.load("path/to/ontology.owl")
|
65 |
+
|
66 |
+
# Extract datasets
|
67 |
+
data = ontology.extract()
|
68 |
+
|
69 |
+
# Access specific relations
|
70 |
+
term_types = data.term_typings
|
71 |
+
taxonomic_relations = data.type_taxonomies
|
72 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
dataset_infos.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Ontology Domain: Chemistry",
|
3 |
+
"description": "Dataset containing ontologies and processed data for the Chemistry domain",
|
4 |
+
"license": "mixed",
|
5 |
+
"tags": [
|
6 |
+
"ontology",
|
7 |
+
"chemistry",
|
8 |
+
"knowledge-graph"
|
9 |
+
],
|
10 |
+
"ontologies": [
|
11 |
+
"AFO",
|
12 |
+
"ChEBI",
|
13 |
+
"CHEMINF",
|
14 |
+
"CHIRO",
|
15 |
+
"ChMO",
|
16 |
+
"FIX",
|
17 |
+
"MassSpectrometry",
|
18 |
+
"MOP",
|
19 |
+
"NMRCV",
|
20 |
+
"OntoKin",
|
21 |
+
"PROCO",
|
22 |
+
"PSIMOD",
|
23 |
+
"REX",
|
24 |
+
"RXNO",
|
25 |
+
"VIBSO"
|
26 |
+
]
|
27 |
+
}
|
fix/fix.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
fix/fix.rst
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FIX Ontology (FIX)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
An ontology of physico-chemical methods and properties.
|
7 |
+
|
8 |
+
:Domain: Chemistry
|
9 |
+
:Category: Chemicals, Properties
|
10 |
+
:Current Version: 2020-04-13
|
11 |
+
:Last Updated: 2020-04-13
|
12 |
+
:Creator: None
|
13 |
+
:License: None
|
14 |
+
:Format: OWL
|
15 |
+
:Download: `FIX Ontology (FIX) Homepage <https://terminology.tib.eu/ts/ontologies/FIX>`_
|
16 |
+
|
17 |
+
Graph Metrics
|
18 |
+
-------------
|
19 |
+
- **Total Nodes**: 3402
|
20 |
+
- **Total Edges**: 7621
|
21 |
+
- **Root Nodes**: 22
|
22 |
+
- **Leaf Nodes**: 2147
|
23 |
+
|
24 |
+
Knowledge coverage
|
25 |
+
------------------
|
26 |
+
- Classes: 1163
|
27 |
+
- Individuals: 0
|
28 |
+
- Properties: 5
|
29 |
+
|
30 |
+
Hierarchical metrics
|
31 |
+
--------------------
|
32 |
+
- **Maximum Depth**: 7
|
33 |
+
- **Minimum Depth**: 0
|
34 |
+
- **Average Depth**: 2.46
|
35 |
+
- **Depth Variance**: 2.32
|
36 |
+
|
37 |
+
Breadth metrics
|
38 |
+
------------------
|
39 |
+
- **Maximum Breadth**: 75
|
40 |
+
- **Minimum Breadth**: 2
|
41 |
+
- **Average Breadth**: 36.25
|
42 |
+
- **Breadth Variance**: 666.69
|
43 |
+
|
44 |
+
Dataset Statistics
|
45 |
+
------------------
|
46 |
+
Generated Benchmarks:
|
47 |
+
- **Term Types**: 0
|
48 |
+
- **Taxonomic Relations**: 2978
|
49 |
+
- **Non-taxonomic Relations**: 0
|
50 |
+
- **Average Terms per Type**: 0.00
|
51 |
+
|
52 |
+
Usage Example
|
53 |
+
-------------
|
54 |
+
.. code-block:: python
|
55 |
+
|
56 |
+
from ontolearner.ontology import FIX
|
57 |
+
|
58 |
+
# Initialize and load ontology
|
59 |
+
ontology = FIX()
|
60 |
+
ontology.load("path/to/ontology.owl")
|
61 |
+
|
62 |
+
# Extract datasets
|
63 |
+
data = ontology.extract()
|
64 |
+
|
65 |
+
# Access specific relations
|
66 |
+
term_types = data.term_typings
|
67 |
+
taxonomic_relations = data.type_taxonomies
|
68 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
massspectrometry/massspectrometry.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
massspectrometry/massspectrometry.rst
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Mass Spectrometry Ontology (MassSpectrometry)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
A structured controlled vocabulary for the annotation of experiments concerned with proteomics mass spectrometry.
