entry_point
stringlengths
1
65
original_triton_python_code
stringlengths
208
619k
optimised_triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
Conv2dZeroInit
import torch import torch.nn as nn class Conv2dZeroInit(nn.Conv2d): def __init__(self, channels_in, channels_out, filter_size, stride=1, padding=0, logscale=3.0): super().__init__(channels_in, channels_out, filter_size, stride= stride, padding=padding) self.register_parameter('logs', nn.Parameter(torch.zeros( channels_out, 1, 1))) self.logscale_factor = logscale def reset_parameters(self): self.weight.data.zero_() self.bias.data.zero_() def forward(self, input): out = super().forward(input) return out * torch.exp(self.logs * self.logscale_factor) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels_in': 4, 'channels_out': 4, 'filter_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_exp_mul_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = 3.0 tmp5 = tmp3 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_exp_mul_0[grid(16)](buf1, primals_2, primals_4, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf2, primals_1, primals_3, primals_4, buf1 class Conv2dZeroInitNew(nn.Conv2d): def __init__(self, channels_in, channels_out, filter_size, stride=1, padding=0, logscale=3.0): super().__init__(channels_in, channels_out, filter_size, stride= stride, padding=padding) self.register_parameter('logs', nn.Parameter(torch.zeros( channels_out, 1, 1))) self.logscale_factor = logscale def reset_parameters(self): self.weight.data.zero_() self.bias.data.zero_() def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_4 = self.logs primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
david-klindt/invertible-resnet
Conv2dZeroInit
false
3,386
[ "MIT" ]
0
ac6756a7ba5d0dbcb6b4cec43f8b86079318fd89
https://github.com/david-klindt/invertible-resnet/tree/ac6756a7ba5d0dbcb6b4cec43f8b86079318fd89
Fusion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/37/c37l7ezffklnfomgas7mto2m3yaztb5ikq2a6o2uoa4usmb6uodq.py # Topologically Sorted Source Nodes: [sub, pow_1, neg, add, relu, add_1], Original ATen: [aten.sub, aten.pow, aten.neg, aten.add, aten.relu] # Source node to ATen node mapping: # add => add # add_1 => add_1 # neg => neg # pow_1 => pow_1 # relu => relu # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%pow_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg, %relu), kwargs = {}) triton_poi_fused_add_neg_pow_relu_sub_0 = async_compile.triton('triton_poi_fused_add_neg_pow_relu_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_neg_pow_relu_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_neg_pow_relu_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = -tmp3 tmp5 = tmp0 + tmp1 tmp6 = tl.full([1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tmp4 + tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, neg, add, relu, add_1], Original ATen: [aten.sub, aten.pow, aten.neg, aten.add, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_add_neg_pow_relu_sub_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_neg_pow_relu_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = -tmp3 tmp5 = tmp0 + tmp1 tmp6 = tl.full([1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tmp4 + tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_neg_pow_relu_sub_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class FusionNew(nn.Module): """ Crazy multi-modal fusion: negative squared difference minus relu'd sum """ def __init__(self): super().__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Ruiver/CTCNet
Fusion
false
17,887
[ "Apache-2.0" ]
6
539e55ec9fed06028379d35dfd5cd4074755ffd8
https://github.com/Ruiver/CTCNet/tree/539e55ec9fed06028379d35dfd5cd4074755ffd8
NIN2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/gk/cgk4nhxtwsv6ess5wbemcn7j6damwwsiqymtjtt5ogq5qz32zyhi.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %view_1), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] # Source node to ATen node mapping: # out => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ah/cahcaisbm3npehxd2ick7wbojzoyejnraq3ukbz5nmo7pnakz3no.py # Topologically Sorted Source Nodes: [truediv, weight], Original ATen: [aten.div, aten.mul] # Source node to ATen node mapping: # truediv => div # weight => mul # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_2, %view_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %div), kwargs = {}) triton_poi_fused_div_mul_2 = async_compile.triton('triton_poi_fused_div_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ok/cokamvfj3z4xuz3jmalftfns3huimimr3c4gzm52vaybmdliglu4.py # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.add] # Source node to ATen node mapping: # out_1 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %primals_4), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_2, primals_1, buf0, 4, grid=grid(4), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_3, buf1, 64, 4, grid=grid(64, 4), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, weight], Original ATen: [aten.div, aten.mul] triton_poi_fused_div_mul_2.run(primals_1, buf0, buf2, 16, grid=grid(16), stream=stream0) del buf0 buf3 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 4), (0, 1, 4), 0), out=buf3) del buf2 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 1, 16, 4), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf4, primals_4, 256, grid=grid(256), stream=stream0) del primals_4 return (buf4, primals_1, primals_2, reinterpret_tensor(buf1, (1, 4, 64), (256, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1), (1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_div_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 1), (1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 1, 1), (1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(4)](primals_2, primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch .float32) triton_poi_fused_clone_1[grid(64, 4)](primals_3, buf1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_div_mul_2[grid(16)](primals_1, buf0, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf0 buf3 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (1, 64, 4), (0, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 4), (0, 1, 4), 0), out=buf3) del buf2 buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 1, 16, 4), 0) del buf3 triton_poi_fused_add_3[grid(256)](buf4, primals_4, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_4 return buf4, primals_1, primals_2, reinterpret_tensor(buf1, (1, 4, 64), (256, 1, 4), 0) def norm(p: 'torch.Tensor', dim: 'int'): """Computes the norm over all dimensions except dim""" if dim is None: return p.norm() elif dim == 0: output_size = (p.size(0),) + (1,) * (p.dim() - 1) return p.contiguous().view(p.size(0), -1).norm(dim=1).view(*output_size ) elif dim == p.dim() - 1: output_size = (1,) * (p.dim() - 1) + (p.size(-1),) return p.contiguous().view(-1, p.size(-1)).norm(dim=0).view(* output_size) else: return norm(p.transpose(0, dim), 0).transpose(0, dim) class NIN2dNew(nn.Module): def __init__(self, in_features, out_features, bias=True): super(NIN2dNew, self).__init__() self.in_features = in_features self.out_features = out_features self.weight_v = Parameter(torch.Tensor(out_features, in_features)) self.weight_g = Parameter(torch.Tensor(out_features, 1)) if bias: self.bias = Parameter(torch.Tensor(out_features, 1, 1)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): nn.init.normal_(self.weight_v, mean=0.0, std=0.05) self.weight_g.data.copy_(norm(self.weight_v, 0)) if self.bias is not None: nn.init.constant_(self.bias, 0) def compute_weight(self): return self.weight_v * (self.weight_g / norm(self.weight_v, 0)) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format(self. in_features, self.out_features, self.bias is not None) def init(self, x, init_scale=1.0): with torch.no_grad(): out = self(x) out_features, height, width = out.size()[-3:] assert out_features == self.out_features out = out.view(-1, out_features, height * width).transpose(1, 2) out = out.contiguous().view(-1, out_features) mean = out.mean(dim=0) std = out.std(dim=0) inv_stdv = init_scale / (std + 1e-06) self.weight_g.mul_(inv_stdv.unsqueeze(1)) if self.bias is not None: mean = mean.view(out_features, 1, 1) inv_stdv = inv_stdv.view(out_features, 1, 1) self.bias.add_(-mean).mul_(inv_stdv) return self(x) def forward(self, input_0): primals_1 = self.weight_v primals_2 = self.weight_g primals_4 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
XuezheMax/macow
NIN2d
false
14,611
[ "Apache-2.0" ]
60
6de247c09b590a037c9eec2d6b1248845f6efb31
https://github.com/XuezheMax/macow/tree/6de247c09b590a037c9eec2d6b1248845f6efb31
ARFB
import torch import torch.nn as nn import torch.utils.model_zoo def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnit(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): res = self.reduction(x) res = self.lamRes * self.expansion(res) x = self.lamX * x + res return x class ARFB(nn.Module): def __init__(self, inChannel, outChannel, reScale): super().__init__() self.RU1 = ResidualUnit(inChannel, outChannel, reScale) self.RU2 = ResidualUnit(inChannel, outChannel, reScale) self.conv1 = default_conv(2 * inChannel, 2 * outChannel, kernel_size=1) self.conv3 = default_conv(2 * inChannel, outChannel, kernel_size=3) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): x_ru1 = self.RU1(x) x_ru2 = self.RU2(x_ru1) x_ru = torch.cat((x_ru1, x_ru2), 1) x_ru = self.conv1(x_ru) x_ru = self.conv3(x_ru) x_ru = self.lamRes * x_ru x = x * self.lamX + x_ru return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inChannel': 4, 'outChannel': 4, 'reScale': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 2 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_out_ptr0 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp5 * tmp1 tmp7 = tmp2 + tmp6 tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 8 x0 = xindex % 16 x2 = xindex // 128 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp10 = 4.0 tmp11 = tmp9 * tmp10 tmp12 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask, other=0.0) tmp13 = tl.load(in_ptr2 + (-4 + x1), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tmp12 + tmp13 tmp15 = tmp14 * tmp10 tmp16 = tmp11 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp6, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tl.store(out_ptr0 + x3, tmp19, xmask) @triton.jit def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 8 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (2, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (2,), (1,)) assert_size_stride(primals_8, (4, 2, 1, 1), (2, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (8, 8, 1, 1), (8, 1, 1, 1)) assert_size_stride(primals_11, (8,), (1,)) assert_size_stride(primals_12, (4, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 4, 4), (32, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(128)](buf1, primals_2, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_mul_1[grid(256)](buf3, primals_3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 2, 4, 4), (32, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_0[grid(128)](buf5, primals_7, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 4, 4, 4), (64, 16, 4, 1)) buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) triton_poi_fused_cat_2[grid(512)](buf3, buf6, primals_9, buf7, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 8, 4, 4), (128, 16, 4, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_3[grid(512)](buf9, primals_11, 512, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 4, 4, 4), (64, 16, 4, 1)) buf11 = buf10 del buf10 triton_poi_fused_add_convolution_mul_1[grid(256)](buf11, primals_3, primals_13, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_13 return (buf11, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, buf1, buf3, buf5, buf7, buf9) def default_conv(in_channels, out_channels, kernel_size, bias=True): return nn.Conv2d(in_channels, out_channels, kernel_size, padding= kernel_size // 2, bias=bias) class ResidualUnit(nn.Module): def __init__(self, inChannel, outChannel, reScale, kernelSize=1, bias=True ): super().__init__() self.reduction = default_conv(inChannel, outChannel // 2, kernelSize, bias) self.expansion = default_conv(outChannel // 2, inChannel, kernelSize, bias) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, x): res = self.reduction(x) res = self.lamRes * self.expansion(res) x = self.lamX * x + res return x class ARFBNew(nn.Module): def __init__(self, inChannel, outChannel, reScale): super().__init__() self.RU1 = ResidualUnit(inChannel, outChannel, reScale) self.RU2 = ResidualUnit(inChannel, outChannel, reScale) self.conv1 = default_conv(2 * inChannel, 2 * outChannel, kernel_size=1) self.conv3 = default_conv(2 * inChannel, outChannel, kernel_size=3) self.lamRes = reScale[0] self.lamX = reScale[1] def forward(self, input_0): primals_1 = self.RU1.reduction.weight primals_2 = self.RU1.reduction.bias primals_4 = self.RU1.expansion.weight primals_5 = self.RU1.expansion.bias primals_6 = self.RU2.reduction.weight primals_7 = self.RU2.reduction.bias primals_8 = self.RU2.expansion.weight primals_9 = self.RU2.expansion.bias primals_10 = self.conv1.weight primals_11 = self.conv1.bias primals_12 = self.conv3.weight primals_13 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
