Add Quick Start / Sample Usage section

#3
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +245 -132
README.md CHANGED
@@ -1,133 +1,246 @@
1
- ---
2
- task_categories:
3
- - question-answering
4
- - image-text-to-text
5
- license:
6
- - mit
7
- language:
8
- - en
9
- - zh
10
- tags:
11
- - physics
12
- - olympiad
13
- - benchmark
14
- - multimodal
15
- - llm-evaluation
16
- - science
17
- ---
18
-
19
- <div align="center">
20
-
21
- <p align="center" style="font-size:28px"><b>πŸ₯‡ HiPhO: High School Physics Olympiad Benchmark</b></p>
22
- <p align="center">
23
- <a href="https://phyarena.github.io/">[πŸ† Leaderboard]</a>
24
- <a href="https://huggingface.co/datasets/SciYu/HiPhO">[πŸ“Š Dataset]</a>
25
- <a href="https://github.com/SciYu/HiPhO">[✨ GitHub]</a>
26
- <a href="https://huggingface.co/papers/2509.07894">[πŸ“„ Paper]</a>
27
- </p>
28
-
29
- [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/license/mit)
30
- </div>
31
-
32
- πŸ† **New (Sep. 16):** We launched "[**PhyArena**](https://phyarena.github.io/)", a physics reasoning leaderboard incorporating the HiPhO benchmark.
33
-
34
- ## 🌐 Introduction
35
-
36
- **HiPhO** (High School Physics Olympiad Benchmark) is the **first benchmark** specifically designed to evaluate the physical reasoning abilities of (M)LLMs on **real-world Physics Olympiads from 2024–2025**.
37
-
38
- <div align="center">
39
- <img src="intro/HiPhO_overview.png" alt="hipho overview five rings" width="600"/>
40
- </div>
41
-
42
- ### ✨ Key Features
43
-
44
- 1. **Up-to-date Coverage**: Includes 13 Olympiad exam papers from 2024–2025 across international and regional competitions.
45
- 2. **Mixed-modal Content**: Supports four modality types, spanning from text-only to diagram-based problems.
46
- 3. **Professional Evaluation**: Uses official marking schemes for answer-level and step-level grading.
47
- 4. **Human-level Comparison**: Maps model scores to medal levels (Gold/Silver/Bronze) and compares with human performance.
48
-
49
-
50
- ## πŸ† IPhO 2025 (Theory) Results
51
-
52
- <div align="center">
53
- <img src="intro/HiPhO_IPhO2025.png" alt="ipho2025 results" width="800"/>
54
- </div>
55
-
56
- - **Top-1 Human Score**: 29.2 / 30.0
57
- - **Top-1 Model Score**: 22.7 / 29.4 (Gemini-2.5-Pro)
58
- - **Gold Threshold**: 19.7
59
- - **Silver Threshold**: 12.1
60
- - **Bronze Threshold**: 7.2
61
-
62
- > Although models like Gemini-2.5-Pro and GPT-5 achieved gold-level scores, they still fall noticeably short of the very best human contestants.
63
-
64
-
65
-
66
- ## πŸ“Š Dataset Overview
67
-
68
- <div align="center">
69
- <img src="intro/HiPhO_statistics.png" alt="framework and stats" width="700"/>
70
- </div>
71
-
72
- HiPhO contains:
73
- - **13 Physics Olympiads**
74
- - **360 Problems**
75
- - Categorized across:
76
- - **5 Physics Fields**: Mechanics, Electromagnetism, Thermodynamics, Optics, Modern Physics
77
- - **4 Modality Types**: Text-Only, Text+Illustration Figure, Text+Variable Figure, Text+Data Figure
78
- - **6 Answer Types**: Expression, Numerical Value, Multiple Choice, Equation, Open-Ended, Inequality
79
-
80
- Evaluation is conducted using:
81
- - **Answer-level and step-level scoring**, aligned with official marking schemes
82
- - **Exam score** as the evaluation metric
83
- - **Medal-based comparison**, using official thresholds for gold, silver, and bronze
84
-
85
-
86
-
87
- ## πŸ–ΌοΈ Modality Categorization
88
-
89
- <div align="center">
90
- <img src="intro/HiPhO_modality.png" alt="modality examples" width="700"/>
91
- </div>
92
-
93
- - πŸ“ **Text-Only (TO)**: Pure text, no figures
94
- - 🎯 **Text+Illustration Figure (TI)**: Figures illustrate physical setups
95
- - πŸ“ **Text+Variable Figure (TV)**: Figures define key variables or geometry
96
- - πŸ“Š **Text+Data Figure (TD)**: Figures show plots, data, or functions absent from text
97
-
98
- > As models move from TO β†’ TD, performance drops sharplyβ€”highlighting the challenges of visual reasoning.