|
7 |
+
|
8 |
+
:Domain: Chemistry
|
9 |
+
:Category: Mass Spectrometry, Proteomics
|
10 |
+
:Current Version: None
|
11 |
+
:Last Updated: 12:02:2025
|
12 |
+
:Creator: Andreas Bertsch
|
13 |
+
:License: Creative Commons 4.0
|
14 |
+
:Format: OWL
|
15 |
+
:Download: `Mass Spectrometry Ontology (MassSpectrometry) Homepage <https://terminology.tib.eu/ts/ontologies/MS>`_
|
16 |
+
|
17 |
+
Graph Metrics
|
18 |
+
-------------
|
19 |
+
- **Total Nodes**: 17851
|
20 |
+
- **Total Edges**: 51814
|
21 |
+
- **Root Nodes**: 3786
|
22 |
+
- **Leaf Nodes**: 7959
|
23 |
+
|
24 |
+
Knowledge coverage
|
25 |
+
------------------
|
26 |
+
- Classes: 3636
|
27 |
+
- Individuals: 0
|
28 |
+
- Properties: 12
|
29 |
+
|
30 |
+
Hierarchical metrics
|
31 |
+
--------------------
|
32 |
+
- **Maximum Depth**: 6
|
33 |
+
- **Minimum Depth**: 0
|
34 |
+
- **Average Depth**: 1.16
|
35 |
+
- **Depth Variance**: 0.58
|
36 |
+
|
37 |
+
Breadth metrics
|
38 |
+
------------------
|
39 |
+
- **Maximum Breadth**: 7345
|
40 |
+
- **Minimum Breadth**: 2
|
41 |
+
- **Average Breadth**: 2534.57
|
42 |
+
- **Breadth Variance**: 9465403.67
|
43 |
+
|
44 |
+
Dataset Statistics
|
45 |
+
------------------
|
46 |
+
Generated Benchmarks:
|
47 |
+
- **Term Types**: 0
|
48 |
+
- **Taxonomic Relations**: 16046
|
49 |
+
- **Non-taxonomic Relations**: 2
|
50 |
+
- **Average Terms per Type**: 0.00
|
51 |
+
|
52 |
+
Usage Example
|
53 |
+
-------------
|
54 |
+
.. code-block:: python
|
55 |
+
|
56 |
+
from ontolearner.ontology import MassSpectrometry
|
57 |
+
|
58 |
+
# Initialize and load ontology
|
59 |
+
ontology = MassSpectrometry()
|
60 |
+
ontology.load("path/to/ontology.owl")
|
61 |
+
|
62 |
+
# Extract datasets
|
63 |
+
data = ontology.extract()
|
64 |
+
|
65 |
+
# Access specific relations
|
66 |
+
term_types = data.term_typings
|
67 |
+
taxonomic_relations = data.type_taxonomies
|
68 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
mop/mop.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mop/mop.rst
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Molecular Process Ontology (MOP)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
MOP is the molecular process ontology. It contains the molecular processes that underlie
|
7 |
+
the name reaction ontology RXNO, for example cyclization, methylation and demethylation.