NawaNae/ESRT-Huawei
ARFB
false
2,668
[ "MIT" ]
0
edea1c0bafec940dc7ea8e5110c355a83188665c
https://github.com/NawaNae/ESRT-Huawei/tree/edea1c0bafec940dc7ea8e5110c355a83188665c
Hflip
import torch import torch.nn as nn def hflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-1]) class Hflip(nn.Module): """Horizontally flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The horizontally flipped image tensor Examples: >>> hflip = Hflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> hflip(input) tensor([[[[0., 0., 0.], [0., 0., 0.], [1., 1., 0.]]]]) """ def __init__(self) ->None: super(Hflip, self).__init__() def forward(self, input: 'torch.Tensor') ->torch.Tensor: return hflip(input) def __repr__(self): return self.__class__.__name__ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (3 + -1 * x0 + 4 * x1), xmask, eviction_policy ='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_flip_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def hflip(input: 'torch.Tensor') ->torch.Tensor: return torch.flip(input, [-1]) class HflipNew(nn.Module): """Horizontally flip a tensor image or a batch of tensor images. Input must be a tensor of shape (C, H, W) or a batch of tensors :math:`(*, C, H, W)`. Args: input (torch.Tensor): input tensor Returns: torch.Tensor: The horizontally flipped image tensor Examples: >>> hflip = Hflip() >>> input = torch.tensor([[[ ... [0., 0., 0.], ... [0., 0., 0.], ... [0., 1., 1.] ... ]]]) >>> hflip(input) tensor([[[[0., 0., 0.], [0., 0., 0.], [1., 1., 0.]]]]) """ def __init__(self) ->None: super(HflipNew, self).__init__() def __repr__(self): return self.__class__.__name__ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NickleDave/kornia
Hflip
false
2,696
[ "ECL-2.0", "Apache-2.0" ]
0
5392651d0bc268da577fa0a49aa50f957289c7dd
https://github.com/NickleDave/kornia/tree/5392651d0bc268da577fa0a49aa50f957289c7dd
TripletLossXBM
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vn/cvn7neyecxwucvxwix3iwvixzuf4n42a24h7glkmj7uusonposlh.py # Topologically Sorted Source Nodes: [add, mul, dist_mat, clamp, dist_mat_1, eq, identity_mat, sub_1, mul_1, add_1, sort, mul_2, add_2, sort_1], Original ATen: [aten.add, aten.mul, aten.sub, aten.clamp, aten.sqrt, aten.eq, aten._to_copy, aten.rsub, aten.sort] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # clamp => clamp_min # dist_mat => sub # dist_mat_1 => sqrt # eq => eq # identity_mat => convert_element_type # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sort => sort # sort_1 => sort_1 # sub_1 => sub_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand, %permute), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 1e-12), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%clamp_min,), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%permute_2, %expand_3), kwargs = {}) # %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %convert_element_type), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, -10000000.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, %mul_1), kwargs = {}) # %sort : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%add_1, 1, True), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 10000000.0), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, %mul_2), kwargs = {}) # %sort_1 : [num_users=1] = call_function[target=torch.ops.aten.sort.default](args = (%add_2, 1), kwargs = {}) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0 = async_compile.triton('triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*r1), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp30 = tl.load(in_ptr2 + (x0 + (4*r1)), xmask, other=0.0) tmp31 = tl.load(in_ptr3 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tmp27 = 1e-12 tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp29 = libdevice.sqrt(tmp28) tmp32 = tmp30 == tmp31 tmp33 = tmp32.to(tl.float32) tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = -10000000.0 tmp37 = tmp35 * tmp36 tmp38 = tmp29 + tmp37 tmp39 = r1 tmp40 = tmp39.to(tl.int16) tmp41 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp42 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK]) tmp43, tmp44, = triton_helpers.sort_with_index(tmp41, tmp42, None, 1, stable=False, descending=True) tmp45 = 10000000.0 tmp46 = tmp33 * tmp45 tmp47 = tmp29 + tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp49, tmp50, = triton_helpers.sort_with_index(tmp48, tmp42, None, 1, stable=False, descending=False) tl.store(in_out_ptr0 + (r1 + (4*x0)), tmp26, xmask) tl.store(out_ptr0 + (r1 + (4*x0)), tmp43, xmask) tl.store(out_ptr1 + (r1 + (4*x0)), tmp49, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ft/cft3mvcb27x3qu2aa7eszgtcgn7kayjq33cnvtx3ey4sz5yyvzsq.py # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean] # Source node to ATen node mapping: # loss => add_3, clamp_min_1, full_default, mean, mul_3, sub_2 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %sub_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%mul_3, 0.3), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add_3, 0), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%clamp_min_1,), kwargs = {}) triton_per_fused_add_clamp_min_mean_mul_neg_sub_1 = async_compile.triton('triton_per_fused_add_clamp_min_mean_mul_neg_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_min_mean_mul_neg_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = -1.0 tmp4 = tmp3 * tmp2 tmp5 = 0.3 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = 4.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(arg0_1, reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, mul, dist_mat, clamp, dist_mat_1, eq, identity_mat, sub_1, mul_1, add_1, sort, mul_2, add_2, sort_1], Original ATen: [aten.add, aten.mul, aten.sub, aten.clamp, aten.sqrt, aten.eq, aten._to_copy, aten.rsub, aten.sort] stream0 = get_raw_stream(0) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0.run(buf1, arg0_1, arg1_1, arg2_1, arg3_1, buf2, buf4, 4, 4, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del buf1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [loss], Original ATen: [aten.neg, aten.sub, aten.mul, aten.add, aten.clamp_min, aten.mean] triton_per_fused_add_clamp_min_mean_mul_neg_sub_1.run(buf7, buf4, buf2, 1, 4, grid=grid(1), stream=stream0) del buf2 del buf4 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0(in_out_ptr0 , in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex r1 = rindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * r1, None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp30 = tl.load(in_ptr2 + (x0 + 4 * r1), xmask, other=0.0) tmp31 = tl.load(in_ptr3 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tmp27 = 1e-12 tmp28 = triton_helpers.maximum(tmp26, tmp27) tmp29 = libdevice.sqrt(tmp28) tmp32 = tmp30 == tmp31 tmp33 = tmp32.to(tl.float32) tmp34 = 1.0 tmp35 = tmp34 - tmp33 tmp36 = -10000000.0 tmp37 = tmp35 * tmp36 tmp38 = tmp29 + tmp37 tmp39 = r1 tmp40 = tmp39.to(tl.int16) tmp41 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp42 = tl.broadcast_to(tmp40, [XBLOCK, RBLOCK]) tmp43, _tmp44 = triton_helpers.sort_with_index(tmp41, tmp42, None, 1, stable=False, descending=True) tmp45 = 10000000.0 tmp46 = tmp33 * tmp45 tmp47 = tmp29 + tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp49, _tmp50 = triton_helpers.sort_with_index(tmp48, tmp42, None, 1, stable=False, descending=False) tl.store(in_out_ptr0 + (r1 + 4 * x0), tmp26, xmask) tl.store(out_ptr0 + (r1 + 4 * x0), tmp43, xmask) tl.store(out_ptr1 + (r1 + 4 * x0), tmp49, xmask) @triton.jit def triton_per_fused_add_clamp_min_mean_mul_neg_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = -1.0 tmp4 = tmp3 * tmp2 tmp5 = 0.3 tmp6 = tmp4 + tmp5 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp12 = 4.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp13, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) assert_size_stride(arg3_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, reinterpret_tensor(arg1_1, (4, 4), (1, 4), 0), out=buf0) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused__to_copy_add_clamp_eq_mul_rsub_sort_sqrt_sub_0[grid(4) ](buf1, arg0_1, arg1_1, arg2_1, arg3_1, buf2, buf4, 4, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del buf1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6 del buf6 triton_per_fused_add_clamp_min_mean_mul_neg_sub_1[grid(1)](buf7, buf4, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf4 return buf7, def hard_examples_mining(dist_mat, identity_mat, return_idxes=False): """Select hard positives and hard negatives according to `In defense of the Triplet Loss for Person Re-Identification (ICCV 2017) <https://arxiv.org/pdf/1703.07737v2.pdf>`_ Args: dist_mat (tensor): pairwise distance matrix between two sets of features identity_mat (tensor): a matrix of shape :math:`(N, M)`. If two images :math:`P[i]` of set :math:`P` and :math:`Q[j]` of set :math:`Q` come from the same person, then :math:`identity\\_mat[i, j] = 1`, otherwise :math:`identity\\_mat[i, j] = 0` return_idxes (bool, optional): if True, also return indexes of hard examples. Default: False """ sorted_dist_mat, sorted_idxes = torch.sort(dist_mat + -10000000.0 * (1 - identity_mat), dim=1, descending=True) dist_ap = sorted_dist_mat[:, 0] hard_positive_idxes = sorted_idxes[:, 0] sorted_dist_mat, sorted_idxes = torch.sort(dist_mat + 10000000.0 * identity_mat, dim=1, descending=False) dist_an = sorted_dist_mat[:, 0] hard_negative_idxes = sorted_idxes[:, 0] if return_idxes: return dist_ap, dist_an, hard_positive_idxes, hard_negative_idxes return dist_ap, dist_an def pairwise_euclidean_distance(x, y): """Compute pairwise euclidean distance between two sets of features""" m, n = x.size(0), y.size(0) dist_mat = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) + torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() - 2 * torch.matmul(x, y.t()) dist_mat = dist_mat.clamp(min=1e-12).sqrt() return dist_mat class TripletLossXBMNew(nn.Module): """Triplet loss augmented with batch hard from `In defense of the Triplet Loss for Person Re-Identification (ICCV 2017) <https://arxiv.org/pdf/1703.07737v2.pdf>`_. The only difference from triplet loss lies in that both features from current mini batch and external storage (XBM) are involved. Args: margin (float, optional): margin of triplet loss. Default: 0.3 normalize_feature (bool, optional): if True, normalize features into unit norm first before computing loss. Default: False Inputs: - f (tensor): features of current mini batch, :math:`f` - labels (tensor): identity labels for current mini batch, :math:`labels` - xbm_f (tensor): features collected from XBM, :math:`xbm\\_f` - xbm_labels (tensor): corresponding identity labels of xbm_f, :math:`xbm\\_labels` Shape: - f: :math:`(minibatch, F)`, where :math:`F` is the feature dimension - labels: :math:`(minibatch, )` - xbm_f: :math:`(minibatch, F)` - xbm_labels: :math:`(minibatch, )` """ def __init__(self, margin=0.3, normalize_feature=False): super(TripletLossXBMNew, self).__init__() self.margin = margin self.normalize_feature = normalize_feature self.ranking_loss = nn.MarginRankingLoss(margin=margin) def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
neka-nat/Transfer-Learning-Library
TripletLossXBM
false
16,168
[ "MIT" ]
1,474
a3b27b0d7562fa90a02e914140b37ab438469e6c
https://github.com/neka-nat/Transfer-Learning-Library/tree/a3b27b0d7562fa90a02e914140b37ab438469e6c
CReLU_IN