99
-
100
-
101
-
102
- ## πŸ“ˆ Main Results
103
-
104
- <div align="center">
105
- <img src="intro/HiPhO_main_results.png" alt="main results medal table" width="700"/>
106
- </div>
107
-
108
- - **Closed-source reasoning MLLMs** lead the benchmark, earning **6–12 gold medals** (Top 5: Gemini-2.5-Pro, Gemini-2.5-Flash-Thinking, GPT-5, o3, Grok-4)
109
- - **Open-source MLLMs** mostly score at or below the **bronze** level
110
- - **Open-source LLMs** demonstrate **stronger reasoning** and generally outperform open-source MLLMs
111
-
112
-
113
-
114
-
115
- ## πŸ“₯ Download
116
-
117
- - Dataset & Annotations: [https://huggingface.co/datasets/SciYu/HiPhO](https://huggingface.co/datasets/SciYu/HiPhO)
118
- - GitHub Repository: [https://github.com/SciYu/HiPhO](https://github.com/SciYu/HiPhO)
119
- - πŸ“„ Paper: [https://arxiv.org/abs/2509.07894](https://arxiv.org/abs/2509.07894)
120
- - πŸ“§ Contact: *[email protected]*
121
-
122
-
123
-
124
- ## πŸ”– Citation
125
-
126
- ```bibtex
127
- @article{hipho2025,
128
- title={HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?},
129
- author={Yu, Fangchen and Wan, Haiyuan and Cheng, Qianjia and Zhang, Yuchen and Chen, Jiacheng and Han, Fujun and Wu, Yulun and Yao, Junchi and Hu, Ruilizhen and Ding, Ning and Cheng, Yu and Chen, Tao and Bai, Lei and Zhou, Dongzhan and Luo, Yun and Cui, Ganqu and Ye, Peng},
130
- journal={arXiv preprint arXiv:2509.07894},
131
- year={2025}
132
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  ```
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license:
6
+ - mit
7
+ task_categories:
8
+ - question-answering
9
+ - image-text-to-text
10
+ tags:
11
+ - physics
12
+ - olympiad
13
+ - benchmark
14
+ - multimodal
15
+ - llm-evaluation
16
+ - science
17
+ ---
18
+
19
+ <div align="center">
20
+
21
+ <p align="center" style="font-size:28px"><b>πŸ₯‡ HiPhO: High School Physics Olympiad Benchmark</b></p>
22
+ <p align="center">
23
+ <a href="https://phyarena.github.io/">[πŸ† Leaderboard]</a>
24
+ <a href="https://huggingface.co/datasets/SciYu/HiPhO">[πŸ“Š Dataset]</a>
25
+ <a href="https://github.com/SciYu/HiPhO">[✨ GitHub]</a>
26
+ <a href="https://huggingface.co/papers/2509.07894">[πŸ“„ Paper]</a>
27
+ </p>
28
+
29
+ [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/license/mit)
30
+ </div>
31
+
32
+ πŸ† **New (Sep. 16):** We launched "[**PhyArena**](https://phyarena.github.io/)", a physics reasoning leaderboard incorporating the HiPhO benchmark.
33
+
34
+ ## 🌐 Introduction
35
+
36
+ **HiPhO** (High School Physics Olympiad Benchmark) is the **first benchmark** specifically designed to evaluate the physical reasoning abilities of (M)LLMs on **real-world Physics Olympiads from 2024–2025**.
37
+
38
+ <div align="center">
39
+ <img src="intro/HiPhO_overview.png" alt="hipho overview five rings" width="600"/>
40
+ </div>
41
+
42
+ ### ✨ Key Features
43
+
44
+ 1. **Up-to-date Coverage**: Includes 13 Olympiad exam papers from 2024–2025 across international and regional competitions.
45
+ 2. **Mixed-modal Content**: Supports four modality types, spanning from text-only to diagram-based problems.
46
+ 3. **Professional Evaluation**: Uses official marking schemes for answer-level and step-level grading.
47
+ 4. **Human-level Comparison**: Maps model scores to medal levels (Gold/Silver/Bronze) and compares with human performance.
