Dataset Viewer
db_id
stringclasses 7
values | table_name
stringclasses 50
values | row_index
int64 0
129M
| row_data
stringlengths 27
2.47k
| split
stringclasses 1
value |
---|---|---|---|---|
sales_in_weather
|
sales_in_weather
| 0 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 1, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 1 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 2, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 2 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 3, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 3 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 4, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 4 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 5, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 5 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 6, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 6 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 7, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 7 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 8, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 8 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 9, "units": 29}
|
train
|
sales_in_weather
|
sales_in_weather
| 9 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 10, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 10 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 11, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 11 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 12, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 12 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 13, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 13 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 14, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 14 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 15, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 15 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 16, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 16 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 17, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 17 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 18, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 18 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 19, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 19 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 20, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 20 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 21, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 21 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 22, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 22 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 23, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 23 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 24, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 24 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 25, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 25 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 26, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 26 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 27, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 27 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 28, "units": 2}
|
train
|
sales_in_weather
|
sales_in_weather
| 28 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 29, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 29 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 30, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 30 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 31, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 31 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 32, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 32 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 33, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 33 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 34, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 34 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 35, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 35 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 36, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 36 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 37, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 37 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 38, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 38 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 39, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 39 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 40, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 40 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 41, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 41 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 42, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 42 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 43, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 43 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 44, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 44 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 45, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 45 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 46, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 46 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 47, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 47 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 48, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 48 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 49, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 49 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 50, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 50 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 51, "units": 1}
|
train
|
sales_in_weather
|
sales_in_weather
| 51 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 52, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 52 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 53, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 53 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 54, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 54 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 55, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 55 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 56, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 56 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 57, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 57 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 58, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 58 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 59, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 59 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 60, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 60 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 61, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 61 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 62, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 62 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 63, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 63 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 64, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 64 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 65, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 65 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 66, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 66 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 67, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 67 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 68, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 68 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 69, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 69 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 70, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 70 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 71, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 71 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 72, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 72 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 73, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 73 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 74, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 74 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 75, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 75 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 76, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 76 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 77, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 77 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 78, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 78 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 79, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 79 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 80, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 80 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 81, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 81 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 82, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 82 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 83, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 83 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 84, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 84 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 85, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 85 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 86, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 86 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 87, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 87 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 88, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 88 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 89, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 89 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 90, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 90 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 91, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 91 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 92, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 92 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 93, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 93 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 94, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 94 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 95, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 95 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 96, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 96 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 97, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 97 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 98, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 98 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 99, "units": 0}
|
train
|
sales_in_weather
|
sales_in_weather
| 99 |
{"date": "2012-01-01", "store_nbr": 1, "item_nbr": 100, "units": 0}
|
train
|
End of preview. Expand
in Data Studio
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
BIRD SQL Database with Complete Content
This dataset contains the complete BIRD SQL database content.
Statistics
- Total databases: 80
- Total rows: 366,787,649
- Total chunks: 3660
Usage
from datasets import load_dataset
# Load database content
dataset = load_dataset("Sudnya/bird-sql-full-database", "database_content", streaming=True)
for example in dataset["train"]:
print(f"Database: {example['db_id']}")
print(f"Table: {example['table_name']}")
print(f"Row data: {example['row_data']}")
break
# Load table metadata
metadata = load_dataset("Sudnya/bird-sql-full-database", "table_metadata", streaming=True)
for table in metadata["train"]:
print(f"Table: {table['db_id']}.{table['table_name']}")
print(f"Columns: {table['columns']}")
break
Repository
https://huggingface.co/datasets/Sudnya/bird-sql-full-database
- Downloads last month
- 507