import torch import torch.nn.functional as F import torch.nn as nn class CReLU_IN(nn.Module): def __init__(self, channels): super(CReLU_IN, self).__init__() self.bn = nn.InstanceNorm2d(channels * 2, eps=1e-05, momentum=0.1, affine=True) def forward(self, x): cat = torch.cat((x, -x), 1) x = self.bn(cat) return F.leaky_relu(x, 0.01, inplace=True) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 32 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 8 r2 = rindex x1 = xindex // 8 x3 = xindex tmp37 = tl.load(in_ptr1 + x3 % 8, xmask, eviction_policy='evict_last') tmp39 = tl.load(in_ptr2 + x3 % 8, xmask, eviction_policy='evict_last') tmp0 = x0 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (r2 + 16 * x0 + 64 * x1), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1, 1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (r2 + 16 * (-4 + x0) + 64 * x1), tmp6 & xmask, other=0.0) tmp10 = -tmp9 tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp6, tmp10, tmp11) tmp13 = tl.where(tmp4, tmp5, tmp12) tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tl.where(xmask, tmp14, 0) tmp17 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = tl.full([XBLOCK, 1], 16, tl.int32) tmp22 = tmp21.to(tl.float32) tmp23 = tmp20 / tmp22 tmp24 = tmp14 - tmp23 tmp25 = tmp24 * tmp24 tmp26 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp28 = tl.where(xmask, tmp26, 0) tmp29 = tl.sum(tmp28, 1)[:, None] tmp30 = tmp13 - tmp23 tmp31 = 16.0 tmp32 = tmp29 / tmp31 tmp33 = 1e-05 tmp34 = tmp32 + tmp33 tmp35 = libdevice.rsqrt(tmp34) tmp36 = tmp30 * tmp35 tmp38 = tmp36 * tmp37 tmp40 = tmp38 + tmp39 tmp41 = 0.0 tmp42 = tmp40 > tmp41 tmp43 = 0.01 tmp44 = tmp40 * tmp43 tmp45 = tl.where(tmp42, tmp40, tmp44) tmp46 = tmp45 > tmp41 tl.store(out_ptr0 + (r2 + 16 * x3), tmp13, xmask) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp45, xmask) tl.store(out_ptr3 + (r2 + 16 * x3), tmp46, xmask) tl.store(out_ptr4 + x3, tmp35, xmask) tl.store(out_ptr1 + x3, tmp23, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (8,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32 ) buf5 = empty_strided_cuda((1, 32, 4, 4), (512, 16, 4, 1), torch.float32 ) buf6 = reinterpret_tensor(buf5, (4, 8, 4, 4), (128, 16, 4, 1), 0) del buf5 buf7 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.bool) buf4 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.float32 ) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_cat_leaky_relu_leaky_relu_backward_0[ grid(32)](buf6, primals_1, primals_2, primals_3, buf0, buf1, buf7, buf4, 32, 16, XBLOCK=32, num_warps=4, num_stages=1) del primals_1 del primals_2 del primals_3 return buf6, buf0, reinterpret_tensor(buf4, (32,), (1,), 0 ), buf7, reinterpret_tensor(buf1, (1, 32, 1, 1), (32, 1, 1, 1), 0) class CReLU_INNew(nn.Module): def __init__(self, channels): super(CReLU_INNew, self).__init__() self.bn = nn.InstanceNorm2d(channels * 2, eps=1e-05, momentum=0.1, affine=True) def forward(self, input_0): primals_2 = self.bn.weight primals_3 = self.bn.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
dipikakhullar/ocr
CReLU_IN
false
15,188
[ "MIT" ]
284
a55e70d82f42803be5ed63f8f59e4fa597fcf8d6
https://github.com/dipikakhullar/ocr/tree/a55e70d82f42803be5ed63f8f59e4fa597fcf8d6
FrequencyLoss
import torch import torch.nn as nn class FrequencyLoss(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=0.001): super(FrequencyLoss, self).__init__() self.criterion = torch.nn.L1Loss() def forward(self, x, y): x_fft = torch.fft.rfft2(x, dim=(2, 3)) y_fft = torch.fft.rfft2(y, dim=(2, 3)) loss = self.criterion(x_fft, y_fft) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): rnumel = 192 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r0 = rindex tmp0 = tl.load(in_ptr0 + r0, rmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 192.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten._fft_r2c.default(arg0_1, [2, 3], 0, True) del arg0_1 buf1 = buf0 del buf0 buf2 = torch.ops.aten._fft_r2c.default(arg1_1, [2, 3], 0, True) del arg1_1 buf3 = buf2 del buf2 buf4 = torch.ops.aten.sub.Tensor(buf1, buf3) del buf1 del buf3 buf5 = buf4 del buf4 buf6 = torch.ops.aten.abs.default(buf5) del buf5 buf7 = buf6 del buf6 buf8 = empty_strided_cuda((), (), torch.float32) buf9 = buf8 del buf8 get_raw_stream(0) triton_per_fused_mean_0[grid(1)](buf9, buf7, 1, 192, XBLOCK=1, num_warps=2, num_stages=1) del buf7 return buf9, class FrequencyLossNew(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=0.001): super(FrequencyLossNew, self).__init__() self.criterion = torch.nn.L1Loss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
vztu/DebandingNet
FrequencyLoss
false
4,515
[ "MIT" ]
0
4af8e83ffbfc70dc220dd6fea2827fb75796f10c
https://github.com/vztu/DebandingNet/tree/4af8e83ffbfc70dc220dd6fea2827fb75796f10c
Decoder
import torch import torch.nn as nn class Decoder(nn.Module): def __init__(self, latent_dim=4, obs_dim=2, nhidden=20): super(Decoder, self).__init__() self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(latent_dim, nhidden) self.fc2 = nn.Linear(nhidden, obs_dim) def forward(self, z): out = self.fc1(z) out = self.relu(out) out = self.fc2(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 20 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x4, tmp4, xmask) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_view_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1280 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = xindex // 20 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 20 * x1 + 80 * (x1 % 4 // 4) + 320 * ((4 * (x1 // 4 % 4) + x1 % 4) // 16)), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 20), (20, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 20), (320, 80, 20, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1280)](buf1, primals_2, buf4, 1280, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 20), (20, 1), torch.float32) triton_poi_fused_view_1[grid(1280)](buf1, buf2, 1280, XBLOCK=128, num_warps=4, num_stages=1) del buf1 buf3 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, buf2, reinterpret_tensor(primals_4, (20, 2), (1, 20), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 2), (32, 8, 2, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf2, primals_4, buf4 class DecoderNew(nn.Module): def __init__(self, latent_dim=4, obs_dim=2, nhidden=20): super(DecoderNew, self).__init__() self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(latent_dim, nhidden) self.fc2 = nn.Linear(nhidden, obs_dim) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
navaro1/parking_prediction
Decoder
false
12,889
[ "MIT" ]
0
c532a2f75155abc9c0d4be9c955eabe368591932
https://github.com/navaro1/parking_prediction/tree/c532a2f75155abc9c0d4be9c955eabe368591932
LDEPooling
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/px/cpxgh7rygczo7s5i6nrfdx75l2hi6cjdfexsy2ctyfflclxdb7ye.py # Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax] # Source node to ATen node mapping: # add => add # mul => mul # neg => neg # pow_1 => pow_1 # pow_2 => pow_2 # r => sub # sum_1 => sum_1 # w => amax, exp, sub_1, sum_2 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-10), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%add,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [2], True), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %sum_1), kwargs = {}) # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%mul, [3], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [3], True), kwargs = {}) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x1 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (r2), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (r2), None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = -tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp18 + tmp22 tmp24 = tmp4 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, float("-inf")) tmp28 = triton_helpers.max2(tmp27, 1)[:, None] tmp29 = tmp24 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + (r2 + (64*x3)), tmp24, xmask) tl.store(out_ptr1 + (x3), tmp28, xmask) tl.store(out_ptr2 + (x3), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/5c/c5cyg6tmgybx2znb56tli3mxu474a5mhwo2sfz4cyzeil7dyv77v.py # Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean] # Source node to ATen node mapping: # e => mean # mul_1 => mul_1 # r => sub # w => div, exp, sub_1 # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %sub), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused__softmax_mean_mul_sub_1 = async_compile.triton('triton_poi_fused__softmax_mean_mul_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mean_mul_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = (xindex // 256) x4 = (xindex // 64) x3 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (4*x2), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (4*x4), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (64 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr2 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr3 + (1 + (4*x4)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (128 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr2 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr3 + (2 + (4*x4)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (192 + x0 + (256*x2)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr2 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr3 + (3 + (4*x4)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp12 = tmp10 - tmp11 tmp13 = tl_math.exp(tmp12) tmp15 = tmp13 / tmp14 tmp17 = tmp16 - tmp7 tmp18 = tmp15 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 - tmp21 tmp23 = tl_math.exp(tmp22) tmp25 = tmp23 / tmp24 tmp27 = tmp26 - tmp7 tmp28 = tmp25 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tl_math.exp(tmp32) tmp35 = tmp33 / tmp34 tmp37 = tmp36 - tmp7 tmp38 = tmp35 * tmp37 tmp39 = tmp29 + tmp38 tmp40 = 4.0 tmp41 = tmp39 / tmp40 tl.store(out_ptr0 + (x5), tmp41, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 64), (64, 1)) assert_size_stride(primals_3, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [r, pow_1, add, neg, pow_2, sum_1, mul, w], Original ATen: [aten.sub, aten.pow, aten.add, aten.neg, aten.sum, aten.mul, aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0.run(primals_3, primals_1, primals_2, buf0, buf1, buf2, 16, 64, grid=grid(16), stream=stream0) buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [r, w, mul_1, e], Original ATen: [aten.sub, aten._softmax, aten.mul, aten.mean] triton_poi_fused__softmax_mean_mul_sub_1.run(buf0, buf1, buf2, primals_1, primals_2, buf3, 1024, grid=grid(1024), stream=stream0) del buf0 return (reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0), primals_1, primals_2, primals_3, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr ): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 4 x1 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + r2, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr2 + r2, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr2 + (64 + r2), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr2 + (128 + r2), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr2 + (192 + r2), None, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp2 = 1e-10 tmp3 = tmp1 + tmp2 tmp4 = -tmp3 tmp7 = tmp5 - tmp6 tmp8 = tmp7 * tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tmp21 = tmp19 - tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp18 + tmp22 tmp24 = tmp4 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, float('-inf')) tmp28 = triton_helpers.max2(tmp27, 1)[:, None] tmp29 = tmp24 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + (r2 + 64 * x3), tmp24, xmask) tl.store(out_ptr1 + x3, tmp28, xmask) tl.store(out_ptr2 + x3, tmp34, xmask) @triton.jit def triton_poi_fused__softmax_mean_mul_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex // 256 x4 = xindex // 64 x3 = xindex % 256 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + 4 * x4, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x3, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (64 + x0 + 256 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr3 + (1 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (128 + x0 + 256 * x2), xmask, eviction_policy ='evict_last') tmp21 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr3 + (2 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp30 = tl.load(in_ptr0 + (192 + x0 + 256 * x2), xmask, eviction_policy ='evict_last') tmp31 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp34 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp36 = tl.load(in_ptr3 + (3 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp5 * tmp8 tmp12 = tmp10 - tmp11 tmp13 = tl_math.exp(tmp12) tmp15 = tmp13 / tmp14 tmp17 = tmp16 - tmp7 tmp18 = tmp15 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 - tmp21 tmp23 = tl_math.exp(tmp22) tmp25 = tmp23 / tmp24 tmp27 = tmp26 - tmp7 tmp28 = tmp25 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 - tmp31 tmp33 = tl_math.exp(tmp32) tmp35 = tmp33 / tmp34 tmp37 = tmp36 - tmp7 tmp38 = tmp35 * tmp37 tmp39 = tmp29 + tmp38 tmp40 = 4.0 tmp41 = tmp39 / tmp40 tl.store(out_ptr0 + x5, tmp41, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 64), (64, 1)) assert_size_stride(primals_3, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 64), (256, 64, 1024, 1), torch. float32) buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_add_mul_neg_pow_sub_sum_0[grid(16)](primals_3 , primals_1, primals_2, buf0, buf1, buf2, 16, 64, XBLOCK=8, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 64), (256, 64, 1), torch.float32) triton_poi_fused__softmax_mean_mul_sub_1[grid(1024)](buf0, buf1, buf2, primals_1, primals_2, buf3, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return reinterpret_tensor(buf3, (4, 256, 1), (256, 1, 1), 0 ), primals_1, primals_2, primals_3, buf1, buf2 class LDEPoolingNew(torch.nn.Module): """A novel learnable dictionary encoding layer. Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END LANGUAGE IDENTIFICATION", icassp, 2018 """ def __init__(self, input_dim, c_num=64, eps=1e-10): super(LDEPoolingNew, self).__init__() self.input_dim = input_dim self.output_dim = input_dim * c_num self.eps = eps self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num)) self.s = torch.nn.Parameter(torch.ones(c_num)) self.softmax_for_w = torch.nn.Softmax(dim=3) def get_output_dim(self): return self.output_dim def forward(self, input_0): primals_2 = self.mu primals_3 = self.s primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
