Dataset Viewer
Auto-converted to Parquet
header
stringclasses
1 value
formal_stmt
stringlengths
103
438
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Mul M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ * a = a * z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ * (b * c) = z✝ * b * c) (mid_assoc✝ : ∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) (right_assoc✝ : ∀ (a b : M✝), a * b * z✝ = a * (b * z✝)) : (∀ (a : M✝), z✝ * a = a * z✝) ∧ (∀ (b c : M✝), z✝ * (b * c) = z✝ * b * c) ∧ (∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) ∧ ∀ (a b : M✝), a * b * z✝ = a * (b * z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Mul M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ * a = a * z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ * (b * c) = z✝ * b * c) (mid_assoc✝ : ∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) (right_assoc✝ : ∀ (a b : M✝), a * b * z✝ = a * (b * z✝)) : (∀ (b c : M✝), z✝ * (b * c) = z✝ * b * c) ∧ (∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) ∧ ∀ (a b : M✝), a * b * z✝ = a * (b * z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Mul M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ * a = a * z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ * (b * c) = z✝ * b * c) (mid_assoc✝ : ∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) (right_assoc✝ : ∀ (a b : M✝), a * b * z✝ = a * (b * z✝)) : (∀ (a c : M✝), a * z✝ * c = a * (z✝ * c)) ∧ ∀ (a b : M✝), a * b * z✝ = a * (b * z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Add M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ + a = a + z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ + (b + c) = z✝ + b + c) (mid_assoc✝ : ∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) (right_assoc✝ : ∀ (a b : M✝), a + b + z✝ = a + (b + z✝)) : (∀ (a : M✝), z✝ + a = a + z✝) ∧ (∀ (b c : M✝), z✝ + (b + c) = z✝ + b + c) ∧ (∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) ∧ ∀ (a b : M✝), a + b + z✝ = a + (b + z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Add M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ + a = a + z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ + (b + c) = z✝ + b + c) (mid_assoc✝ : ∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) (right_assoc✝ : ∀ (a b : M✝), a + b + z✝ = a + (b + z✝)) : (∀ (b c : M✝), z✝ + (b + c) = z✝ + b + c) ∧ (∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) ∧ ∀ (a b : M✝), a + b + z✝ = a + (b + z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2488 (M✝ : Type u_1) (inst✝ : Add M✝) (z✝ : M✝) (comm✝ : ∀ (a : M✝), z✝ + a = a + z✝) (left_assoc✝ : ∀ (b c : M✝), z✝ + (b + c) = z✝ + b + c) (mid_assoc✝ : ∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) (right_assoc✝ : ∀ (a b : M✝), a + b + z✝ = a + (b + z✝)) : (∀ (a c : M✝), a + z✝ + c = a + (z✝ + c)) ∧ ∀ (a b : M✝), a + b + z✝ = a + (b + z✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2755 (M : Type u_1) (S : Set M) (T : Set M) (a : M) (b✝ : M) (c✝ : M) (inst✝ : Mul M) (h : IsMulCentral a) (b : M) (c : M) : a * (b * c) = b * (a * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 2921 (M : Type u_1) (S : Set M) (T : Set M) (a✝ : M) (b✝ : M) (c : M) (inst✝ : Mul M) (h : IsMulCentral c) (a : M) (b : M) : a * b * c = a * c * b:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4003 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₁ * z₂ * a = z₂ * z₁ * a:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4006 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₂ * z₁ * a = z₂ * z₁ * a:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4051 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₂ * z₁ * a = z₂ * (z₁ * a):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4054 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₂ * (z₁ * a) = z₂ * (z₁ * a):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4109 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₂ * (z₁ * a) = a * z₁ * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4128 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : z₂ * (a * z₁) = a * z₁ * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4112 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : a * z₁ * z₂ = a * z₁ * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4169 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : a * z₁ * z₂ = a * (z₁ * z₂):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4172 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) : a * (z₁ * z₂) = a * (z₁ * z₂):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4288 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * z₂ * (b * c) = z₁ * (z₂ * (b * c)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4291 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * (b * c)) = z₁ * (z₂ * (b * c)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4347 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * (b * c)) = z₁ * (z₂ * b * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4350 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * b * c) = z₁ * (z₂ * b * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4407 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * b * c) = z₁ * (z₂ * b) * c:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4410 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * b) * c = z₁ * (z₂ * b) * c:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4463 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (b : M) (c : M) : z₁ * (z₂ * b) * c = z₁ * z₂ * b * c:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4572 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * (z₁ * z₂) * c = a * z₁ * z₂ * c:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4575 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * (z₁ * z₂) * c = a * (z₁ * z₂) * c:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4631 