|
8 |
+
|
9 |
+
:Domain: Chemistry
|
10 |
+
:Category: Chemistry, Molecular Biology
|
11 |
+
:Current Version: 2022-05-11
|
12 |
+
:Last Updated: 2022-05-11
|
13 |
+
:Creator: None
|
14 |
+
:License: Creative Commons 4.0
|
15 |
+
:Format: OWL
|
16 |
+
:Download: `Molecular Process Ontology (MOP) Homepage <https://terminology.tib.eu/ts/ontologies/MOP>`_
|
17 |
+
|
18 |
+
Graph Metrics
|
19 |
+
-------------
|
20 |
+
- **Total Nodes**: 15794
|
21 |
+
- **Total Edges**: 41157
|
22 |
+
- **Root Nodes**: 3693
|
23 |
+
- **Leaf Nodes**: 8182
|
24 |
+
|
25 |
+
Knowledge coverage
|
26 |
+
------------------
|
27 |
+
- Classes: 3717
|
28 |
+
- Individuals: 0
|
29 |
+
- Properties: 11
|
30 |
+
|
31 |
+
Hierarchical metrics
|
32 |
+
--------------------
|
33 |
+
- **Maximum Depth**: 6
|
34 |
+
- **Minimum Depth**: 0
|
35 |
+
- **Average Depth**: 1.09
|
36 |
+
- **Depth Variance**: 0.63
|
37 |
+
|
38 |
+
Breadth metrics
|
39 |
+
------------------
|
40 |
+
- **Maximum Breadth**: 7300
|
41 |
+
- **Minimum Breadth**: 3
|
42 |
+
- **Average Breadth**: 2253.14
|
43 |
+
- **Breadth Variance**: 7474153.55
|
44 |
+
|
45 |
+
Dataset Statistics
|
46 |
+
------------------
|
47 |
+
Generated Benchmarks:
|
48 |
+
- **Term Types**: 0
|
49 |
+
- **Taxonomic Relations**: 4171
|
50 |
+
- **Non-taxonomic Relations**: 47
|
51 |
+
- **Average Terms per Type**: 0.00
|
52 |
+
|
53 |
+
Usage Example
|
54 |
+
-------------
|
55 |
+
.. code-block:: python
|
56 |
+
|
57 |
+
from ontolearner.ontology import MOP
|
58 |
+
|
59 |
+
# Initialize and load ontology
|
60 |
+
ontology = MOP()
|
61 |
+
ontology.load("path/to/ontology.owl")
|
62 |
+
|
63 |
+
# Extract datasets
|
64 |
+
data = ontology.extract()
|
65 |
+
|
66 |
+
# Access specific relations
|
67 |
+
term_types = data.term_typings
|
68 |
+
taxonomic_relations = data.type_taxonomies
|
69 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
nmrcv/nmrcv.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
nmrcv/nmrcv.rst
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
This artefact is an MSI-approved controlled vocabulary primarily developed under COSMOS EU and PhenoMeNal EU governance.
|
7 |
+
The nmrCV is supporting the nmrML XML format with standardized terms. nmrML is a vendor agnostic open access NMR raw data standard.
|
8 |
+
Its primaly role is analogous to the mzCV for the PSI-approved mzML XML format. It uses BFO2.0 as its Top level.
|
9 |
+
This CV was derived from two predecessors (The NMR CV from the David Wishart Group, developed by Joseph Cruz)
|
10 |
+
and the MSI nmr CV developed by Daniel Schober at the EBI. This simple taxonomy of terms (no DL semantics used)
|
11 |
+
serves the nuclear magnetic resonance markup language (nmrML) with meaningful descriptors to amend the nmrML xml file
|
12 |
+
with CV terms. Metabolomics scientists are encouraged to use this CV to annotrate their raw and experimental context data,
|
13 |
+
i.e. within nmrML. The approach to have an exchange syntax mixed of an xsd and CV stems from the PSI mzML effort.
|
14 |
+
The reason to branch out from an xsd into a CV is, that in areas where the terminology is likely to change faster
|
15 |
+
than the nmrML xsd could be updated and aligned, an externally and decentrallised maintained CV can accompensate
|
16 |
+
for such dynamics in a more flexible way. A second reason for this set-up is that semantic validity of CV terms
|
17 |
+
used in an nmrML XML instance (allowed CV terms, position/relation to each other, cardinality) can be validated
|
18 |
+
by rule-based proprietary validators: By means of cardinality specifications and XPath expressions defined
|
19 |
+
in an XML mapping file (an instances of the CvMappingRules.xsd ), one can define what ontology terms are allowed
|
20 |
+
in a specific location of the data model.