qlindazm/asv-subtools
LDEPooling
false
4,234
[ "Apache-2.0" ]
0
fe1d31db9f3268622016babe944201f6ff81ed56
https://github.com/qlindazm/asv-subtools/tree/fe1d31db9f3268622016babe944201f6ff81ed56
AdaptiveConv
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data.distributed class AdaptiveConv(nn.Module): def __init__(self, in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, size=(256, 256)): super(AdaptiveConv, self).__init__() self.conv3x3 = nn.Conv2d(in_channels, out_channels, 3, stride, padding=1, dilation=dilation, groups=groups, bias=bias) self.conv1x1 = nn.Conv2d(in_channels, out_channels, 1, stride, padding=0, dilation=dilation, groups=groups, bias=bias) self.gap = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.fc2 = nn.Conv2d(out_channels, out_channels, kernel_size=1) self.size = size self.w = nn.Parameter(torch.ones(3, 1, self.size[0], self.size[1])) self.softmax = nn.Softmax() self.relu = nn.ReLU(inplace=True) def forward(self, x): _, _, _h, _w = x.size() weight = self.softmax(self.w) w1 = weight[0, :, :, :] w2 = weight[1, :, :, :] w3 = weight[2, :, :, :] x1 = self.conv3x3(x) x2 = self.conv1x1(x) size = x1.size()[2:] gap = self.gap(x) gap = self.relu(self.fc1(gap)) gap = self.fc2(gap) gap = F.upsample(gap, size=size, mode='nearest') x = w1 * x1 + w2 * x2 + w3 * gap return x def get_inputs(): return [torch.rand([4, 4, 256, 256])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_red_fused_mean_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr, RBLOCK: tl.constexpr): xnumel = 128 rnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex _tmp2 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r1 = rindex tmp0 = tl.load(in_ptr0 + (r1 + 8192 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = _tmp2 + tmp1 _tmp2 = tl.where(rmask & xmask, tmp3, _tmp2) tmp2 = tl.sum(_tmp2, 1)[:, None] tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_mean_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 8 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 65536.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_mul_3(out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.00390625 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_mul_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 256 % 256 x0 = xindex % 256 x5 = xindex // 65536 x2 = xindex // 65536 % 4 x6 = xindex x4 = xindex % 65536 tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + x5, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x4, None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr4 + x6, None) tmp18 = tl.load(in_ptr3 + (65536 + x4), None, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x6, None) tmp25 = tl.load(in_ptr3 + (131072 + x4), None, eviction_policy='evict_last' ) tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp13 = tmp12 - tmp12 tmp14 = tl_math.exp(tmp13) tmp15 = tmp14 / tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp18 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp20 / tmp20 tmp23 = tmp21 * tmp22 tmp24 = tmp17 + tmp23 tmp26 = tmp25 - tmp25 tmp27 = tl_math.exp(tmp26) tmp28 = tmp27 / tmp27 tmp29 = tmp28 * tmp11 tmp30 = tmp24 + tmp29 tl.store(out_ptr0 + x6, tmp11, None) tl.store(out_ptr1 + x6, tmp30, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4, 256, 256), (262144, 65536, 256, 1)) assert_size_stride(primals_2, (3, 1, 256, 256), (65536, 65536, 256, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_8, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 256, 256), (262144, 65536, 256, 1)) buf1 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 256, 256), (262144, 65536, 256, 1)) buf2 = empty_strided_cuda((4, 4, 1, 1, 8), (32, 8, 128, 128, 1), torch.float32) get_raw_stream(0) triton_red_fused_mean_0[grid(128)](primals_1, buf2, 128, 8192, XBLOCK=1, RBLOCK=2048, num_warps=16, num_stages=1) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf4 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf3 triton_per_fused_mean_1[grid(16)](buf4, buf2, 16, 8, XBLOCK=8, num_warps=2, num_stages=1) del buf2 buf5 = extern_kernels.convolution(buf4, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 1, 1), (4, 1, 1, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_2[grid(16)](buf6, primals_6, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_6 buf7 = extern_kernels.convolution(buf6, primals_7, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 1, 1), (4, 1, 1, 1)) buf8 = empty_strided_cuda((256,), (1,), torch.int64) triton_poi_fused__to_copy_add_arange_mul_3[grid(256)](buf8, 256, XBLOCK=128, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 256, 256), (262144, 65536, 256, 1 ), torch.float32) triton_poi_fused__unsafe_index_add_convolution_mul_4[grid(1048576)]( buf8, buf7, primals_8, primals_2, buf0, buf1, buf9, buf10, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf7 del primals_8 return (buf10, primals_1, primals_2, primals_3, primals_4, primals_5, primals_7, buf0, buf1, buf4, buf6, buf8, buf9) class AdaptiveConvNew(nn.Module): def __init__(self, in_channels, out_channels, stride=1, padding=1, dilation=1, groups=1, bias=False, size=(256, 256)): super(AdaptiveConvNew, self).__init__() self.conv3x3 = nn.Conv2d(in_channels, out_channels, 3, stride, padding=1, dilation=dilation, groups=groups, bias=bias) self.conv1x1 = nn.Conv2d(in_channels, out_channels, 1, stride, padding=0, dilation=dilation, groups=groups, bias=bias) self.gap = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_channels, out_channels, kernel_size=1) self.fc2 = nn.Conv2d(out_channels, out_channels, kernel_size=1) self.size = size self.w = nn.Parameter(torch.ones(3, 1, self.size[0], self.size[1])) self.softmax = nn.Softmax() self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.w primals_3 = self.conv3x3.weight primals_4 = self.conv1x1.weight primals_5 = self.fc1.weight primals_6 = self.fc1.bias primals_7 = self.fc2.weight primals_8 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
SSusantAchary/OctaveConv_pytorch
AdaptiveConv
false
14,376
[ "MIT" ]
633
079f7da29d55c2eeed8985d33f0b2f765d7a469e
https://github.com/SSusantAchary/OctaveConv_pytorch/tree/079f7da29d55c2eeed8985d33f0b2f765d7a469e
CriticArchitecture
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/5n/c5nrdtm7xc47oepqydwpsjhr67s36cjqrfqqxmrfz3zlnzwqr4t3.py # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # h_1 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = (xindex // 260) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((256*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 260, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tl.load(in_ptr2 + ((4*x1) + ((-256) + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/y2/cy2lwgz7dq2q2z4ifepdde4l7vyyvrwcx4zjn2ezmtzcanvhv374.py # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu] # Source node to ATen node mapping: # h_2 => relu_1 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/wg/cwg736mhwxvn37qfn5fl6onhi7fw7vmlellutxa2b7h3p3kncuoi.py # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # h => relu # Graph fragment: # %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (256, 260), (260, 1)) assert_size_stride(primals_6, (256, ), (1, )) assert_size_stride(primals_7, (256, 256), (256, 1)) assert_size_stride(primals_8, (256, ), (1, )) assert_size_stride(primals_9, (1, 256), (256, 1)) assert_size_stride(primals_10, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_2, primals_4, buf1, 1040, grid=grid(1040), stream=stream0) del primals_4 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 256), (1, 260), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_6, 1024, grid=grid(1024), stream=stream0) del primals_6 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (256, 256), (1, 256), 0), out=buf4) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf5, primals_8, 1024, grid=grid(1024), stream=stream0) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((4, 256), (256, 1), torch.bool) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf0, primals_2, buf8, 1024, grid=grid(1024), stream=stream0) del buf0 del primals_2 return (buf7, primals_3, buf1, buf3, buf5, primals_9, primals_7, primals_5, buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, 260), (260, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1040 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 260 x1 = xindex // 260 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 256, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (256 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tl.full([1], 260, tl.int64) tmp15 = tl.load(in_ptr2 + (4 * x1 + (-256 + x0)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp4, tmp11, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (256, 260), (260, 1)) assert_size_stride(primals_6, (256,), (1,)) assert_size_stride(primals_7, (256, 256), (256, 1)) assert_size_stride(primals_8, (256,), (1,)) assert_size_stride(primals_9, (1, 256), (256, 1)) assert_size_stride(primals_10, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 260), (260, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1040)](buf0, primals_2, primals_4, buf1, 1040, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_5, (260, 256), ( 1, 260), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(1024)](buf3, primals_6, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((4, 256), (256, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_7, (256, 256), ( 1, 256), 0), out=buf4) buf5 = buf4 del buf4 triton_poi_fused_relu_1[grid(1024)](buf5, primals_8, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_8 buf7 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_10, buf5, reinterpret_tensor(primals_9, (256, 1), (1, 256), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((4, 256), (256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(1024)](buf0, primals_2, buf8, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return (buf7, primals_3, buf1, buf3, buf5, primals_9, primals_7, primals_5, buf8) def hidden_init(layer): """ Initializer function for weights in Pytorch :param layer: number of hidden layers to implement :return: None """ fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class RLModel: def __init__(self, random_seed): np.random.seed(random_seed) torch.manual_seed(random_seed) def copy_weights_from(self, net, tau=0.001): for local_param, ext_param in zip(self.parameters(), net.parameters()): local_param.data.copy_((1 - tau) * local_param.data + tau * ext_param.data) class CriticArchitectureNew(nn.Module, RLModel): def __init__(self, state_size, action_size, random_seed): """ Neural network used to implement the critic function :param state_size: size of the state (int) :param action_size: size of the action space (int) :param random_seed: seed for the random processes (int) """ super(CriticArchitectureNew, self).__init__() torch.manual_seed(random_seed) self.fc1 = nn.Linear(state_size, 256) self.fc2 = nn.Linear(256 + action_size, 256) self.fc3 = nn.Linear(256, 256) self.fc4 = nn.Linear(256, 1) self.reset_parameters() def reset_parameters(self): """ Neural networks weights initalization :return: None """ self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_9 = self.fc4.weight primals_10 = self.fc4.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0]
