|
|
PRovenance Information in MAterials science (PRIMA) |
|
|
======================================================================================================================== |
|
|
|
|
|
Overview |
|
|
-------- |
|
|
An ontology that captures the provenance information in the materials science domain. |
|
|
|
|
|
:Domain: Materials Science and Engineering |
|
|
:Category: Materials Science |
|
|
:Current Version: 2.0 |
|
|
:Last Updated: 2024-01-29 |
|
|
:Creator: Ahmad Zainul Ihsan, Mehrdad Jalali, Rossella Aversa |
|
|
:License: Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
|
|
:Format: TTL |
|
|
:Download: `PRovenance Information in MAterials science (PRIMA) Homepage <https://materials-data-science-and-informatics.github.io/MDMC-NEP-top-level-ontology/PRIMA/complete/ver_2_0/index.html>`_ |
|
|
|
|
|
Graph Metrics |
|
|
------------- |
|
|
- **Total Nodes**: 444 |
|
|
- **Total Edges**: 1073 |
|
|
- **Root Nodes**: 18 |
|
|
- **Leaf Nodes**: 135 |
|
|
|
|
|
Knowledge coverage |
|
|
------------------ |
|
|
- Classes: 67 |
|
|
- Individuals: 0 |
|
|
- Properties: 67 |
|
|
|
|
|
Hierarchical metrics |
|
|
-------------------- |
|
|
- **Maximum Depth**: 14 |
|
|
- **Minimum Depth**: 0 |
|
|
- **Average Depth**: 4.39 |
|
|
- **Depth Variance**: 16.39 |
|
|
|
|
|
Breadth metrics |
|
|
------------------ |
|
|
- **Maximum Breadth**: 27 |
|
|
- **Minimum Breadth**: 2 |
|
|
- **Average Breadth**: 7.80 |
|
|
- **Breadth Variance**: 48.56 |
|
|
|
|
|
Dataset Statistics |
|
|
------------------ |
|
|
Generated Benchmarks: |
|
|
- **Term Types**: 0 |
|
|
- **Taxonomic Relations**: 186 |
|
|
- **Non-taxonomic Relations**: 1 |
|
|
- **Average Terms per Type**: 0.00 |
|
|
|
|
|
Usage Example |
|
|
------------- |
|
|
.. code-block:: python |
|
|
|
|
|
from ontolearner.ontology import PRIMA |
|
|
|
|
|
# Initialize and load ontology |
|
|
ontology = PRIMA() |
|
|
ontology.load("path/to/ontology.TTL") |
|
|
|
|
|
# Extract datasets |
|
|
data = ontology.extract() |
|
|
|
|
|
# Access specific relations |
|
|
term_types = data.term_typings |
|
|
taxonomic_relations = data.type_taxonomies |
|
|
non_taxonomic_relations = data.type_non_taxonomic_relations |
|
|
|