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * z₁ * z₂ * c = a * z₁ * (z₂ * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4634 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * z₁ * (z₂ * c) = a * z₁ * (z₂ * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4690 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * z₁ * (z₂ * c) = a * (z₁ * (z₂ * c)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4693 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * (z₁ * (z₂ * c)) = a * (z₁ * (z₂ * c)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4747 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (c : M) : a * (z₁ * (z₂ * c)) = a * (z₁ * z₂ * c):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4858 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * b * (z₁ * z₂) = a * b * z₁ * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4861 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * b * (z₁ * z₂) = a * b * (z₁ * z₂):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4919 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * b * z₁ * z₂ = a * (b * z₁) * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4922 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * (b * z₁) * z₂ = a * (b * z₁) * z₂:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4981 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * (b * z₁) * z₂ = a * (b * z₁ * z₂):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 4984 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * (b * z₁ * z₂) = a * (b * z₁ * z₂):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5042 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * (b * z₁ * z₂) = a * (b * (z₁ * z₂)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5045 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (z₁ : M) (z₂ : M) (hz₁ : z₁ ∈ center M) (hz₂ : z₂ ∈ center M) (a : M) (b : M) : a * (b * (z₁ * z₂)) = a * (b * (z₁ * z₂)):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5518 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) : S ⊆ S.centralizer.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5523 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (x : M) : x ∈ S → x ∈ S.centralizer.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5536 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (x : M) (hx : x ∈ S) : x ∈ S.centralizer.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5574 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Mul M) (x : M) (hx : x ∈ S) : ∀ (m : M), (∀ m_1 ∈ S, m_1 * m = m * m_1) → m * x = x * m:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5800 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) : S.centralizer.centralizer.centralizer = S.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5872 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) : S.centralizer.centralizer.centralizer ⊆ S.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5872 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) : x ∈ S.centralizer.centralizer.centralizer → x ∈ S.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5885 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) (hx : x ∈ S.centralizer.centralizer.centralizer) : x ∈ S.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5885 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) (hx : x ∈ S.centralizer.centralizer.centralizer) : ∀ m ∈ S, m * x = x * m:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5916 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) (hx : x ∈ S.centralizer.centralizer.centralizer) (y : M) : y ∈ S → y * x = x * y:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5929 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) (hx : x ∈ S.centralizer.centralizer.centralizer) (y : M) (hy : y ∈ S) : y * x = x * y:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 5929 (M : Type u_1) (S✝ : Set M) (T : Set M) (inst✝ : Mul M) (S : Set M) (x : M) (hx : ∀ m ∈ S.centralizer.centralizer, m * x = x * m) (y : M) (hy : y ∈ S) : y * x = x * y:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6436 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a✝ : M) (b : M) (z : M) (a : z ∈ center M) (g : M) : g * z = z * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6439 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a✝ : M) (b : M) (z : M) (a : z ∈ center M) (g : M) : g * z = g * z:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6799 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : g * (a * b) = a * b * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6819 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : g * (a * b) = a * (b * g):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6832 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : g * (a * b) = a * (g * b):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6847 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : g * a * b = a * (g * b):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6856 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : a * g * b = a * (g * b):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 6804 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) (g : M) (hg : g ∈ S) : a * (g * b) = a * (g * b):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 7102 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (h : ⊤ ≤ S.centralizer) (x✝¹ : M) (hx : x✝¹ ∈ S) (x✝ : M) : x✝ * x✝¹ = x✝¹ * x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 7105 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Semigroup M) (a : M) (b : M) (h : ⊤ ≤ S.centralizer) (x✝¹ : M) (hx : x✝¹ ∈ S) (x✝ : M) : x✝ * x✝¹ = x✝ * x✝¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8336 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝ : M) : 1 * x✝ = x✝ * 1:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8352 