The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview
Materials Science and Engineering is a multidisciplinary domain that focuses on the study and application of materials, emphasizing their structure, properties, processing, and performance in engineering contexts. This field is pivotal for advancing knowledge representation, as it integrates principles from physics, chemistry, and engineering to innovate and optimize materials for diverse technological applications. By systematically categorizing and modeling material-related data, this domain facilitates the development of new materials and enhances the understanding of their behavior under various conditions.
Ontologies
Ontology ID | Full Name | Classes | Properties | Last Updated |
---|---|---|---|---|
AMOntology | Additive Manufacturing Ontology (AMOntology) | 328 | 21 | 2023-05-10 |
ASMO | Atomistic Simulation Methods Ontology (ASMO) | 99 | 41 | None |
Atomistic | Atomistic Ontology (Atomistic) | 12 | 2 | None |
BattINFO | Battery Interface Ontology (BattINFO) | 4431 | 304 | None |
BMO | Building Material Ontology (BMO) | 24 | 62 | 2019-12-10 |
BVCO | Battery Value Chain Ontology (BVCO) | 262 | 6 | None |
CDCO | Crystallographic Defect Core Ontology (CDCO) | 7 | 2 | None |
CHAMEO | Characterisation Methodology Domain Ontology (CHAMEO) | 203 | 52 | 2024-04-12 |
CIFCore | Crystallographic Information Framework Core Dictionary (CIFCore) | 1182 | 0 | May 24, 2023 |
CMSO | Computational Material Sample Ontology (CMSO) | 45 | 51 | None |
DISO | Dislocation Ontology (DISO) | 62 | 45 | 21.03.202 |
DSIM | Dislocation Simulation and Model Ontology (DSIM) | 47 | 78 | 17.08.2023 |
EMMO | The Elementary Multiperspective Material Ontology (EMMO) | 2448 | 181 | 2024-03 |
EMMOCrystallography | Crystallography Ontology (EMMOCrystallography) | 61 | 5 | None |
FSO | Flow Systems Ontology (FSO) | 14 | 22 | 2020-08-06 |
GPO | General Process Ontology (GPO) | 187 | 17 | None |
HPOnt | The Heat Pump Ontology (HPOnt) | 4 | 12 | None |
LDO | Line Defect Ontology (LDO) | 30 | 11 | None |
LPBFO | Laser Powder Bed Fusion Ontology (LPBFO) | 508 | 38 | 2022-09-20 |
MAMBO | Molecules And Materials Basic Ontology (MAMBO) | 57 | 104 | None |
MAT | Material Properties Ontology (MAT) | 140 | 21 | None |
MaterialInformation | Material Information Ontology (MaterialInformation) | 548 | 98 | None |
MatOnto | Material Ontology (MatOnto) | 1307 | 95 | None |
MatVoc | Materials Vocabulary (MatVoc) | 28 | 15 | 2022-12-12 |
MatWerk | NFDI MatWerk Ontology (MatWerk) | 449 | 129 | 2025-03-01 |
MDO | Materials Design Ontology (MDO) | 13 | 13 | 2022-08-02 |
MDS | Materials Data Science Ontology (MDS) | 363 | 10 | 03/24/2024 |
MechanicalTesting | Mechanical Testing Ontology (MechanicalTesting) | 369 | 5 | None |
MicroStructures | EMMO-based ontology for microstructures (MicroStructures) | 43 | 0 | None |
MMO | Materials Mechanics Ontology (MMO) | 428 | 17 | 2024-01-30 |
MOLBRINELL | MatoLab Brinell Test Ontology (MOL_BRINELL) | 37 | 21 | 05/05/2022 |
MOLTENSILE | Matolab Tensile Test Ontology (MOL_TENSILE) | 371 | 95 | 04/16/2021 |
MSEO | Materials Science and Engineering Ontology (MSEO) | 138 | 2 | None |
MSLE | Material Science Lab Equipment Ontology (MSLE) | 45 | 10 | Sep 15, 2022 |
NanoMine | NanoMine Ontology (NanoMine) | 157 | 0 | None |
OIEManufacturing | Open Innovation Environment Manufacturing (OIEManufacturing) | 222 | 3 | None |
OIEMaterials | Open Innovation Environment Materials (OIEMaterials) | 119 | 0 | None |
OIEModels | Open Innovation Environment Models (OIEModels) | 108 | 1 | None |
OIESoftware | Open Innovation Environment Software (OIESoftware) | 155 | 0 | None |
ONTORULE | Ontology for the Steel Domain (ONTORULE) | 24 | 37 | 2010-05-31 |
PeriodicTable | Periodic Table of the Elements Ontology (PeriodicTable) | 6 | 13 | 2004/02/05 |
Photovoltaics | EMMO Domain Ontology for Photovoltaics (Photovoltaics) | 47 | 3 | None |
PLDO | Planar Defects Ontology (PLDO) | 27 | 15 | None |
PMDco | The Platform MaterialDigital core ontology (PMDco) | 1002 | 66 | 2025-03-20 |
PODO | Point Defects Ontology (PODO) | 12 | 5 | None |
PRIMA | PRovenance Information in MAterials science (PRIMA) | 67 | 67 | 2024-01-29 |
SSN | Semantic Sensor Network Ontology (SSN) | 22 | 38 | 2017-04-17 |
SystemCapabilities | System Capabilities Ontology (SystemCapabilities) | 25 | 8 | 2017-05-14 |
VIMMP | Virtual Materials Marketplace Ontologies (VIMMP) | 1234 | 771 | 2021-01-02 |
Dataset Files
Each ontology directory contains the following files:
<ontology_id>.<format>
- The original ontology fileterm_typings.json
- A Dataset of term-to-type mappingstaxonomies.json
- Dataset of taxonomic relationsnon_taxonomic_relations.json
- Dataset of non-taxonomic relations<ontology_id>.rst
- Documentation describing the ontology
Usage
These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:
First of all, install the OntoLearner
library via PiP:
pip install ontolearner
How to load an ontology or LLM4OL Paradigm tasks datasets?
from ontolearner import AMOntology
ontology = AMOntology()
# Load an ontology.
ontology.load()
# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()
How use the loaded dataset for LLM4OL Paradigm task settings?
from ontolearner import AMOntology, LearnerPipeline, train_test_split
ontology = AMOntology()
ontology.load()
data = ontology.extract()
# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)
# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
hf_token = "your_huggingface_token" # Only needed for gated models
)
# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
train_data=train_data,
test_data=test_data,
top_k=3,
test_limit=10
)
For more detailed documentation, see the
Citation
If you find our work helpful, feel free to give us a cite.
@inproceedings{babaei2023llms4ol,
title={LLMs4OL: Large language models for ontology learning},
author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
booktitle={International Semantic Web Conference},
pages={408--427},
year={2023},
organization={Springer}
}
- Downloads last month
- 348