ivallesp/RL_Tennis
CriticArchitecture
false
3,687
[ "MIT" ]
0
a83933af9c4481d50f735983b4fc3b1f053f71d1
https://github.com/ivallesp/RL_Tennis/tree/a83933af9c4481d50f735983b4fc3b1f053f71d1
MultiHeadAttn
import torch import torch.cuda from torch.nn import functional as F from torch import nn import torch.distributed import torch.utils.data import torch.optim class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_head': 4, 'd_model': 4, 'd_head': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.cuda from torch.nn import functional as F from torch import nn import torch.distributed import torch.utils.data import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (48, 4), (4, 1)) assert_size_stride(primals_3, (48,), (1,)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 48), (48, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 48), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](buf0, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf0, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_4[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_1, buf9, buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(64)](primals_1, buf9, buf10, buf11, primals_5, primals_6, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf10 del buf11 del primals_6 return buf12, primals_1, primals_5, buf6, reinterpret_tensor(buf8, (16, 16), (16, 1), 0), buf9, primals_4, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0) class MultiHeadAttnNew(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttnNew, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def forward(self, input_0): primals_2 = self.qkv_net.weight primals_3 = self.qkv_net.bias primals_4 = self.o_net.weight primals_5 = self.layer_norm.weight primals_6 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
hamjam/NeMo
MultiHeadAttn
false
15,533
[ "Apache-2.0" ]
4,145
b3484d32e1317666151f931bfa39867d88ed8658
https://github.com/hamjam/NeMo/tree/b3484d32e1317666151f931bfa39867d88ed8658
ReGLU
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/qk/cqktl6a5kztlpt4hsz4gfob2rxmtfurvnwvwoend2jzbg534exfw.py # Topologically Sorted Source Nodes: [g, x], Original ATen: [aten.relu, aten.mul] # Source node to ATen node mapping: # g => relu # x => mul # Graph fragment: # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %view_3), kwargs = {}) triton_poi_fused_mul_relu_0 = async_compile.triton('triton_poi_fused_mul_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [g, x], Original ATen: [aten.relu, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_relu_0.run(buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_relu_0[grid(256)](buf0, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf0, buf1, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4 class PositionWiseFeedForward(nn.Module): """ title: Position-wise Feed-Forward Network (FFN) summary: Documented reusable implementation of the position wise feedforward network. # Position-wise Feed-Forward Network (FFN) This is a [PyTorch](https://pytorch.org) implementation of position-wise feedforward network used in transformer. FFN consists of two fully connected layers. Number of dimensions in the hidden layer $d_{ff}$, is generally set to around four times that of the token embedding $d_{model}$. So it is sometime also called the expand-and-contract network. There is an activation at the hidden layer, which is usually set to ReLU (Rectified Linear Unit) activation, $$\\max(0, x)$$ That is, the FFN function is, $$FFN(x, W_1, W_2, b_1, b_2) = \\max(0, x W_1 + b_1) W_2 + b_2$$ where $W_1$, $W_2$, $b_1$ and $b_2$ are learnable parameters. Sometimes the GELU (Gaussian Error Linear Unit) activation is also used instead of ReLU. $$x \\Phi(x)$$ where $\\Phi(x) = P(X \\le x), X \\sim \\mathcal{N}(0,1)$ ### Gated Linear Units This is a generic implementation that supports different variants including [Gated Linear Units](https://arxiv.org/abs/2002.05202) (GLU). We have also implemented experiments on these: * [experiment that uses `labml.configs`](glu_variants/experiment.html) * [simpler version from scratch](glu_variants/simple.html) """ def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1, activation=nn.ReLU(), is_gated: 'bool'=False, bias1: 'bool'=True, bias2: 'bool'=True, bias_gate: 'bool'=True): """ * `d_model` is the number of features in a token embedding * `d_ff` is the number of features in the hidden layer of the FFN * `dropout` is dropout probability for the hidden layer * `is_gated` specifies whether the hidden layer is gated * `bias1` specified whether the first fully connected layer should have a learnable bias * `bias2` specified whether the second fully connected layer should have a learnable bias * `bias_gate` specified whether the fully connected layer for the gate should have a learnable bias """ super().__init__() self.layer1 = nn.Linear(d_model, d_ff, bias=bias1) self.layer2 = nn.Linear(d_ff, d_model, bias=bias2) self.dropout = nn.Dropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_v = nn.Linear(d_model, d_ff, bias=bias_gate) def forward(self, x: 'torch.Tensor'): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_v(x) else: x = g x = self.dropout(x) return self.layer2(x) class ReGLUNew(nn.Module): def __init__(self, d_model: 'int', d_ff: 'int', dropout: 'float'=0.1): super().__init__() self.ffn = PositionWiseFeedForward(d_model, d_ff, dropout, nn.ReLU( ), True, False, False, False) def forward(self, input_0): primals_1 = self.ffn.layer1.weight primals_3 = self.ffn.layer2.weight primals_4 = self.ffn.linear_v.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
edchengmoore/pytorch_tabular
ReGLU
false
3,448
[ "MIT" ]
0
25f87089fbed95b46f2a1a8a96fba1f581aa8af1
https://github.com/edchengmoore/pytorch_tabular/tree/25f87089fbed95b46f2a1a8a96fba1f581aa8af1
SphericalBesselBasis
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4f/c4fclzcrgyoipqfohmcgc7k3b7woz6raalsxeyrsfaczva2aumab.py # Topologically Sorted Source Nodes: [truediv, mul, sin, mul_1], Original ATen: [aten.reciprocal, aten.mul, aten.sin] # Source node to ATen node mapping: # mul => mul_1 # mul_1 => mul_2 # sin => sin # truediv => mul, reciprocal # Graph fragment: # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%unsqueeze,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 0.1767766952966369), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %unsqueeze), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sin), kwargs = {}) triton_poi_fused_mul_reciprocal_sin_0 = async_compile.triton('triton_poi_fused_mul_reciprocal_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_reciprocal_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 0.1767766952966369 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp0 tmp7 = tl_math.sin(tmp6) tmp8 = tmp4 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, mul, sin, mul_1], Original ATen: [aten.reciprocal, aten.mul, aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_mul_reciprocal_sin_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reciprocal_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 0.1767766952966369 tmp4 = tmp2 * tmp3 tmp6 = tmp5 * tmp0 tmp7 = tl_math.sin(tmp6) tmp8 = tmp4 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reciprocal_sin_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2 class SphericalBesselBasisNew(torch.nn.Module): """ 1D spherical Bessel basis Parameters ---------- num_radial: int Controls maximum frequency. cutoff: float Cutoff distance in Angstrom. """ def __init__(self, num_radial: 'int', cutoff: 'float'): super().__init__() self.norm_const = math.sqrt(2 / cutoff ** 3) self.frequencies = torch.nn.Parameter(data=torch.tensor(np.pi * np. arange(1, num_radial + 1, dtype=np.float32)), requires_grad=True) def forward(self, input_0): primals_2 = self.frequencies primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Open-Catalyst-Project/baselines
SphericalBesselBasis
false
17,804
[ "MIT" ]
10
89948582edfb8debb736406d54db9813a5f2c88d
https://github.com/Open-Catalyst-Project/baselines/tree/89948582edfb8debb736406d54db9813a5f2c88d
GatedConv2d
import torch import torch.nn as nn import torch.utils.data class GatedConv2d(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2d, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, x): if self.activation is None: h = self.h(x) else: h = self.activation(self.h(x)) g = self.sigmoid(self.g(x)) return h * g def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'output_channels': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(1296)](buf1, buf3, primals_2, primals_5, buf4, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf3 class GatedConv2dNew(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2dNew, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, input_0): primals_1 = self.h.weight primals_2 = self.h.bias primals_3 = self.g.weight primals_5 = self.g.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
musyoku/ffjord
GatedConv2d
false
7,303
[ "MIT" ]
1
9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
https://github.com/musyoku/ffjord/tree/9e431e122e59fa9a71f3f301dec8fdd3db51e0ce
FCDiscriminator
import torch import torch.nn as nn class FCDiscriminator(nn.Module): def __init__(self, num_classes, ndf=64): super().__init__() self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1 ) self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1) self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2, padding=1) self.classifier = nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x = self.conv1(x) x = self.leaky_relu(x) x = self.conv2(x) x = self.leaky_relu(x) x = self.conv3(x) x = self.leaky_relu(x) x = self.conv4(x) x = self.leaky_relu(x) x = self.classifier(x) return x def get_inputs(): return [torch.rand([4, 4, 64, 64])] def get_init_inputs(): return [[], {'num_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (1, 512, 4, 4), (8192, 16, 4, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 32, 32), (65536, 1024, 32, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(262144)](buf1, primals_2, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 128, 16, 16), (32768, 256, 16, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_leaky_relu_1[grid(131072)](buf3, primals_5, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 8, 8), (16384, 64, 8, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_leaky_relu_2[grid(65536)](buf5, primals_7, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 512, 4, 4), (8192, 16, 4, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_leaky_relu_3[grid(32768)](buf7, primals_9, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 1, 2, 2), (4, 4, 2, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_4[grid(16)](buf9, primals_11, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_11 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7) class FCDiscriminatorNew(nn.Module): def __init__(self, num_classes, ndf=64): super().__init__() self.conv1 = nn.Conv2d(num_classes, ndf, kernel_size=4, stride=2, padding=1) self.conv2 = nn.Conv2d(ndf, ndf * 2, kernel_size=4, stride=2, padding=1 ) self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, kernel_size=4, stride=2, padding=1) self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, kernel_size=4, stride=2, padding=1) self.classifier = nn.Conv2d(ndf * 8, 1, kernel_size=4, stride=2, padding=1) self.leaky_relu = nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.classifier.weight primals_11 = self.classifier.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
ciampluca/unsupervised_counting
FCDiscriminator
false
3,299
[ "MIT" ]
0
4445d48f68da75359643bcf3003e90ef61d817e3
https://github.com/ciampluca/unsupervised_counting/tree/4445d48f68da75359643bcf3003e90ef61d817e3