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝ : M) : x✝ = x✝ * 1:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8339 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝ : M) : x✝ = x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8381 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : 1 * (x✝¹ * x✝) = 1 * x✝¹ * x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8397 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * x✝ = 1 * x✝¹ * x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8384 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * x✝ = x✝¹ * x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8425 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * 1 * x✝ = x✝¹ * (1 * x✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8441 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * x✝ = x✝¹ * (1 * x✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8471 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * x✝ * 1 = x✝¹ * (x✝ * 1):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8487 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) (x✝¹ : M) (x✝ : M) : x✝¹ * x✝ = x✝¹ * (x✝ * 1):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8608 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : MulOneClass M) : 1 ∈ S.centralizer:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8836 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) : x✝ ∈ center Mˣ:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8841 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) : ∀ (g : Mˣ), g * x✝ = x✝ * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8890 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) (g✝ : Mˣ) : g✝ * x✝ = x✝ * g✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8912 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) (g✝ : Mˣ) : ↑(g✝ * x✝) = ↑(x✝ * g✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8927 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) (g✝ : Mˣ) : ↑g✝ * ↑x✝ = ↑(x✝ * g✝):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8942 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) (g✝ : Mˣ) : ↑g✝ * ↑x✝ = ↑x✝ * ↑g✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 8890 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (x✝ : Mˣ) (ha : x✝ ∈ Units.val ⁻¹' center M) (g✝ : Mˣ) : ↑g✝ * ↑x✝ = ↑g✝ * ↑x✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9082 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (a : Mˣ) (ha : ↑a ∈ center M) : ↑a⁻¹ ∈ center M:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9087 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Monoid M) (a : Mˣ) (ha : ∀ (g : M), g * ↑a = ↑a * g) : ∀ (g : M), g * ↑a⁻¹ = ↑a⁻¹ * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9275 (M : Type u_1) (S : Set M) (T : Set M) (inst✝¹ : Monoid M) (a : M) (inst✝ : Invertible a) (ha : a ∈ center M) : ⅟a ∈ center M:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9280 (M : Type u_1) (S : Set M) (T : Set M) (inst✝¹ : Monoid M) (a : M) (inst✝ : Invertible a) (ha : ∀ (g : M), g * a = a * g) : ∀ (g : M), g * ⅟a = ⅟a * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9555 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) : a⁻¹ ∈ center M:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9560 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) : ∀ (g : M), g * a⁻¹ = a⁻¹ * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9609 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : g✝ * a⁻¹ = a⁻¹ * g✝:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9626 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : (g✝ * a⁻¹)⁻¹ = (a⁻¹ * g✝)⁻¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9639 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : a⁻¹⁻¹ * g✝⁻¹ = (a⁻¹ * g✝)⁻¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9648 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : a * g✝⁻¹ = (a⁻¹ * g✝)⁻¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9657 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : g✝⁻¹ * a = (a⁻¹ * g✝)⁻¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9670 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : g✝⁻¹ * a = g✝⁻¹ * a⁻¹⁻¹:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9609 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (g✝ : M) : g✝⁻¹ * a = g✝⁻¹ * a:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9831 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (hb : b ∈ center M) : a / b ∈ center M:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 9836 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : DivisionMonoid M) (a : M) (b : M) (ha : a ∈ center M) (hb : b ∈ center M) : a * b⁻¹ ∈ center M:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10118 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (g : M) (hg : g ∈ S) : g * a⁻¹ = a⁻¹ * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10148 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (g : M) (hg : g ∈ S) : g = a⁻¹ * g * a:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10159 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (g : M) (hg : g ∈ S) : g = a⁻¹ * (g * a):= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10182 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (g : M) (hg : g ∈ S) : a * g = g * a:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10121 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (g : M) (hg : g ∈ S) : a * g = a * g:= by sorry
import Init import Mathlib.Algebra.Group.Commute.Units import Mathlib.Algebra.Group.Invertible.Basic import Mathlib.Data.Set.Basic import Mathlib.Logic.Basic
lemma 10358 (M : Type u_1) (S : Set M) (T : Set M) (inst✝ : Group M) (a : M) (b : M) (ha : a ∈ S.centralizer) (hb : b ∈ S.centralizer) : a / b ∈ S.centralizer:= by sorry
README.md exists but content is empty.
Downloads last month
26