|
21 |
+
|
22 |
+
:Domain: Chemistry
|
23 |
+
:Category: Chemistry
|
24 |
+
:Current Version: 1.1.0
|
25 |
+
:Last Updated: 2017-10-19
|
26 |
+
:Creator: Daniel Schober
|
27 |
+
:License: Creative Commons 4.0
|
28 |
+
:Format: OWL
|
29 |
+
:Download: `Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV) Homepage <https://terminology.tib.eu/ts/ontologies/NMRCV>`_
|
30 |
+
|
31 |
+
Graph Metrics
|
32 |
+
-------------
|
33 |
+
- **Total Nodes**: 1596
|
34 |
+
- **Total Edges**: 3951
|
35 |
+
- **Root Nodes**: 184
|
36 |
+
- **Leaf Nodes**: 662
|
37 |
+
|
38 |
+
Knowledge coverage
|
39 |
+
------------------
|
40 |
+
- Classes: 757
|
41 |
+
- Individuals: 0
|
42 |
+
- Properties: 0
|
43 |
+
|
44 |
+
Hierarchical metrics
|
45 |
+
--------------------
|
46 |
+
- **Maximum Depth**: 5
|
47 |
+
- **Minimum Depth**: 0
|
48 |
+
- **Average Depth**: 1.01
|
49 |
+
- **Depth Variance**: 0.72
|
50 |
+
|
51 |
+
Breadth metrics
|
52 |
+
------------------
|
53 |
+
- **Maximum Breadth**: 273
|
54 |
+
- **Minimum Breadth**: 2
|
55 |
+
- **Average Breadth**: 103.83
|
56 |
+
- **Breadth Variance**: 10836.47
|
57 |
+
|
58 |
+
Dataset Statistics
|
59 |
+
------------------
|
60 |
+
Generated Benchmarks:
|
61 |
+
- **Term Types**: 0
|
62 |
+
- **Taxonomic Relations**: 792
|
63 |
+
- **Non-taxonomic Relations**: 0
|
64 |
+
- **Average Terms per Type**: 0.00
|
65 |
+
|
66 |
+
Usage Example
|
67 |
+
-------------
|
68 |
+
.. code-block:: python
|
69 |
+
|
70 |
+
from ontolearner.ontology import NMRCV
|
71 |
+
|
72 |
+
# Initialize and load ontology
|
73 |
+
ontology = NMRCV()
|
74 |
+
ontology.load("path/to/ontology.owl")
|
75 |
+
|
76 |
+
# Extract datasets
|
77 |
+
data = ontology.extract()
|
78 |
+
|
79 |
+
# Access specific relations
|
80 |
+
term_types = data.term_typings
|
81 |
+
taxonomic_relations = data.type_taxonomies
|
82 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
ontokin/ontokin.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ontokin/ontokin.rst
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Chemical Kinetics Ontology (OntoKin)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
OntoKin is an ontology developed for representing chemical kinetic reaction mechanisms.
|
7 |
+
|
8 |
+
:Domain: Chemistry
|
9 |
+
:Category: Chemistry
|
10 |
+
:Current Version: 1.0
|
11 |
+
:Last Updated: 08 February 2022
|
12 |
+
:Creator: IEEE
|
13 |
+
:License: Creative Commons 4.0
|
14 |
+
:Format: OWL
|
15 |
+
:Download: `Chemical Kinetics Ontology (OntoKin) Homepage <https://www.ontologyportal.org/>`_
|
16 |
+
|
17 |
+
Graph Metrics
|
18 |
+
-------------
|
19 |
+
- **Total Nodes**: 407
|
20 |
+
- **Total Edges**: 1011
|
21 |
+
- **Root Nodes**: 122
|
22 |
+
- **Leaf Nodes**: 103
|
23 |
+
|
24 |
+
Knowledge coverage
|
25 |
+
------------------
|
26 |
+
- Classes: 83
|
27 |
+
- Individuals: 0
|
28 |
+
- Properties: 136
|
29 |
+
|
30 |
+
Hierarchical metrics
|
31 |
+
--------------------
|
32 |
+
- **Maximum Depth**: 8
|
33 |
+
- **Minimum Depth**: 0
|
34 |
+
- **Average Depth**: 1.64
|
35 |
+
- **Depth Variance**: 2.39
|
36 |
+
|
37 |
+
Breadth metrics
|
38 |
+
------------------
|
39 |
+
- **Maximum Breadth**: 122
|
40 |
+
- **Minimum Breadth**: 1
|
41 |
+
- **Average Breadth**: 45.22
|
42 |
+
- **Breadth Variance**: 1858.40
|
43 |
+
|
44 |
+
Dataset Statistics
|
45 |
+
------------------
|
46 |
+
Generated Benchmarks:
|
47 |
+
- **Term Types**: 0
|
48 |
+
- **Taxonomic Relations**: 138
|
49 |
+
- **Non-taxonomic Relations**: 1
|
50 |
+
- **Average Terms per Type**: 0.00
|
51 |
+
|
52 |
+
Usage Example
|
53 |
+
-------------
|
54 |
+
.. code-block:: python
|
55 |
+
|
56 |
+
from ontolearner.ontology import OntoKin
|
57 |
+
|
58 |
+
# Initialize and load ontology
|
59 |
+
ontology = OntoKin()
|
60 |
+
ontology.load("path/to/ontology.owl")
|
61 |
+
|
62 |
+
# Extract datasets
|
63 |
+
data = ontology.extract()
|
64 |
+
|
65 |
+
# Access specific relations
|
66 |
+
term_types = data.term_typings
|
67 |
+
taxonomic_relations = data.type_taxonomies
|
68 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
proco/proco.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
proco/proco.rst
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
PROcess Chemistry Ontology (PROCO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
PROCO (PROcess Chemistry Ontology) is a formal ontology that aims to standardly represent entities
|
7 |
+
and relations among entities in the domain of process chemistry.
|
8 |
+
|
9 |
+
:Domain: Chemistry
|
10 |
+
:Category: Chemicals, Processes
|
11 |
+
:Current Version: 04-14-2022
|
12 |
+
:Last Updated: 04-14-2022
|
13 |
+
:Creator: Anna Dun, Wes A. Schafer, Yongqun "Oliver" He (YH), Zachary Dance
|
14 |
+
:License: Creative Commons 4.0
|
15 |
+
:Format: OWL
|
16 |
+
:Download: `PROcess Chemistry Ontology (PROCO) Homepage <https://github.com/proco-ontology/PROCO>`_
|
17 |
+
|
18 |
+
Graph Metrics
|
19 |
+
-------------
|
20 |
+
- **Total Nodes**: 6258
|
21 |
+
- **Total Edges**: 11796
|
22 |
+
- **Root Nodes**: 89
|
23 |
+
- **Leaf Nodes**: 4646
|
24 |
+
|
25 |
+
Knowledge coverage
|
26 |
+
------------------
|
27 |
+
- Classes: 970
|
28 |
+
- Individuals: 14
|
29 |
+
- Properties: 61
|
30 |
+
|
31 |
+
Hierarchical metrics
|
32 |
+
--------------------
|
33 |
+
- **Maximum Depth**: 15
|
34 |
+
- **Minimum Depth**: 0
|
35 |
+
- **Average Depth**: 3.35
|
36 |
+
- **Depth Variance**: 8.54
|
37 |
+
|
38 |
+
Breadth metrics
|
39 |
+
------------------
|
40 |
+
- **Maximum Breadth**: 228
|
41 |
+
- **Minimum Breadth**: 1
|
42 |
+
- **Average Breadth**: 60.19
|
43 |
+
- **Breadth Variance**: 4521.40
|
44 |
+
|
45 |
+
Dataset Statistics
|
46 |
+
------------------
|
47 |
+
Generated Benchmarks:
|
48 |
+
- **Term Types**: 14
|
49 |
+
- **Taxonomic Relations**: 2975
|
50 |
+
- **Non-taxonomic Relations**: 1
|
51 |
+
- **Average Terms per Type**: 7.00
|
52 |
+
|
53 |
+
Usage Example
|
54 |
+
-------------
|
55 |
+
.. code-block:: python
|
56 |
+
|
57 |
+
from ontolearner.ontology import PROCO
|
58 |
+
|
59 |
+
# Initialize and load ontology
|
60 |
+
ontology = PROCO()
|
61 |
+
ontology.load("path/to/ontology.owl")
|
62 |
+
|
63 |
+
# Extract datasets
|
64 |
+
data = ontology.extract()
|
65 |
+
|
66 |
+
# Access specific relations
|
67 |
+
term_types = data.term_typings
|
68 |
+
taxonomic_relations = data.type_taxonomies
|
69 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
psimod/psimod.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
psimod/psimod.rst
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
PSI-MOD is an ontology consisting of terms that describe protein chemical modifications,
|
7 |
+
logically linked by an is_a relationship in such a way as to form a direct acyclic graph (DAG).
