Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

Web And Internet Domain Ontologies

Overview

The "web_and_internet" domain encompasses ontologies that articulate the structure and semantics of web technologies, including the intricate relationships and protocols that underpin linked data, web services, and online communication standards. This domain is pivotal in advancing knowledge representation by enabling the seamless integration and interoperability of diverse data sources, thereby facilitating more intelligent and dynamic web interactions. Through precise modeling of web semantics, it supports the development of robust frameworks for data exchange and enhances the semantic web's capacity to deliver contextually relevant information.

Ontologies

Ontology ID Full Name Classes Properties Last Updated
Hydra Hydra Ontology (Hydra) 2 0 13 July 2021
SAREF Smart Applications REFerence ontology (SAREF) 129 89 2020-12-31

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - A Dataset of term-to-type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

First of all, install the OntoLearner library via PiP:

pip install ontolearner

How to load an ontology or LLM4OL Paradigm tasks datasets?

from ontolearner import SAREF

ontology = SAREF()

# Load an ontology.
ontology.load()  

# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()

How use the loaded dataset for LLM4OL Paradigm task settings?

from ontolearner import SAREF, LearnerPipeline, train_test_split

ontology = SAREF()
ontology.load() 
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)

# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
    task = "term-typing",  # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
    retriever_id = "sentence-transformers/all-MiniLM-L6-v2", 
    llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
    hf_token = "your_huggingface_token"  # Only needed for gated models
)

# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
    train_data=train_data,
    test_data=test_data,
    top_k=3,
    test_limit=10
)

For more detailed documentation, see the Documentation

Citation

If you find our work helpful, feel free to give us a cite.

@inproceedings{babaei2023llms4ol,
  title={LLMs4OL: Large language models for ontology learning},
  author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
  booktitle={International Semantic Web Conference},
  pages={408--427},
  year={2023},
  organization={Springer}
}
Downloads last month
75

Models trained or fine-tuned on SciKnowOrg/ontolearner-web_and_internet

Collection including SciKnowOrg/ontolearner-web_and_internet