Dataset Viewer
Auto-converted to Parquet
db_id
stringclasses
7 values
table_name
stringclasses
50 values
row_index
int64
0
129M
row_data
stringlengths
27
2.47k
split
stringclasses
1 value
sales_in_weather
sales_in_weather
0
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 1, "units": 0}
train
sales_in_weather
sales_in_weather
1
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 2, "units": 0}
train
sales_in_weather
sales_in_weather
2
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 3, "units": 0}
train
sales_in_weather
sales_in_weather
3
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 4, "units": 0}
train
sales_in_weather
sales_in_weather
4
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 5, "units": 0}
train
sales_in_weather
sales_in_weather
5
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 6, "units": 0}
train
sales_in_weather
sales_in_weather
6
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 7, "units": 0}
train
sales_in_weather
sales_in_weather
7
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 8, "units": 0}
train
sales_in_weather
sales_in_weather
8
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 9, "units": 29}
train
sales_in_weather
sales_in_weather
9
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 10, "units": 0}
train
sales_in_weather
sales_in_weather
10
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 11, "units": 0}
train
sales_in_weather
sales_in_weather
11
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 12, "units": 0}
train
sales_in_weather
sales_in_weather
12
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 13, "units": 0}
train
sales_in_weather
sales_in_weather
13
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 14, "units": 0}
train
sales_in_weather
sales_in_weather
14
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 15, "units": 0}
train
sales_in_weather
sales_in_weather
15
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 16, "units": 0}
train
sales_in_weather
sales_in_weather
16
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 17, "units": 0}
train
sales_in_weather
sales_in_weather
17
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 18, "units": 0}
train
sales_in_weather
sales_in_weather
18
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 19, "units": 0}
train
sales_in_weather
sales_in_weather
19
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 20, "units": 0}
train
sales_in_weather
sales_in_weather
20
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 21, "units": 0}
train
sales_in_weather
sales_in_weather
21
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 22, "units": 0}
train
sales_in_weather
sales_in_weather
22
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 23, "units": 0}
train
sales_in_weather
sales_in_weather
23
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 24, "units": 0}
train
sales_in_weather
sales_in_weather
24
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 25, "units": 0}
train
sales_in_weather
sales_in_weather
25
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 26, "units": 0}
train
sales_in_weather
sales_in_weather
26
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 27, "units": 0}
train
sales_in_weather
sales_in_weather
27
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 28, "units": 2}
train
sales_in_weather
sales_in_weather
28
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 29, "units": 0}
train
sales_in_weather
sales_in_weather
29
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 30, "units": 0}
train
sales_in_weather
sales_in_weather
30
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 31, "units": 0}
train
sales_in_weather
sales_in_weather
31
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 32, "units": 0}
train
sales_in_weather
sales_in_weather
32
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 33, "units": 0}
train
sales_in_weather
sales_in_weather
33
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 34, "units": 0}
train
sales_in_weather
sales_in_weather
34
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 35, "units": 0}
train
sales_in_weather
sales_in_weather
35
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 36, "units": 0}
train
sales_in_weather
sales_in_weather
36
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 37, "units": 0}
train
sales_in_weather
sales_in_weather
37
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 38, "units": 0}
train
sales_in_weather
sales_in_weather
38
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 39, "units": 0}
train
sales_in_weather
sales_in_weather
39
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 40, "units": 0}
train
sales_in_weather
sales_in_weather
40
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 41, "units": 0}
train
sales_in_weather
sales_in_weather
41
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 42, "units": 0}
train
sales_in_weather
sales_in_weather
42
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 43, "units": 0}
train
sales_in_weather
sales_in_weather
43
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 44, "units": 0}
train
sales_in_weather
sales_in_weather
44
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 45, "units": 0}
train
sales_in_weather
sales_in_weather
45
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 46, "units": 0}
train
sales_in_weather
sales_in_weather
46
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 47, "units": 0}
train
sales_in_weather
sales_in_weather
47
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 48, "units": 0}
train
sales_in_weather
sales_in_weather
48
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 49, "units": 0}
train
sales_in_weather
sales_in_weather
49
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 50, "units": 0}
train
sales_in_weather
sales_in_weather
50
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 51, "units": 1}
train
sales_in_weather
sales_in_weather
51
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 52, "units": 0}
train
sales_in_weather
sales_in_weather
52
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 53, "units": 0}
train
sales_in_weather
sales_in_weather
53
