The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview
The general_knowledge domain encompasses broad-scope ontologies and upper vocabularies designed for cross-disciplinary semantic modeling and knowledge representation. This domain is pivotal in facilitating interoperability and data integration across diverse fields by providing a foundational framework for organizing and linking information. Its significance lies in enabling the seamless exchange and understanding of knowledge across varied contexts, thereby supporting advanced data analysis, information retrieval, and decision-making processes.
Ontologies
Ontology ID | Full Name | Classes | Properties | Last Updated |
---|---|---|---|---|
CCO | Common Core Ontologies (CCO) | 1539 | 277 | 2024-11-06 |
DBpedia | DBpedia Ontology (DBpedia) | 790 | 3029 | 2008-11-17 |
DublinCore | Dublin Core Vocabulary (DublinCore) | 11 | 0 | February 17, 2017 |
EDAM | The ontology of data analysis and management (EDAM) | 3513 | 12 | 24.09.2024 |
GIST | GIST Upper Ontology (GIST) | 199 | 113 | 2024-Feb-27 |
IAO | Information Artifact Ontology (IAO) | 292 | 57 | 2022-11-07 |
PROV | PROV Ontology (PROV-O) | 39 | 50 | 2013-04-30 |
RO | Relation Ontology (RO) | 88 | 673 | 2024-04-24 |
SchemaOrg | Schema.org Ontology (SchemaOrg) | 3881 | 1485 | 2024-11-22 |
UMBEL | Upper Mapping and Binding Exchange Layer Vocabulary (UMBEL) | 99 | 42 | May 10, 2016 |
YAGO | YAGO Ontology (YAGO) | N/A | N/A | April, 2024 |
Dataset Files
Each ontology directory contains the following files:
<ontology_id>.<format>
- The original ontology fileterm_typings.json
- A Dataset of term-to-type mappingstaxonomies.json
- Dataset of taxonomic relationsnon_taxonomic_relations.json
- Dataset of non-taxonomic relations<ontology_id>.rst
- Documentation describing the ontology
Usage
These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:
First of all, install the OntoLearner
library via PiP:
pip install ontolearner
How to load an ontology or LLM4OL Paradigm tasks datasets?
from ontolearner import CCO
ontology = CCO()
# Load an ontology.
ontology.load()
# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()
How use the loaded dataset for LLM4OL Paradigm task settings?
from ontolearner import CCO, LearnerPipeline, train_test_split
ontology = CCO()
ontology.load()
data = ontology.extract()
# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)
# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
hf_token = "your_huggingface_token" # Only needed for gated models
)
# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
train_data=train_data,
test_data=test_data,
top_k=3,
test_limit=10
)
For more detailed documentation, see the
Citation
If you find our work helpful, feel free to give us a cite.
@inproceedings{babaei2023llms4ol,
title={LLMs4OL: Large language models for ontology learning},
author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
booktitle={International Semantic Web Conference},
pages={408--427},
year={2023},
organization={Springer}
}
- Downloads last month
- 88