Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

Materials Science And Engineering Domain Ontologies

Overview

Materials Science and Engineering is a multidisciplinary domain that focuses on the study and application of materials, emphasizing their structure, properties, processing, and performance in engineering contexts. This field is pivotal for advancing knowledge representation, as it integrates principles from physics, chemistry, and engineering to innovate and optimize materials for diverse technological applications. By systematically categorizing and modeling material-related data, this domain facilitates the development of new materials and enhances the understanding of their behavior under various conditions.

Ontologies

Ontology ID Full Name Classes Properties Last Updated
AMOntology Additive Manufacturing Ontology (AMOntology) 328 21 2023-05-10
ASMO Atomistic Simulation Methods Ontology (ASMO) 99 41 None
Atomistic Atomistic Ontology (Atomistic) 12 2 None
BattINFO Battery Interface Ontology (BattINFO) 4431 304 None
BMO Building Material Ontology (BMO) 24 62 2019-12-10
BVCO Battery Value Chain Ontology (BVCO) 262 6 None
CDCO Crystallographic Defect Core Ontology (CDCO) 7 2 None
CHAMEO Characterisation Methodology Domain Ontology (CHAMEO) 203 52 2024-04-12
CIFCore Crystallographic Information Framework Core Dictionary (CIFCore) 1182 0 May 24, 2023
CMSO Computational Material Sample Ontology (CMSO) 45 51 None
DISO Dislocation Ontology (DISO) 62 45 21.03.202
DSIM Dislocation Simulation and Model Ontology (DSIM) 47 78 17.08.2023
EMMO The Elementary Multiperspective Material Ontology (EMMO) 2448 181 2024-03
EMMOCrystallography Crystallography Ontology (EMMOCrystallography) 61 5 None
FSO Flow Systems Ontology (FSO) 14 22 2020-08-06
GPO General Process Ontology (GPO) 187 17 None
HPOnt The Heat Pump Ontology (HPOnt) 4 12 None
LDO Line Defect Ontology (LDO) 30 11 None
LPBFO Laser Powder Bed Fusion Ontology (LPBFO) 508 38 2022-09-20
MAMBO Molecules And Materials Basic Ontology (MAMBO) 57 104 None
MAT Material Properties Ontology (MAT) 140 21 None
MaterialInformation Material Information Ontology (MaterialInformation) 548 98 None
MatOnto Material Ontology (MatOnto) 1307 95 None
MatVoc Materials Vocabulary (MatVoc) 28 15 2022-12-12
MatWerk NFDI MatWerk Ontology (MatWerk) 449 129 2025-03-01
MDO Materials Design Ontology (MDO) 13 13 2022-08-02
MDS Materials Data Science Ontology (MDS) 363 10 03/24/2024
MechanicalTesting Mechanical Testing Ontology (MechanicalTesting) 369 5 None
MicroStructures EMMO-based ontology for microstructures (MicroStructures) 43 0 None
MMO Materials Mechanics Ontology (MMO) 428 17 2024-01-30
MOLBRINELL MatoLab Brinell Test Ontology (MOL_BRINELL) 37 21 05/05/2022
MOLTENSILE Matolab Tensile Test Ontology (MOL_TENSILE) 371 95 04/16/2021
MSEO Materials Science and Engineering Ontology (MSEO) 138 2 None
MSLE Material Science Lab Equipment Ontology (MSLE) 45 10 Sep 15, 2022
NanoMine NanoMine Ontology (NanoMine) 157 0 None
OIEManufacturing Open Innovation Environment Manufacturing (OIEManufacturing) 222 3 None
OIEMaterials Open Innovation Environment Materials (OIEMaterials) 119 0 None
OIEModels Open Innovation Environment Models (OIEModels) 108 1 None
OIESoftware Open Innovation Environment Software (OIESoftware) 155 0 None
ONTORULE Ontology for the Steel Domain (ONTORULE) 24 37 2010-05-31
PeriodicTable Periodic Table of the Elements Ontology (PeriodicTable) 6 13 2004/02/05
Photovoltaics EMMO Domain Ontology for Photovoltaics (Photovoltaics) 47 3 None
PLDO Planar Defects Ontology (PLDO) 27 15 None
PMDco The Platform MaterialDigital core ontology (PMDco) 1002 66 2025-03-20
PODO Point Defects Ontology (PODO) 12 5 None
PRIMA PRovenance Information in MAterials science (PRIMA) 67 67 2024-01-29
SSN Semantic Sensor Network Ontology (SSN) 22 38 2017-04-17
SystemCapabilities System Capabilities Ontology (SystemCapabilities) 25 8 2017-05-14
VIMMP Virtual Materials Marketplace Ontologies (VIMMP) 1234 771 2021-01-02

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - A Dataset of term-to-type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

First of all, install the OntoLearner library via PiP:

pip install ontolearner

How to load an ontology or LLM4OL Paradigm tasks datasets?

from ontolearner import AMOntology

ontology = AMOntology()

# Load an ontology.
ontology.load()  

# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()

How use the loaded dataset for LLM4OL Paradigm task settings?

from ontolearner import AMOntology, LearnerPipeline, train_test_split

ontology = AMOntology()
ontology.load() 
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)

# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
    task = "term-typing",  # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
    retriever_id = "sentence-transformers/all-MiniLM-L6-v2", 
    llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
    hf_token = "your_huggingface_token"  # Only needed for gated models
)

# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
    train_data=train_data,
    test_data=test_data,
    top_k=3,
    test_limit=10
)

For more detailed documentation, see the Documentation

Citation

If you find our work helpful, feel free to give us a cite.

@inproceedings{babaei2023llms4ol,
  title={LLMs4OL: Large language models for ontology learning},
  author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
  booktitle={International Semantic Web Conference},
  pages={408--427},
  year={2023},
  organization={Springer}
}
Downloads last month
348

Collection including SciKnowOrg/ontolearner-materials_science_and_engineering