|
8 |
+
The PSI-MOD ontology has more than 45 top-level nodes, and provides alternative hierarchical paths
|
9 |
+
for classifying protein modifications either by the molecular structure of the modification,
|
10 |
+
or by the amino acid residue that is modified.
|
11 |
+
|
12 |
+
:Domain: Chemistry
|
13 |
+
:Category: Protein Modifications
|
14 |
+
:Current Version: 1.031.6
|
15 |
+
:Last Updated: 2022-06-13
|
16 |
+
:Creator: None
|
17 |
+
:License: Creative Commons Attribution 4.0
|
18 |
+
:Format: OWL
|
19 |
+
:Download: `Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD) Homepage <https://github.com/HUPO-PSI/psi-mod-CV>`_
|
20 |
+
|
21 |
+
Graph Metrics
|
22 |
+
-------------
|
23 |
+
- **Total Nodes**: 28523
|
24 |
+
- **Total Edges**: 86380
|
25 |
+
- **Root Nodes**: 9338
|
26 |
+
- **Leaf Nodes**: 16902
|
27 |
+
|
28 |
+
Knowledge coverage
|
29 |
+
------------------
|
30 |
+
- Classes: 2098
|
31 |
+
- Individuals: 0
|
32 |
+
- Properties: 4
|
33 |
+
|
34 |
+
Hierarchical metrics
|
35 |
+
--------------------
|
36 |
+
- **Maximum Depth**: 4
|
37 |
+
- **Minimum Depth**: 0
|
38 |
+
- **Average Depth**: 0.95
|
39 |
+
- **Depth Variance**: 0.60
|
40 |
+
|
41 |
+
Breadth metrics
|
42 |
+
------------------
|
43 |
+
- **Maximum Breadth**: 11284
|
44 |
+
- **Minimum Breadth**: 4
|
45 |
+
- **Average Breadth**: 5684.00
|
46 |
+
- **Breadth Variance**: 22690827.20
|
47 |
+
|
48 |
+
Dataset Statistics
|
49 |
+
------------------
|
50 |
+
Generated Benchmarks:
|
51 |
+
- **Term Types**: 0
|
52 |
+
- **Taxonomic Relations**: 8347
|
53 |
+
- **Non-taxonomic Relations**: 0
|
54 |
+
- **Average Terms per Type**: 0.00
|
55 |
+
|
56 |
+
Usage Example
|
57 |
+
-------------
|
58 |
+
.. code-block:: python
|
59 |
+
|
60 |
+
from ontolearner.ontology import PSIMOD
|
61 |
+
|
62 |
+
# Initialize and load ontology
|
63 |
+
ontology = PSIMOD()
|
64 |
+
ontology.load("path/to/ontology.owl")
|
65 |
+
|
66 |
+
# Extract datasets
|
67 |
+
data = ontology.extract()
|
68 |
+
|
69 |
+
# Access specific relations
|
70 |
+
term_types = data.term_typings
|
71 |
+
taxonomic_relations = data.type_taxonomies
|
72 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
rex/rex.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rex/rex.rst
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Physico-chemical process ontology (REX)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
REX is an ontology of physico-chemical processes, i.e. physico-chemical changes occurring in course of time.
|
7 |
+
REX includes both microscopic processes (involving molecular entities or subatomic particles) and macroscopic processes.
|
8 |
+
Some biochemical processes from Gene Ontology (GO Biological process) can be described as instances of REX.