BasicModel_ConvNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ei/ceih7eq6vjz3jn7es5j3rvflanadprgtro72ql24aglbpglc7r22.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 30752 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 2 x0 = xindex % 3844 x4 = (xindex // 3844) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3872*x4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ix/cixsl6jlfx5zcu6faevjmhq6vmxcwvrxqxyfofho5mumo3ysjcbs.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 7688 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 31 x1 = (xindex // 31) % 31 x4 = (xindex // 961) x3 = (xindex // 1922) x5 = xindex % 1922 tmp0 = tl.load(in_ptr0 + ((2*x0) + (124*x1) + (3872*x4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (124*x1) + (3872*x4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (62 + (2*x0) + (124*x1) + (3872*x4)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + (2*x0) + (124*x1) + (3872*x4)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x5 + (1952*x3)), tmp6, xmask) tl.store(out_ptr1 + (x5 + (2048*x3)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pl/cplbiu2hkhuv6snikbok27fpnwr6nbatvkeus64wej5qnihr7sl5.py # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 13456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 841) % 4 x2 = (xindex // 3364) x4 = xindex % 3364 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + (3392*x2)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bu/cbur2l4ciyqjvq2c6rmsx5hgwjymvzpnwpgnkt3fusyahayhm76b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_3 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = (xindex // 14) % 14 x2 = (xindex // 196) % 4 x3 = (xindex // 784) x4 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (58*x1) + (841*x2) + (3392*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (58*x1) + (841*x2) + (3392*x3)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (29 + (2*x0) + (58*x1) + (841*x2) + (3392*x3)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (30 + (2*x0) + (58*x1) + (841*x2) + (3392*x3)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x4), tmp15, xmask) tl.store(out_ptr1 + (x4), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ev/cevkezfhxrinvhltxym4ino5jizjnctqwjukydgkj5awitzw3z7s.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_5 => relu_2 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3h/c3hshbglb6u72lcawx7cirqyk3cun2cecnfoynxuhhwwq6uc6cbs.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_5 = async_compile.triton('triton_per_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1024, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 784 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (2, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (2, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8, ), (1, )) assert_size_stride(primals_8, (10, 8), (8, 1)) assert_size_stride(primals_9, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 62, 62), (7688, 3844, 62, 1)) buf1 = empty_strided_cuda((4, 2, 62, 62), (7744, 3872, 62, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf0, primals_2, buf1, 30752, grid=grid(30752), stream=stream0) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 2, 31, 31), (1952, 961, 31, 1), torch.float32) buf3 = empty_strided_cuda((4, 2, 31, 31), (2048, 961, 31, 1), torch.int8) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 7688, grid=grid(7688), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 29, 29), (3364, 841, 29, 1)) buf5 = empty_strided_cuda((4, 4, 29, 29), (3392, 841, 29, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, buf5, 13456, grid=grid(13456), stream=stream0) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 4, 14, 14), (784, 196, 14, 1), torch.int8) buf7 = empty_strided_cuda((4, 4, 14, 14), (784, 196, 14, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 3136, grid=grid(3136), stream=stream0) buf8 = empty_strided_cuda((784, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (784, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 6272, grid=grid(6272), stream=stream0) del primals_7 buf10 = empty_strided_cuda((784, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (8, 10), (1, 8), 0), alpha=1, beta=1, out=buf10) del primals_9 buf13 = empty_strided_cuda((784, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_5.run(buf10, buf13, 784, 10, grid=grid(784), stream=stream0) del buf10 return (buf13, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (784, 4), (4, 1), 0), buf9, buf13, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((2, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((10, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 30752 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 2 x0 = xindex % 3844 x4 = xindex // 3844 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3872 * x4), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 7688 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 31 x1 = xindex // 31 % 31 x4 = xindex // 961 x3 = xindex // 1922 x5 = xindex % 1922 tmp0 = tl.load(in_ptr0 + (2 * x0 + 124 * x1 + 3872 * x4), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 124 * x1 + 3872 * x4), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (62 + 2 * x0 + 124 * x1 + 3872 * x4), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (63 + 2 * x0 + 124 * x1 + 3872 * x4), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x5 + 1952 * x3), tmp6, xmask) tl.store(out_ptr1 + (x5 + 2048 * x3), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 841 % 4 x2 = xindex // 3364 x4 = xindex % 3364 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4 + 3392 * x2), tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = xindex // 14 % 14 x2 = xindex // 196 % 4 x3 = xindex // 784 x4 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 58 * x1 + 841 * x2 + 3392 * x3), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 58 * x1 + 841 * x2 + 3392 * x3), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (29 + 2 * x0 + 58 * x1 + 841 * x2 + 3392 * x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (30 + 2 * x0 + 58 * x1 + 841 * x2 + 3392 * x3 ), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x4, tmp15, xmask) tl.store(out_ptr1 + x4, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 6272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 784 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (2, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (4, 2, 3, 3), (18, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (10, 8), (8, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 2, 62, 62), (7688, 3844, 62, 1)) buf1 = empty_strided_cuda((4, 2, 62, 62), (7744, 3872, 62, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(30752)](buf0, primals_2, buf1, 30752, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = empty_strided_cuda((4, 2, 31, 31), (1952, 961, 31, 1), torch .float32) buf3 = empty_strided_cuda((4, 2, 31, 31), (2048, 961, 31, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(7688)](buf1, buf2, buf3, 7688, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 29, 29), (3364, 841, 29, 1)) buf5 = empty_strided_cuda((4, 4, 29, 29), (3392, 841, 29, 1), torch .float32) triton_poi_fused_convolution_relu_2[grid(13456)](buf4, primals_5, buf5, 13456, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_5 buf6 = empty_strided_cuda((4, 4, 14, 14), (784, 196, 14, 1), torch.int8 ) buf7 = empty_strided_cuda((4, 4, 14, 14), (784, 196, 14, 1), torch. float32) triton_poi_fused_max_pool2d_with_indices_3[grid(3136)](buf5, buf6, buf7, 3136, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((784, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (784, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(6272)](buf9, primals_7, 6272, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((784, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (8, 10), (1, 8), 0), alpha=1, beta=1, out=buf10) del primals_9 buf13 = empty_strided_cuda((784, 10), (10, 1), torch.float32) triton_per_fused__softmax_5[grid(784)](buf10, buf13, 784, 10, XBLOCK=8, num_warps=2, num_stages=1) del buf10 return (buf13, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (784, 4), (4, 1), 0), buf9, buf13, primals_8, primals_6) class BasicModel_ConvNetNew(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 2, 3, 1) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(2, 4, 3, 1) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4, 8) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(8, 10) self.softmax = nn.Softmax(dim=1) self.fc1.weight = nn.Parameter(torch.ones(8, 4)) self.fc2.weight = nn.Parameter(torch.ones(10, 8)) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Europium248/captum
BasicModel_ConvNet
false
455
[ "BSD-3-Clause" ]
0
ac02fae2651b8d68a44bcb9d03b91cbb3959f2fc
https://github.com/Europium248/captum/tree/ac02fae2651b8d68a44bcb9d03b91cbb3959f2fc
SimpleFusionGenerator
import torch import torch.nn as nn import torch.cuda import torch.distributed class SimpleFusionGenerator(nn.Module): def __init__(self, decoder_input_size, lm_input_size, output_size): super(SimpleFusionGenerator, self).__init__() self.decoder_linear = nn.Linear(decoder_input_size, output_size) self.lm_linear = nn.Linear(lm_input_size, output_size, bias=False) self.gen_func = nn.LogSoftmax(dim=-1) def forward(self, decoder_hidden, lm_hidden): """ Compute a distribution over the target dictionary extended by the dynamic dictionary implied by copying source words. Args: decoder_hidden (FloatTensor): hidden outputs ``(batch x tlen, input_size)`` lm_hidden (FloatTensor): hidden outputs ``(batch x tlen, input_size)`` """ decoder_logits = self.decoder_linear(decoder_hidden) lm_logits = self.lm_linear(lm_hidden) logits = (decoder_logits + lm_logits).float() log_probs = self.gen_func(logits) return log_probs def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'decoder_input_size': 4, 'lm_input_size': 4, 'output_size': 4} ]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__log_softmax_add_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + 1) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr1 + 2) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr1 + 3) tmp22 = tl.broadcast_to(tmp21, [XBLOCK]) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = tmp0 + tmp2 tmp5 = tmp3 + tmp4 tmp9 = tmp6 + tmp8 tmp11 = tmp9 + tmp10 tmp12 = triton_helpers.maximum(tmp5, tmp11) tmp16 = tmp13 + tmp15 tmp18 = tmp16 + tmp17 tmp19 = triton_helpers.maximum(tmp12, tmp18) tmp23 = tmp20 + tmp22 tmp25 = tmp23 + tmp24 tmp26 = triton_helpers.maximum(tmp19, tmp25) tmp27 = tmp5 - tmp26 tmp28 = tl_math.exp(tmp27) tmp29 = tmp11 - tmp26 tmp30 = tl_math.exp(tmp29) tmp31 = tmp28 + tmp30 tmp32 = tmp18 - tmp26 tmp33 = tl_math.exp(tmp32) tmp34 = tmp31 + tmp33 tmp35 = tmp25 - tmp26 tmp36 = tl_math.exp(tmp35) tmp37 = tmp34 + tmp36 tl.store(out_ptr0 + x0, tmp26, xmask) tl.store(out_ptr1 + x0, tmp37, xmask) @triton.jit def triton_poi_fused__log_softmax_add_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = tl_math.log(tmp7) tmp9 = tmp6 - tmp8 tl.store(in_out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_add_0[grid(64)](buf0, primals_2, buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused__log_softmax_add_1[grid(256)](buf4, primals_2, buf1, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del buf2 del buf3 del primals_2 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_5, (64, 4), (4, 1), 0), buf4 class SimpleFusionGeneratorNew(nn.Module): def __init__(self, decoder_input_size, lm_input_size, output_size): super(SimpleFusionGeneratorNew, self).__init__() self.decoder_linear = nn.Linear(decoder_input_size, output_size) self.lm_linear = nn.Linear(lm_input_size, output_size, bias=False) self.gen_func = nn.LogSoftmax(dim=-1) def forward(self, input_0, input_1): primals_1 = self.decoder_linear.weight primals_2 = self.decoder_linear.bias primals_4 = self.lm_linear.weight primals_3 = input_0 primals_5 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
fangleai/encoder-agnostic-adaptation
SimpleFusionGenerator
false
15,347
[ "MIT" ]
70
d917e654152df202dd35bba49c409c3ecd24eaf7
https://github.com/fangleai/encoder-agnostic-adaptation/tree/d917e654152df202dd35bba49c409c3ecd24eaf7
h_swish
import torch import torch.nn as nn class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swish(nn.Module): def __init__(self, inplace=True): super(h_swish, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, x): return x * self.sigmoid(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 class h_swishNew(nn.Module): def __init__(self, inplace=True): super(h_swishNew, self).__init__() self.sigmoid = h_sigmoid(inplace=inplace) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
CYHYCY/voice-classification
h_swish
false
17,071
[ "Apache-2.0" ]
8
a6f62e2f1c39b08323da3632411f4ba6b04d5f37
https://github.com/CYHYCY/voice-classification/tree/a6f62e2f1c39b08323da3632411f4ba6b04d5f37
MMD
