Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

Industry Domain Ontologies

Overview

The industry domain encompasses ontologies that systematically represent and model the complex structures, processes, and interactions within industrial settings, including manufacturing systems, smart buildings, and equipment. This domain is pivotal in advancing knowledge representation by enabling the integration, interoperability, and automation of industrial processes, thereby facilitating improved efficiency, innovation, and decision-making. Through precise semantic frameworks, it supports the digital transformation and intelligent management of industrial operations.

Ontologies

Ontology ID Full Name Classes Properties Individuals
AUTO Automotive Ontology (AUTO) 1372 336 58
DBO Digital Buildings Ontology (DBO) 3032 7 35
PTO Product Types Ontology (PTO) 1002 0 3002
IOF Industrial Ontology Foundry (IOF) 212 51 0
TUBES TUBES System Ontology (TUBES) 52 101 0
DOAP The Description of a Project vocabulary (DOAP) 14 0 0
PKO Provenance Knowledge Ontology (PKO) 38 93 8

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - Dataset of term to type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

First of all, install the OntoLearner library via PiP:

pip install ontolearner

How to load an ontology or LLM4OL Paradigm tasks datasets?

from ontolearner import AUTO

ontology = AUTO()

# Load an ontology.
ontology.load()  

# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()

How use the loaded dataset for LLM4OL Paradigm task settings?

# Import core modules from the OntoLearner library
from ontolearner import AUTO, LearnerPipeline, train_test_split

# Load the AUTO ontology, which contains concepts related to wines, their properties, and categories
ontology = AUTO()
ontology.load()  # Load entities, types, and structured term annotations from the ontology
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

# Initialize a multi-component learning pipeline (retriever + LLM)
# This configuration enables a Retrieval-Augmented Generation (RAG) setup
pipeline = LearnerPipeline(
    retriever_id='sentence-transformers/all-MiniLM-L6-v2',      # Dense retriever model for nearest neighbor search
    llm_id='Qwen/Qwen2.5-0.5B-Instruct',                        # Lightweight instruction-tuned LLM for reasoning
    hf_token='...',                                             # Hugging Face token for accessing gated models
    batch_size=32,                                              # Batch size for training/prediction if supported
    top_k=5                                                     # Number of top retrievals to include in RAG prompting
)

# Run the pipeline: training, prediction, and evaluation in one call
outputs = pipeline(
    train_data=train_data,
    test_data=test_data,
    evaluate=True,              # Compute metrics like precision, recall, and F1
    task='term-typing'          # Specifies the task
                                # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
)

# Print final evaluation metrics
print("Metrics:", outputs['metrics'])

# Print the total time taken for the full pipeline execution
print("Elapsed time:", outputs['elapsed_time'])

# Print all outputs (including predictions)
print(outputs)

For more detailed documentation, see the Documentation

Citation

If you find our work helpful, feel free to give us a cite.

@inproceedings{babaei2023llms4ol,
  title={LLMs4OL: Large language models for ontology learning},
  author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
  booktitle={International Semantic Web Conference},
  pages={408--427},
  year={2023},
  organization={Springer}
}
Downloads last month
251

Collection including SciKnowOrg/ontolearner-industry