|
9 |
+
|
10 |
+
:Domain: Chemistry
|
11 |
+
:Category: Chemistry
|
12 |
+
:Current Version: 1.0
|
13 |
+
:Last Updated: 2025-03-11
|
14 |
+
:Creator: University of Warsaw
|
15 |
+
:License: Creative Commons 4.0
|
16 |
+
:Format: OWL, RDF
|
17 |
+
:Download: `Physico-chemical process ontology (REX) Homepage <https://terminology.tib.eu/ts/ontologies/REX>`_
|
18 |
+
|
19 |
+
Graph Metrics
|
20 |
+
-------------
|
21 |
+
- **Total Nodes**: 2461
|
22 |
+
- **Total Edges**: 5630
|
23 |
+
- **Root Nodes**: 356
|
24 |
+
- **Leaf Nodes**: 1457
|
25 |
+
|
26 |
+
Knowledge coverage
|
27 |
+
------------------
|
28 |
+
- Classes: 552
|
29 |
+
- Individuals: 0
|
30 |
+
- Properties: 6
|
31 |
+
|
32 |
+
Hierarchical metrics
|
33 |
+
--------------------
|
34 |
+
- **Maximum Depth**: 6
|
35 |
+
- **Minimum Depth**: 0
|
36 |
+
- **Average Depth**: 1.35
|
37 |
+
- **Depth Variance**: 0.97
|
38 |
+
|
39 |
+
Breadth metrics
|
40 |
+
------------------
|
41 |
+
- **Maximum Breadth**: 978
|
42 |
+
- **Minimum Breadth**: 5
|
43 |
+
- **Average Breadth**: 304.57
|
44 |
+
- **Breadth Variance**: 116930.53
|
45 |
+
|
46 |
+
Dataset Statistics
|
47 |
+
------------------
|
48 |
+
Generated Benchmarks:
|
49 |
+
- **Term Types**: 0
|
50 |
+
- **Taxonomic Relations**: 1126
|
51 |
+
- **Non-taxonomic Relations**: 0
|
52 |
+
- **Average Terms per Type**: 0.00
|
53 |
+
|
54 |
+
Usage Example
|
55 |
+
-------------
|
56 |
+
.. code-block:: python
|
57 |
+
|
58 |
+
from ontolearner.ontology import REX
|
59 |
+
|
60 |
+
# Initialize and load ontology
|
61 |
+
ontology = REX()
|
62 |
+
ontology.load("path/to/ontology.owl")
|
63 |
+
|
64 |
+
# Extract datasets
|
65 |
+
data = ontology.extract()
|
66 |
+
|
67 |
+
# Access specific relations
|
68 |
+
term_types = data.term_typings
|
69 |
+
taxonomic_relations = data.type_taxonomies
|
70 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
rxno/rxno.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
rxno/rxno.rst
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Reaction Ontology (RXNO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
RXNO is the name reaction ontology. It contains more than 500 classes representing organic reactions
|
7 |
+
such as the Diels–Alder cyclization.
|
8 |
+
|
9 |
+
:Domain: Chemistry
|
10 |
+
:Category: Chemistry
|
11 |
+
:Current Version: None
|
12 |
+
:Last Updated: 2021-12-16
|
13 |
+
:Creator: None
|
14 |
+
:License: Creative Commons 4.0
|
15 |
+
:Format: OWL
|
16 |
+
:Download: `Reaction Ontology (RXNO) Homepage <https://github.com/rsc-ontologies/rxno>`_
|
17 |
+
|
18 |
+
Graph Metrics
|
19 |
+
-------------
|
20 |
+
- **Total Nodes**: 5676
|
21 |
+
- **Total Edges**: 14841
|
22 |
+
- **Root Nodes**: 845
|
23 |
+
- **Leaf Nodes**: 2924
|
24 |
+
|
25 |
+
Knowledge coverage
|
26 |
+
------------------
|
27 |
+
- Classes: 1109
|
28 |
+
- Individuals: 0
|
29 |
+
- Properties: 14
|
30 |
+
|
31 |
+
Hierarchical metrics
|
32 |
+
--------------------
|
33 |
+
- **Maximum Depth**: 8
|
34 |
+
- **Minimum Depth**: 0
|
35 |
+
- **Average Depth**: 1.71
|
36 |
+
- **Depth Variance**: 1.67
|
37 |
+
|
38 |
+
Breadth metrics
|
39 |
+
------------------
|
40 |
+
- **Maximum Breadth**: 2230
|
41 |
+
- **Minimum Breadth**: 12
