adamimos's picture
Upload epsilon-transformers models and belief analysis data
e39fab2 verified
|
raw
history blame
5.16 kB
metadata
license: mit
task_categories:
  - other
language:
  - en
tags:
  - quantum
  - neural-networks
  - belief-states
  - transformers
  - rnn
size_categories:
  - 1B<n<10B

Epsilon-Transformers Belief Analysis Dataset

This dataset contains trained neural network models and their corresponding belief state regression analysis from the Epsilon-Transformers project. The models were trained on four different stochastic processes and analyzed for their ability to learn and represent belief states.

Dataset Structure

epsilon-transformers-belief-analysis/
β”œβ”€β”€ README.md
β”œβ”€β”€ models/          # Model checkpoints and configurations from S3
β”‚   β”œβ”€β”€ {sweep_id}_{run_id}/
β”‚   β”‚   β”œβ”€β”€ 0.pt                    # Initial checkpoint
β”‚   β”‚   β”œβ”€β”€ {final}.pt              # Final checkpoint
β”‚   β”‚   β”œβ”€β”€ run_config.yaml         # Training configuration
β”‚   β”‚   └── loss.csv                # Training loss data
β”‚   └── ...
└── analysis/        # Belief state regression analysis results
    β”œβ”€β”€ {sweep_id}_{run_id}/
    β”‚   β”œβ”€β”€ checkpoint_0.joblib              # Initial checkpoint analysis
    β”‚   β”œβ”€β”€ checkpoint_{final}.joblib        # Final checkpoint analysis
    β”‚   β”œβ”€β”€ ground_truth_data.joblib         # Neural network ground truth
    β”‚   β”œβ”€β”€ markov3_checkpoint_*.joblib      # Classical Markov comparisons
    β”‚   └── markov3_ground_truth_data.joblib # Classical ground truth
    └── ...

Model Mappings

Sweep ID Run ID Architecture Process Description
20241121152808 48 LSTM Moon Process LSTM trained on Moon Process
20241121152808 49 LSTM Bloch Walk LSTM trained on Bloch Walk
20241121152808 53 LSTM FRDN LSTM trained on FRDN
20241121152808 55 LSTM Mess3 LSTM trained on Mess3
20241121152808 56 GRU Moon Process GRU trained on Moon Process
20241121152808 57 GRU Bloch Walk GRU trained on Bloch Walk
20241121152808 61 GRU FRDN GRU trained on FRDN
20241121152808 63 GRU Mess3 GRU trained on Mess3
20241121152808 64 RNN Moon Process RNN trained on Moon Process
20241121152808 65 RNN Bloch Walk RNN trained on Bloch Walk
20241121152808 69 RNN FRDN RNN trained on FRDN
20241121152808 71 RNN Mess3 RNN trained on Mess3
20241205175736 17 Transformer Bloch Walk Transformer trained on Bloch Walk
20241205175736 23 Transformer Mess3 Transformer trained on Mess3
20250421221507 0 Transformer Moon Process Transformer trained on Moon Process
20250422023003 1 Transformer FRDN Transformer trained on FRDN

Process Descriptions

Mess3 (Classical Process)

A classical stochastic process used as a baseline for comparison with quantum processes.

FRDN (Finite Random Dynamics Networks)

A quantum process representing finite random dynamics networks, modeling quantum systems with specific structural properties.

Bloch Walk

A quantum random walk process on the Bloch sphere, representing quantum state evolution in a geometric framework.

Moon Process

A post-quantum stochastic process that explores computational mechanics beyond standard quantum frameworks.

Model Architectures

RNN Models (LSTM, GRU, RNN)

  • Layers: 4
  • Hidden Units: 64
  • Direction: Unidirectional
  • Configuration: L4_H64_uni

Transformer Models

  • Layers: 4
  • Attention Heads: 4
  • Head Dimension: 16
  • Model Dimension: 64
  • Configuration: L4_H4_DH16_DM64

File Formats

Model Files (.pt)

PyTorch model checkpoints containing trained model weights and optimizer states.

Analysis Files (.joblib)

Joblib-serialized files containing:

  • checkpoint_*.joblib: Regression analysis results mapping activations to belief states
  • ground_truth_data.joblib: True belief states and probabilities for the neural network data
  • markov3_*.joblib: Classical Markov model comparisons and baselines

Usage

Loading Models

import torch
from pathlib import Path

# Load a model checkpoint
model_path = Path("models/20241121152808_57/4075724800.pt")
checkpoint = torch.load(model_path, map_location='cpu')

Loading Analysis Data

import joblib
from pathlib import Path

# Load regression analysis results
analysis_path = Path("analysis/20241121152808_57/checkpoint_4075724800.joblib")
analysis_data = joblib.load(analysis_path)

# Access layer-wise regression metrics
for layer, metrics in analysis_data.items():
    print(f"Layer {layer} RMSE: {metrics['rmse']}")

Citation

If you use this dataset in your research, please cite:

@misc{epsilon-transformers-belief-analysis,
  title={Epsilon-Transformers Belief Analysis Dataset},
  author={[Your Name]},
  year={2024},
  howpublished={Hugging Face Datasets},
  url={https://huggingface.co/datasets/[your-username]/epsilon-transformers-belief-analysis}
}

License

[Specify your license here]

Contact

[Your contact information]