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 54, "units": 0}
train
sales_in_weather
sales_in_weather
54
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 55, "units": 0}
train
sales_in_weather
sales_in_weather
55
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 56, "units": 0}
train
sales_in_weather
sales_in_weather
56
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 57, "units": 0}
train
sales_in_weather
sales_in_weather
57
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 58, "units": 0}
train
sales_in_weather
sales_in_weather
58
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 59, "units": 0}
train
sales_in_weather
sales_in_weather
59
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 60, "units": 0}
train
sales_in_weather
sales_in_weather
60
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 61, "units": 0}
train
sales_in_weather
sales_in_weather
61
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 62, "units": 0}
train
sales_in_weather
sales_in_weather
62
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 63, "units": 0}
train
sales_in_weather
sales_in_weather
63
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 64, "units": 0}
train
sales_in_weather
sales_in_weather
64
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 65, "units": 0}
train
sales_in_weather
sales_in_weather
65
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 66, "units": 0}
train
sales_in_weather
sales_in_weather
66
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 67, "units": 0}
train
sales_in_weather
sales_in_weather
67
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 68, "units": 0}
train
sales_in_weather
sales_in_weather
68
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 69, "units": 0}
train
sales_in_weather
sales_in_weather
69
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 70, "units": 0}
train
sales_in_weather
sales_in_weather
70
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 71, "units": 0}
train
sales_in_weather
sales_in_weather
71
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 72, "units": 0}
train
sales_in_weather
sales_in_weather
72
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 73, "units": 0}
train
sales_in_weather
sales_in_weather
73
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 74, "units": 0}
train
sales_in_weather
sales_in_weather
74
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 75, "units": 0}
train
sales_in_weather
sales_in_weather
75
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 76, "units": 0}
train
sales_in_weather
sales_in_weather
76
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 77, "units": 0}
train
sales_in_weather
sales_in_weather
77
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 78, "units": 0}
train
sales_in_weather
sales_in_weather
78
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 79, "units": 0}
train
sales_in_weather
sales_in_weather
79
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 80, "units": 0}
train
sales_in_weather
sales_in_weather
80
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 81, "units": 0}
train
sales_in_weather
sales_in_weather
81
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 82, "units": 0}
train
sales_in_weather
sales_in_weather
82
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 83, "units": 0}
train
sales_in_weather
sales_in_weather
83
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 84, "units": 0}
train
sales_in_weather
sales_in_weather
84
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 85, "units": 0}
train
sales_in_weather
sales_in_weather
85
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 86, "units": 0}
train
sales_in_weather
sales_in_weather
86
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 87, "units": 0}
train
sales_in_weather
sales_in_weather
87
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 88, "units": 0}
train
sales_in_weather
sales_in_weather
88
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 89, "units": 0}
train
sales_in_weather
sales_in_weather
89
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 90, "units": 0}
train
sales_in_weather
sales_in_weather
90
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 91, "units": 0}
train
sales_in_weather
sales_in_weather
91
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 92, "units": 0}
train
sales_in_weather
sales_in_weather
92
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 93, "units": 0}
train
sales_in_weather
sales_in_weather
93
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 94, "units": 0}
train
sales_in_weather
sales_in_weather
94
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 95, "units": 0}
train
sales_in_weather
sales_in_weather
95
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 96, "units": 0}
train
sales_in_weather
sales_in_weather
96
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 97, "units": 0}
train
sales_in_weather
sales_in_weather
97
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 98, "units": 0}
train
sales_in_weather
sales_in_weather
98
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 99, "units": 0}
train
sales_in_weather
sales_in_weather
99
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 100, "units": 0}
train
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

BIRD SQL Database with Complete Content

This dataset contains the complete BIRD SQL database content.

Statistics

  • Total databases: 80
  • Total rows: 366,787,649
  • Total chunks: 3660

Usage

from datasets import load_dataset

# Load database content
dataset = load_dataset("Sudnya/bird-sql-full-database", "database_content", streaming=True)

for example in dataset["train"]:
    print(f"Database: {example['db_id']}")
    print(f"Table: {example['table_name']}")
    print(f"Row data: {example['row_data']}")
    break

# Load table metadata  
metadata = load_dataset("Sudnya/bird-sql-full-database", "table_metadata", streaming=True)

for table in metadata["train"]:
    print(f"Table: {table['db_id']}.{table['table_name']}")
    print(f"Columns: {table['columns']}")
    break

Repository

https://huggingface.co/datasets/Sudnya/bird-sql-full-database

Downloads last month
507