48
+
49
+
50
+ ## πŸ† IPhO 2025 (Theory) Results
51
+
52
+ <div align="center">
53
+ <img src="intro/HiPhO_IPhO2025.png" alt="ipho2025 results" width="800"/>
54
+ </div>
55
+
56
+ - **Top-1 Human Score**: 29.2 / 30.0
57
+ - **Top-1 Model Score**: 22.7 / 29.4 (Gemini-2.5-Pro)
58
+ - **Gold Threshold**: 19.7
59
+ - **Silver Threshold**: 12.1
60
+ - **Bronze Threshold**: 7.2
61
+
62
+ > Although models like Gemini-2.5-Pro and GPT-5 achieved gold-level scores, they still fall noticeably short of the very best human contestants.
63
+
64
+
65
+
66
+ ## πŸ“Š Dataset Overview
67
+
68
+ <div align="center">
69
+ <img src="intro/HiPhO_statistics.png" alt="framework and stats" width="700"/>
70
+ </div>
71
+
72
+ HiPhO contains:
73
+ - **13 Physics Olympiads**
74
+ - **360 Problems**
75
+ - Categorized across:
76
+ - **5 Physics Fields**: Mechanics, Electromagnetism, Thermodynamics, Optics, Modern Physics
77
+ - **4 Modality Types**: Text-Only, Text+Illustration Figure, Text+Variable Figure, Text+Data Figure
78
+ - **6 Answer Types**: Expression, Numerical Value, Multiple Choice, Equation, Open-Ended, Inequality
79
+
80
+ Evaluation is conducted using:
81
+ - **Answer-level and step-level scoring**, aligned with official marking schemes
82
+ - **Exam score** as the evaluation metric
83
+ - **Medal-based comparison**, using official thresholds for gold, silver, and bronze
84
+
85
+
86
+
87
+ ## πŸ–ΌοΈ Modality Categorization
88
+
89
+ <div align="center">
90
+ <img src="intro/HiPhO_modality.png" alt="modality examples" width="700"/>
91
+ </div>
92
+
93
+ - πŸ“ **Text-Only (TO)**: Pure text, no figures
94
+ - 🎯 **Text+Illustration Figure (TI)**: Figures illustrate physical setups
95
+ - πŸ“ **Text+Variable Figure (TV)**: Figures define key variables or geometry
96
+ - πŸ“Š **Text+Data Figure (TD)**: Figures show plots, data, or functions absent from text
97
+
98
+ > As models move from TO β†’ TD, performance drops sharplyβ€”highlighting the challenges of visual reasoning.
99
+
100
+
101
+
102
+ ## πŸ“ˆ Main Results
103
+
104
+ <div align="center">
105
+ <img src="intro/HiPhO_main_results.png" alt="main results medal table" width="700"/>
106
+ </div>
107
+
108
+ - **Closed-source reasoning MLLMs** lead the benchmark, earning **6–12 gold medals** (Top 5: Gemini-2.5-Pro, Gemini-2.5-Flash-Thinking, GPT-5, o3, Grok-4)
109
+ - **Open-source MLLMs** mostly score at or below the **bronze** level
110
+ - **Open-source LLMs** demonstrate **stronger reasoning** and generally outperform open-source MLLMs
111
+
112
+
113
+ ## πŸš€ Quick Start
114
+
115
+ ### Install Python Packages
116
+ You need to first create a conda environment and install relevant python packages
117
+ ```bash
118
+ conda create -n pae python==3.10
119
+ conda activate pae
120
+
121
+ git clone https://github.com/amazon-science/PAE
122
+ cd PAE
123
+
124
+ # Install PAE
125
+ pip install -e .
126
+
127
+ # Install LLaVA
128
+ git clone https://github.com/haotian-liu/LLaVA.git
129
+ cd LLaVA
130
+ pip install -e .