|
42 |
+
- **Average Breadth**: 623.00
|
43 |
+
- **Breadth Variance**: 588146.89
|
44 |
+
|
45 |
+
Dataset Statistics
|
46 |
+
------------------
|
47 |
+
Generated Benchmarks:
|
48 |
+
- **Term Types**: 0
|
49 |
+
- **Taxonomic Relations**: 3757
|
50 |
+
- **Non-taxonomic Relations**: 16
|
51 |
+
- **Average Terms per Type**: 0.00
|
52 |
+
|
53 |
+
Usage Example
|
54 |
+
-------------
|
55 |
+
.. code-block:: python
|
56 |
+
|
57 |
+
from ontolearner.ontology import RXNO
|
58 |
+
|
59 |
+
# Initialize and load ontology
|
60 |
+
ontology = RXNO()
|
61 |
+
ontology.load("path/to/ontology.owl")
|
62 |
+
|
63 |
+
# Extract datasets
|
64 |
+
data = ontology.extract()
|
65 |
+
|
66 |
+
# Access specific relations
|
67 |
+
term_types = data.term_typings
|
68 |
+
taxonomic_relations = data.type_taxonomies
|
69 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
vibso/vibso.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vibso/vibso.rst
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Vibrational Spectroscopy Ontology (VIBSO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
The Vibration Spectroscopy Ontology defines technical terms with which research data produced
|
7 |
+
in vibrational spectroscopy experiments can be semantically enriched, made machine readable and FAIR.
|
8 |
+
|
9 |
+
:Domain: Chemistry
|
10 |
+
:Category: Spectroscopy
|
11 |
+
:Current Version: 2024-09-23
|
12 |
+
:Last Updated: 2024-09-23
|
13 |
+
:Creator: VIBSO Workgroup
|
14 |
+
:License: Creative Commons Attribution 4.0
|
15 |
+
:Format: OWL
|
16 |
+
:Download: `Vibrational Spectroscopy Ontology (VIBSO) Homepage <https://terminology.tib.eu/ts/ontologies/vibso>`_
|
17 |
+
|
18 |
+
Graph Metrics
|
19 |
+
-------------
|
20 |
+
- **Total Nodes**: 4007
|
21 |
+
- **Total Edges**: 8009
|
22 |
+
- **Root Nodes**: 328
|
23 |
+
- **Leaf Nodes**: 2547
|
24 |
+
|
25 |
+
Knowledge coverage
|
26 |
+
------------------
|
27 |
+
- Classes: 598
|
28 |
+
- Individuals: 40
|
29 |
+
- Properties: 53
|
30 |
+
|
31 |
+
Hierarchical metrics
|
32 |
+
--------------------
|
33 |
+
- **Maximum Depth**: 13
|
34 |
+
- **Minimum Depth**: 0
|
35 |
+
- **Average Depth**: 2.03
|
36 |
+
- **Depth Variance**: 2.77
|
37 |
+
|
38 |
+
Breadth metrics
|
39 |
+
------------------
|
40 |
+
- **Maximum Breadth**: 1131
|
41 |
+
- **Minimum Breadth**: 1
|
42 |
+
- **Average Breadth**: 188.29
|
43 |
+
- **Breadth Variance**: 98075.49
|
44 |
+
|
45 |
+
Dataset Statistics
|
46 |
+
------------------
|
47 |
+
Generated Benchmarks:
|
48 |
+
- **Term Types**: 40
|
49 |
+
- **Taxonomic Relations**: 856
|
50 |
+
- **Non-taxonomic Relations**: 23
|
51 |
+
- **Average Terms per Type**: 2.35
|
52 |
+
|
53 |
+
Usage Example
|
54 |
+
-------------
|
55 |
+
.. code-block:: python
|
56 |
+
|
57 |
+
from ontolearner.ontology import VIBSO
|
58 |
+
|
59 |
+
# Initialize and load ontology
|
60 |
+
ontology = VIBSO()
|
61 |
+
ontology.load("path/to/ontology.owl")
|
62 |
+
|
63 |
+
# Extract datasets
|
64 |
+
data = ontology.extract()
|
65 |
+
|
66 |
+
# Access specific relations
|
67 |
+
term_types = data.term_typings
|
68 |
+
taxonomic_relations = data.type_taxonomies
|
69 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|