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/zd/czdd3hvknhxzafinmrlltncrckeidw5p7kov7vpp4uyi35drhhfl.py # Topologically Sorted Source Nodes: [sub, pow_1, L2_distance, neg, sum_2, bandwidth, bandwidth_1, bandwidth_temp, truediv_1, exp, add, neg_1, bandwidth_temp_1, truediv_2, exp_1, add_1, neg_2, bandwidth_temp_2, truediv_3, exp_2, add_2, neg_3, bandwidth_temp_3, truediv_4, exp_3, add_3, neg_4, bandwidth_temp_4, truediv_5, exp_4, kernels], Original ATen: [aten.sub, aten.pow, aten.sum, aten.neg, aten.div, aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # L2_distance => sum_1 # add => add # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # bandwidth => div # bandwidth_1 => div_1 # bandwidth_temp => mul # bandwidth_temp_1 => mul_1 # bandwidth_temp_2 => mul_2 # bandwidth_temp_3 => mul_3 # bandwidth_temp_4 => mul_4 # exp => exp # exp_1 => exp_1 # exp_2 => exp_2 # exp_3 => exp_3 # exp_4 => exp_4 # kernels => add_4 # neg => neg # neg_1 => neg_1 # neg_2 => neg_2 # neg_3 => neg_3 # neg_4 => neg_4 # pow_1 => pow_1 # sub => sub # sum_2 => sum_2 # truediv_1 => div_2 # truediv_2 => div_3 # truediv_3 => div_4 # truediv_4 => div_5 # truediv_5 => div_6 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%expand, %expand_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=6] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sum_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_2, 56), kwargs = {}) # %div_1 : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%div, 4.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 1.0), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg, %mul), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_2,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%exp, 0), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 2.0), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_1, %mul_1), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_3,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %exp_1), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 4.0), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_2, %mul_2), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_4,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %exp_2), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 8.0), kwargs = {}) # %div_5 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_3, %mul_3), kwargs = {}) # %exp_3 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_5,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %exp_3), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 16.0), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%neg_4, %mul_4), kwargs = {}) # %exp_4 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%div_6,), kwargs = {}) # %add_4 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %exp_4), kwargs = {}) triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0 = async_compile.triton('triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 8 r1 = (rindex // 8) r2 = rindex tmp0 = r0 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (tl.broadcast_to(4*r0, [XBLOCK, RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1, 1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (tl.broadcast_to(4*((-4) + r0), [XBLOCK, RBLOCK])), tmp6, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = r1 tmp12 = tmp11 >= tmp1 tmp13 = tmp11 < tmp3 tmp14 = tl.load(in_ptr0 + (tl.broadcast_to(4*r1, [XBLOCK, RBLOCK])), tmp13, eviction_policy='evict_last', other=0.0) tmp15 = tmp11 >= tmp3 tmp16 = tmp11 < tmp7 tmp17 = tl.load(in_ptr1 + (tl.broadcast_to(4*((-4) + r1), [XBLOCK, RBLOCK])), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp13, tmp14, tmp17) tmp19 = tmp10 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tl.load(in_ptr0 + (tl.broadcast_to(1 + (4*r0), [XBLOCK, RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr1 + (tl.broadcast_to(1 + (4*((-4) + r0)), [XBLOCK, RBLOCK])), tmp6, eviction_policy='evict_last', other=0.0) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (tl.broadcast_to(1 + (4*r1), [XBLOCK, RBLOCK])), tmp13, eviction_policy='evict_last', other=0.0) tmp25 = tl.load(in_ptr1 + (tl.broadcast_to(1 + (4*((-4) + r1)), [XBLOCK, RBLOCK])), tmp15, eviction_policy='evict_last', other=0.0) tmp26 = tl.where(tmp13, tmp24, tmp25) tmp27 = tmp23 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp20 + tmp28 tmp30 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r0), [XBLOCK, RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp31 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*((-4) + r0)), [XBLOCK, RBLOCK])), tmp6, eviction_policy='evict_last', other=0.0) tmp32 = tl.where(tmp4, tmp30, tmp31) tmp33 = tl.load(in_ptr0 + (tl.broadcast_to(2 + (4*r1), [XBLOCK, RBLOCK])), tmp13, eviction_policy='evict_last', other=0.0) tmp34 = tl.load(in_ptr1 + (tl.broadcast_to(2 + (4*((-4) + r1)), [XBLOCK, RBLOCK])), tmp15, eviction_policy='evict_last', other=0.0) tmp35 = tl.where(tmp13, tmp33, tmp34) tmp36 = tmp32 - tmp35 tmp37 = tmp36 * tmp36 tmp38 = tmp29 + tmp37 tmp39 = tl.load(in_ptr0 + (tl.broadcast_to(3 + (4*r0), [XBLOCK, RBLOCK])), tmp4, eviction_policy='evict_last', other=0.0) tmp40 = tl.load(in_ptr1 + (tl.broadcast_to(3 + (4*((-4) + r0)), [XBLOCK, RBLOCK])), tmp6, eviction_policy='evict_last', other=0.0) tmp41 = tl.where(tmp4, tmp39, tmp40) tmp42 = tl.load(in_ptr0 + (tl.broadcast_to(3 + (4*r1), [XBLOCK, RBLOCK])), tmp13, eviction_policy='evict_last', other=0.0) tmp43 = tl.load(in_ptr1 + (tl.broadcast_to(3 + (4*((-4) + r1)), [XBLOCK, RBLOCK])), tmp15, eviction_policy='evict_last', other=0.0) tmp44 = tl.where(tmp13, tmp42, tmp43) tmp45 = tmp41 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp38 + tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp51 = -tmp47 tmp52 = 0.017857142857142856 tmp53 = tmp50 * tmp52 tmp54 = 0.25 tmp55 = tmp53 * tmp54 tmp56 = 1.0 tmp57 = tmp55 * tmp56 tmp58 = tmp51 / tmp57 tmp59 = tl_math.exp(tmp58) tmp60 = 0.0 tmp61 = tmp59 + tmp60 tmp62 = 2.0 tmp63 = tmp55 * tmp62 tmp64 = tmp51 / tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = tmp61 + tmp65 tmp67 = 4.0 tmp68 = tmp55 * tmp67 tmp69 = tmp51 / tmp68 tmp70 = tl_math.exp(tmp69) tmp71 = tmp66 + tmp70 tmp72 = 8.0 tmp73 = tmp55 * tmp72 tmp74 = tmp51 / tmp73 tmp75 = tl_math.exp(tmp74) tmp76 = tmp71 + tmp75 tmp77 = 16.0 tmp78 = tmp55 * tmp77 tmp79 = tmp51 / tmp78 tmp80 = tl_math.exp(tmp79) tmp81 = tmp76 + tmp80 tl.store(out_ptr2 + (tl.broadcast_to(r2, [XBLOCK, RBLOCK])), tmp81, None) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/jy/cjyqfq5gwwuff77mju24f262rapbhsztxnaf2jirrfie5og56rao.py # Topologically Sorted Source Nodes: [XX, YY, add_5, XY, sub_1, YX, loss], Original ATen: [aten.mean, aten.add, aten.sub] # Source node to ATen node mapping: # XX => mean # XY => mean_2 # YX => mean_3 # YY => mean_1 # add_5 => add_5 # loss => sub_2 # sub_1 => sub_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%slice_2,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%slice_4,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mean_1), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%slice_6,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %mean_2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%slice_8,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, %mean_3), kwargs = {}) triton_per_fused_add_mean_sub_1 = async_compile.triton('triton_per_fused_add_mean_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_sub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r0 + (8*r1)), None) tmp4 = tl.load(in_ptr0 + (36 + r0 + (8*r1)), None) tmp8 = tl.load(in_ptr0 + (4 + r0 + (8*r1)), None) tmp12 = tl.load(in_ptr0 + (32 + r0 + (8*r1)), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 16.0 tmp17 = tmp3 / tmp16 tmp18 = tmp7 / tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp11 / tmp16 tmp21 = tmp19 - tmp20 tmp22 = tmp15 / tmp16 tmp23 = tmp21 - tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((8, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, L2_distance, neg, sum_2, bandwidth, bandwidth_1, bandwidth_temp, truediv_1, exp, add, neg_1, bandwidth_temp_1, truediv_2, exp_1, add_1, neg_2, bandwidth_temp_2, truediv_3, exp_2, add_2, neg_3, bandwidth_temp_3, truediv_4, exp_3, add_3, neg_4, bandwidth_temp_4, truediv_5, exp_4, kernels], Original ATen: [aten.sub, aten.pow, aten.sum, aten.neg, aten.div, aten.mul, aten.exp, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0.run(arg0_1, arg1_1, buf2, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf7 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [XX, YY, add_5, XY, sub_1, YX, loss], Original ATen: [aten.mean, aten.add, aten.sub] triton_per_fused_add_mean_sub_1.run(buf7, buf2, 1, 16, grid=grid(1), stream=stream0) del buf2 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 8 r1 = rindex // 8 r2 = rindex tmp0 = r0 tl.full([1, 1], 0, tl.int64) tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + tl.broadcast_to(4 * r0, [XBLOCK, RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1, 1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + tl.broadcast_to(4 * (-4 + r0), [XBLOCK, RBLOCK ]), tmp6, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = r1 tmp13 = tmp11 < tmp3 tmp14 = tl.load(in_ptr0 + tl.broadcast_to(4 * r1, [XBLOCK, RBLOCK]), tmp13, eviction_policy='evict_last', other=0.0) tmp15 = tmp11 >= tmp3 tmp17 = tl.load(in_ptr1 + tl.broadcast_to(4 * (-4 + r1), [XBLOCK, RBLOCK]), tmp15, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp13, tmp14, tmp17) tmp19 = tmp10 - tmp18 tmp20 = tmp19 * tmp19 tmp21 = tl.load(in_ptr0 + tl.broadcast_to(1 + 4 * r0, [XBLOCK, RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr1 + tl.broadcast_to(1 + 4 * (-4 + r0), [XBLOCK, RBLOCK]), tmp6, eviction_policy='evict_last', other=0.0) tmp23 = tl.where(tmp4, tmp21, tmp22) tmp24 = tl.load(in_ptr0 + tl.broadcast_to(1 + 4 * r1, [XBLOCK, RBLOCK]), tmp13, eviction_policy='evict_last', other=0.0) tmp25 = tl.load(in_ptr1 + tl.broadcast_to(1 + 4 * (-4 + r1), [XBLOCK, RBLOCK]), tmp15, eviction_policy='evict_last', other=0.0) tmp26 = tl.where(tmp13, tmp24, tmp25) tmp27 = tmp23 - tmp26 tmp28 = tmp27 * tmp27 tmp29 = tmp20 + tmp28 tmp30 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r0, [XBLOCK, RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp31 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * (-4 + r0), [XBLOCK, RBLOCK]), tmp6, eviction_policy='evict_last', other=0.0) tmp32 = tl.where(tmp4, tmp30, tmp31) tmp33 = tl.load(in_ptr0 + tl.broadcast_to(2 + 4 * r1, [XBLOCK, RBLOCK]), tmp13, eviction_policy='evict_last', other=0.0) tmp34 = tl.load(in_ptr1 + tl.broadcast_to(2 + 4 * (-4 + r1), [XBLOCK, RBLOCK]), tmp15, eviction_policy='evict_last', other=0.0) tmp35 = tl.where(tmp13, tmp33, tmp34) tmp36 = tmp32 - tmp35 tmp37 = tmp36 * tmp36 tmp38 = tmp29 + tmp37 tmp39 = tl.load(in_ptr0 + tl.broadcast_to(3 + 4 * r0, [XBLOCK, RBLOCK]), tmp4, eviction_policy='evict_last', other=0.0) tmp40 = tl.load(in_ptr1 + tl.broadcast_to(3 + 4 * (-4 + r0), [XBLOCK, RBLOCK]), tmp6, eviction_policy='evict_last', other=0.0) tmp41 = tl.where(tmp4, tmp39, tmp40) tmp42 = tl.load(in_ptr0 + tl.broadcast_to(3 + 4 * r1, [XBLOCK, RBLOCK]), tmp13, eviction_policy='evict_last', other=0.0) tmp43 = tl.load(in_ptr1 + tl.broadcast_to(3 + 4 * (-4 + r1), [XBLOCK, RBLOCK]), tmp15, eviction_policy='evict_last', other=0.0) tmp44 = tl.where(tmp13, tmp42, tmp43) tmp45 = tmp41 - tmp44 tmp46 = tmp45 * tmp45 tmp47 = tmp38 + tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp51 = -tmp47 tmp52 = 0.017857142857142856 tmp53 = tmp50 * tmp52 tmp54 = 0.25 tmp55 = tmp53 * tmp54 tmp56 = 1.0 tmp57 = tmp55 * tmp56 tmp58 = tmp51 / tmp57 tmp59 = tl_math.exp(tmp58) tmp60 = 0.0 tmp61 = tmp59 + tmp60 tmp62 = 2.0 tmp63 = tmp55 * tmp62 tmp64 = tmp51 / tmp63 tmp65 = tl_math.exp(tmp64) tmp66 = tmp61 + tmp65 tmp67 = 4.0 tmp68 = tmp55 * tmp67 tmp69 = tmp51 / tmp68 tmp70 = tl_math.exp(tmp69) tmp71 = tmp66 + tmp70 tmp72 = 8.0 tmp73 = tmp55 * tmp72 tmp74 = tmp51 / tmp73 tmp75 = tl_math.exp(tmp74) tmp76 = tmp71 + tmp75 tmp77 = 16.0 tmp78 = tmp55 * tmp77 tmp79 = tmp51 / tmp78 tmp80 = tl_math.exp(tmp79) tmp81 = tmp76 + tmp80 tl.store(out_ptr2 + tl.broadcast_to(r2, [XBLOCK, RBLOCK]), tmp81, None) @triton.jit def triton_per_fused_add_mean_sub_1(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + (r0 + 8 * r1), None) tmp4 = tl.load(in_ptr0 + (36 + r0 + 8 * r1), None) tmp8 = tl.load(in_ptr0 + (4 + r0 + 8 * r1), None) tmp12 = tl.load(in_ptr0 + (32 + r0 + 8 * r1), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp7 = tl.sum(tmp5, 1)[:, None] tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.sum(tmp13, 1)[:, None] tmp16 = 16.0 tmp17 = tmp3 / tmp16 tmp18 = tmp7 / tmp16 tmp19 = tmp17 + tmp18 tmp20 = tmp11 / tmp16 tmp21 = tmp19 - tmp20 tmp22 = tmp15 / tmp16 tmp23 = tmp21 - tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((8, 8), (8, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_exp_mul_neg_pow_sub_sum_0[grid(1)](arg0_1, arg1_1, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf7 = buf3 del buf3 triton_per_fused_add_mean_sub_1[grid(1)](buf7, buf2, 1, 16, XBLOCK= 1, num_warps=2, num_stages=1) del buf2 return buf7, class MMDNew(nn.Module): def __init__(self): super().__init__() def _guassian_kernel(self, source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None): n_samples = int(source.size()[0]) + int(target.size()[0]) total = torch.cat([source, target], dim=0) total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total. size(0)), int(total.size(1))) total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total. size(0)), int(total.size(1))) L2_distance = ((total0 - total1) ** 2).sum(2) if fix_sigma: bandwidth = fix_sigma else: bandwidth = torch.sum(L2_distance.data) / (n_samples ** 2 - n_samples) bandwidth /= kernel_mul ** (kernel_num // 2) bandwidth_list = [(bandwidth * kernel_mul ** i) for i in range( kernel_num)] kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list] return sum(kernel_val) def get_parameters(self): return [{'params': self.parameters(), 'lr_mult': 10}] def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BetterRaven/Transfer-Learning_vscode
