The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview
The food_and_beverage domain encompasses the structured representation and categorization of knowledge related to food items, beverages, their ingredients, and culinary processes. This domain plays a critical role in facilitating semantic interoperability, data integration, and advanced information retrieval across diverse applications, including gastronomy, nutrition, and food science. By providing a formalized framework, it enables precise communication and analysis within and across disciplines, enhancing both academic research and practical applications in the food and beverage industry.
Ontologies
Ontology ID | Full Name | Classes | Properties | Last Updated |
---|---|---|---|---|
Wine | Wine Ontology (Wine) | 101 | 13 | None |
Dataset Files
Each ontology directory contains the following files:
<ontology_id>.<format>
- The original ontology fileterm_typings.json
- A Dataset of term-to-type mappingstaxonomies.json
- Dataset of taxonomic relationsnon_taxonomic_relations.json
- Dataset of non-taxonomic relations<ontology_id>.rst
- Documentation describing the ontology
Usage
These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:
First of all, install the OntoLearner
library via PiP:
pip install ontolearner
How to load an ontology or LLM4OL Paradigm tasks datasets?
from ontolearner import Wine
ontology = Wine()
# Load an ontology.
ontology.load()
# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()
How use the loaded dataset for LLM4OL Paradigm task settings?
from ontolearner import Wine, LearnerPipeline, train_test_split
ontology = Wine()
ontology.load()
data = ontology.extract()
# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)
# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
hf_token = "your_huggingface_token" # Only needed for gated models
)
# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
train_data=train_data,
test_data=test_data,
top_k=3,
test_limit=10
)
For more detailed documentation, see the
Citation
If you find our work helpful, feel free to give us a cite.
@inproceedings{babaei2023llms4ol,
title={LLMs4OL: Large language models for ontology learning},
author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
booktitle={International Semantic Web Conference},
pages={408--427},
year={2023},
organization={Springer}
}
- Downloads last month
- 57