131
+ pip install -e ".[train]"
132
+ pip install flash-attn==2.5.9.post1 --no-build-isolation
133
+ ```
134
+
135
+ ### Install Chrome
136
+ You should install google chrome and chrome driver with version 125.0.6422.141 for reproducing our results
137
+ ```bash
138
+ sudo apt-get update
139
+ wget --no-verbose -O /tmp/chrome.deb https://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_125.0.6422.141-1_amd64.deb \
140
+ && apt install -y /tmp/chrome.deb \
141
+ && rm /tmp/chrome.deb
142
+
143
+ wget -O /tmp/chromedriver.zip https://storage.googleapis.com/chrome-for-testing-public/125.0.6422.141/linux64/chromedriver-linux64.zip
144
+ cd /tmp
145
+ unzip /tmp/chromedriver.zip
146
+ mv chromedriver-linux64/chromedriver /usr/local/bin
147
+ rm /tmp/chromedriver.zip
148
+ rm -r chromedriver-linux64
149
+ export PATH=$PATH:/usr/local/bin
150
+ ```
151
+ Then you can verify that google chrome and chromedriver have been successfully installed with
152
+ ```bash
153
+ google-chrome --version
154
+ # Google Chrome 125.0.6422.141
155
+ chromedriver --version
156
+ # ChromeDriver 125.0.6422.141
157
+ ```
158
+
159
+ ### Play with the Model Yourself
160
+ ```python
161
+ import pae
162
+ from pae.models import LlavaAgent, ClaudeAgent
163
+ from accelerate import Accelerator
164
+ import torch
165
+ from tqdm import tqdm
166
+ from types import SimpleNamespace
167
+ from pae.environment.webgym import BatchedWebEnv
168
+ import os
169
+ from llava.model.language_model.llava_mistral import LlavaMistralForCausalLM
170
+
171
+ # ============= Instanstiate the agent =============
172
+ config_dict = {"use_lora": False,
173
+ "use_q4": False, # our 34b model is quantized to 4-bit, set it to True if you are using 34B model
174
+ "use_anyres": False,
175
+ "temperature": 1.0,
176
+ "max_new_tokens": 512,
177
+ "train_vision": False,
178
+ "num_beams": 1,}
179
+ config = SimpleNamespace(**config_dict)
180
+
181
+ accelerator = Accelerator()
182
+ agent = LlavaAgent(policy_lm = "yifeizhou/pae-llava-7b", # alternate models "yifeizhou/pae-llava-7b-webarena", "yifeizhou/pae-llava-34b"
183
+ device = accelerator.device,
184
+ accelerator = accelerator,
185
+ config = config)
186
+
187
+ # ============= Instanstiate the environment =============
188
+ test_tasks = [{"web_name": "Google Map",
189
+ "id": "0",
190
+ "ques": "Locate a parking lot near the Brooklyn Bridge that open 24 hours. Review the user comments about it.",
191
+ "web": "https://www.google.com/maps/"}]
192
+ save_path = "xxx"
193
+
194
+ test_env = BatchedWebEnv(tasks = test_tasks,
195
+ do_eval = False,
196
+ download_dir=os.path.join(save_path, 'test_driver', 'download'),
197
+ output_dir=os.path.join(save_path, 'test_driver', 'output'),
198
+ batch_size=1,
199
+ max_iter=10,)
200
+ # for you to check the images and actions
201
+ image_histories = [] # stores the history of the paths of images
202
+ action_histories = [] # stores the history of actions
203
+
204
+ results = test_env.reset()
205
+ image_histories.append(results[0][0]["image"])
206
+
207
+ observations = [r[0] for r in results]
208
+ actions = agent.get_action(observations)
209
+ action_histories.append(actions[0])
210
+ dones = None
211
+
212
+ for _ in tqdm(range(3)):
213
+ if dones is not None and all(dones):
214
+ break
215
+ results = test_env.step(actions)
216
+ image_histories.append(results[0][0]["image"])
217
+ observations = [r[0] for r in results]
218
+ actions = agent.get_action(observations)
219
+ action_histories.append(actions[0])
220
+ dones = [r[2] for r in results]
221
+
222
+ print("Done!")
223
+ print("image_histories: ", image_histories)
224
+ print("action_histories: ", action_histories)
225
+ ```
226
+
227
+
228
+ ## πŸ“₯ Download
229
+
230
+ - Dataset & Annotations: [https://huggingface.co/datasets/SciYu/HiPhO](https://huggingface.co/datasets/SciYu/HiPhO)
231
+ - GitHub Repository: [https://github.com/SciYu/HiPhO](https://github.com/SciYu/HiPhO)
232
+ - πŸ“„ Paper: [https://arxiv.org/abs/2509.07894](https://arxiv.org/abs/2509.07894)
233
+ - πŸ“§ Contact: *[email protected]*
234
+
235
+
236
+
237
+ ## πŸ”– Citation
238
+
239
+ ```bibtex
240
+ @article{hipho2025,
241
+ title={HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?},
242
+ author={Yu, Fangchen and Wan, Haiyuan and Cheng, Qianjia and Zhang, Yuchen and Chen, Jiacheng and Han, Fujun and Wu, Yulun and Yao, Junchi and Hu, Ruilizhen and Ding, Ning and Cheng, Yu and Chen, Tao and Bai, Lei and Zhou, Dongzhan and Luo, Yun and Cui, Ganqu and Ye, Peng},
243
+ journal={arXiv preprint arXiv:2509.07894},
244
+ year={2025}
245
+ }
246
  ```