MMD
false
4,913
[ "MIT" ]
1
90c9bce630f54fd2322cce8fab5fe1d074ff141c
https://github.com/BetterRaven/Transfer-Learning_vscode/tree/90c9bce630f54fd2322cce8fab5fe1d074ff141c
PKT
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/us/cuss63los66cmuzjpei2dpgpl3bbx6cgwht7porec7hj3lclnazh.py # Topologically Sorted Source Nodes: [pow_2, sum_2, target_net_norm, add_1, target_net, setitem_1], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # add_1 => add_1 # pow_2 => pow_2 # setitem_1 => full_default_1, index_put_1 # sum_2 => sum_2 # target_net => div_1 # target_net_norm => sqrt_1 # Graph fragment: # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg1_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1], True), kwargs = {}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-07), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, %add_1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_1 : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%div_1, [%ne_1], %full_default_1), kwargs = {}) triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-07 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp16 = tmp15 != tmp15 tmp17 = 0.0 tmp18 = tl.where(tmp16, tmp17, tmp15) tl.store(in_out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/yp/cypfp6dwhkdjjlgaluiwgyjiyan74ahdhbisu33n2ow6e3gmrfz3.py # Topologically Sorted Source Nodes: [add_3, target_similarity_1, sum_4, target_similarity_2, add_4, add_2, model_similarity_1, sum_3, model_similarity_2, add_5, truediv_6, log, mul, loss], Original ATen: [aten.add, aten.div, aten.sum, aten.log, aten.mul, aten.mean] # Source node to ATen node mapping: # add_2 => add_2 # add_3 => add_3 # add_4 => add_4 # add_5 => add_5 # log => log # loss => mean # model_similarity_1 => div_2 # model_similarity_2 => div_4 # mul => mul # sum_3 => sum_3 # sum_4 => sum_4 # target_similarity_1 => div_3 # target_similarity_2 => div_5 # truediv_6 => div_6 # Graph fragment: # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, 1.0), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 2.0), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div_3, [1], True), kwargs = {}) # %div_5 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%div_3, %sum_4), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_5, 1e-07), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm, 1.0), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 2.0), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%div_2, [1], True), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%div_2, %sum_3), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_4, 1e-07), kwargs = {}) # %div_6 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, %add_5), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div_6,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_5, %log), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_add_div_log_mean_mul_sum_1 = async_compile.triton('triton_per_fused_add_div_log_mean_mul_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_log_mean_mul_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_log_mean_mul_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r2), None) tmp5 = tl.load(in_ptr0 + (4*r1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + (r2), None) tmp26 = tl.load(in_ptr1 + (4*r1), None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (1 + (4*r1)), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (2 + (4*r1)), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (3 + (4*r1)), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp7 = tmp6 * tmp3 tmp9 = tmp8 + tmp1 tmp10 = tmp9 * tmp3 tmp11 = tmp7 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp13 * tmp3 tmp15 = tmp11 + tmp14 tmp17 = tmp16 + tmp1 tmp18 = tmp17 * tmp3 tmp19 = tmp15 + tmp18 tmp20 = tmp4 / tmp19 tmp21 = 1e-07 tmp22 = tmp20 + tmp21 tmp24 = tmp23 + tmp1 tmp25 = tmp24 * tmp3 tmp27 = tmp26 + tmp1 tmp28 = tmp27 * tmp3 tmp30 = tmp29 + tmp1 tmp31 = tmp30 * tmp3 tmp32 = tmp28 + tmp31 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp3 tmp36 = tmp32 + tmp35 tmp38 = tmp37 + tmp1 tmp39 = tmp38 * tmp3 tmp40 = tmp36 + tmp39 tmp41 = tmp25 / tmp40 tmp42 = tmp41 + tmp21 tmp43 = tmp22 / tmp42 tmp44 = tl_math.log(tmp43) tmp45 = tmp20 * tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp48 = tl.sum(tmp46, 1)[:, None] tmp49 = 16.0 tmp50 = tmp48 / tmp49 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp50, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [pow_2, sum_2, target_net_norm, add_1, target_net, setitem_1], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.lift_fresh, aten.index_put] stream0 = get_raw_stream(0) triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0.run(buf1, arg1_1, 16, grid=grid(16), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [target_similarity], Original ATen: [aten.mm] extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) buf4 = buf1; del buf1 # reuse buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, output_net_norm, add, output_net, setitem], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.div, aten.lift_fresh, aten.index_put] triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0.run(buf5, arg0_1, 16, grid=grid(16), stream=stream0) del arg0_1 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [model_similarity], Original ATen: [aten.mm] extern_kernels.mm(buf5, reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6) del buf5 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [add_3, target_similarity_1, sum_4, target_similarity_2, add_4, add_2, model_similarity_1, sum_3, model_similarity_2, add_5, truediv_6, log, mul, loss], Original ATen: [aten.add, aten.div, aten.sum, aten.log, aten.mul, aten.mean] triton_per_fused_add_div_log_mean_mul_sum_1.run(buf8, buf2, buf6, 1, 16, grid=grid(1), stream=stream0) del buf2 del buf6 return (buf8, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-07 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp16 = tmp15 != tmp15 tmp17 = 0.0 tmp18 = tl.where(tmp16, tmp17, tmp15) tl.store(in_out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_per_fused_add_div_log_mean_mul_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp5 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + r2, None) tmp26 = tl.load(in_ptr1 + 4 * r1, None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp7 = tmp6 * tmp3 tmp9 = tmp8 + tmp1 tmp10 = tmp9 * tmp3 tmp11 = tmp7 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp13 * tmp3 tmp15 = tmp11 + tmp14 tmp17 = tmp16 + tmp1 tmp18 = tmp17 * tmp3 tmp19 = tmp15 + tmp18 tmp20 = tmp4 / tmp19 tmp21 = 1e-07 tmp22 = tmp20 + tmp21 tmp24 = tmp23 + tmp1 tmp25 = tmp24 * tmp3 tmp27 = tmp26 + tmp1 tmp28 = tmp27 * tmp3 tmp30 = tmp29 + tmp1 tmp31 = tmp30 * tmp3 tmp32 = tmp28 + tmp31 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp3 tmp36 = tmp32 + tmp35 tmp38 = tmp37 + tmp1 tmp39 = tmp38 * tmp3 tmp40 = tmp36 + tmp39 tmp41 = tmp25 / tmp40 tmp42 = tmp41 + tmp21 tmp43 = tmp22 / tmp42 tmp44 = tl_math.log(tmp43) tmp45 = tmp20 * tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp48 = tl.sum(tmp46, 1)[:, None] tmp49 = 16.0 tmp50 = tmp48 / tmp49 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp50, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0[grid(16)]( buf1, arg1_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) buf4 = buf1 del buf1 buf5 = buf4 del buf4 triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0[grid(16)]( buf5, arg0_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6) del buf5 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused_add_div_log_mean_mul_sum_1[grid(1)](buf8, buf2, buf6, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf6 return buf8, class PKTNew(nn.Module): """Probabilistic Knowledge Transfer for deep representation learning Code from author: https://github.com/passalis/probabilistic_kt""" def __init__(self): super(PKTNew, self).__init__() @staticmethod def cosine_similarity_loss(output_net, target_net, eps=1e-07): output_net_norm = torch.sqrt(torch.sum(output_net ** 2, dim=1, keepdim=True)) output_net = output_net / (output_net_norm + eps) output_net[output_net != output_net] = 0 target_net_norm = torch.sqrt(torch.sum(target_net ** 2, dim=1, keepdim=True)) target_net = target_net / (target_net_norm + eps) target_net[target_net != target_net] = 0 model_similarity = torch.mm(output_net, output_net.transpose(0, 1)) target_similarity = torch.mm(target_net, target_net.transpose(0, 1)) model_similarity = (model_similarity + 1.0) / 2.0 target_similarity = (target_similarity + 1.0) / 2.0 model_similarity = model_similarity / torch.sum(model_similarity, dim=1, keepdim=True) target_similarity = target_similarity / torch.sum(target_similarity, dim=1, keepdim=True) loss = torch.mean(target_similarity * torch.log((target_similarity + eps) / (model_similarity + eps))) return loss def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
RylanSchaeffer/RepDistiller
PKT
false
5,786
[ "BSD-2-Clause" ]
1
3612d9d8f6f913527c7aaec7e5ea557e72ed7c5e
https://github.com/RylanSchaeffer/RepDistiller/tree/3612d9d8f6f913527c7aaec7e5ea557e72ed7c5e
my_MLP1
import torch import torch.nn as nn class my_MLP1(nn.Module): def __init__(self, input_dim, npdf, h1_dim, h2_dim, norm_type='softmax'): super().__init__() self.input = nn.Linear(input_dim, h1_dim) self.hidden = nn.Linear(h1_dim, h2_dim) self.output = nn.Linear(h2_dim, npdf) self.hyp = nn.Linear(h2_dim, 1) self.softmax = nn.Softmax(dim=1) self.sigmoid = torch.sigmoid self.norm_type = norm_type def forward(self, inputs): l_1 = self.sigmoid(self.input(inputs)) l_2 = self.sigmoid(self.hidden(l_1)) w_un = self.output(l_2) hyp = self.sigmoid(self.hyp(l_2)) if self.norm_type == 'softmax': w_pred = self.softmax(w_un) elif self.norm_type == 'normalize': self.sigmoid(w_un) w_pred = (w_un / w_un.sum(axis=0)).sum(axis=0) else: w_pred = torch.abs(self.output(w_un)) return w_pred, hyp def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'npdf': 4, 'h1_dim': 4, 'h2_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4), (4, 1)) assert_size_stride(primals_9, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_0[grid(256)](buf3, primals_5, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 1), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf5 triton_poi_fused_sigmoid_1[grid(64)](buf6, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf4, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 triton_poi_fused__softmax_3[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 return buf8, buf6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, buf6, buf8, primals_8, primals_6, primals_4 class my_MLP1New(nn.Module): def __init__(self, input_dim, npdf, h1_dim, h2_dim, norm_type='softmax'): super().__init__() self.input = nn.Linear(input_dim, h1_dim) self.hidden = nn.Linear(h1_dim, h2_dim) self.output = nn.Linear(h2_dim, npdf) self.hyp = nn.Linear(h2_dim, 1) self.softmax = nn.Softmax(dim=1) self.sigmoid = torch.sigmoid self.norm_type = norm_type def forward(self, input_0): primals_1 = self.input.weight primals_2 = self.input.bias primals_4 = self.hidden.weight primals_5 = self.hidden.bias primals_6 = self.output.weight primals_7 = self.output.bias primals_8 = self.hyp.weight primals_9 = self.hyp.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
mtcarilli/CME_approximations
my_MLP1
false
4,046
[ "MIT" ]
0
1ffd1cc0bd17679116964ee33634c0d76c50064e
https://github.com/mtcarilli/CME_approximations/tree/1ffd1cc0bd17679116964ee33634c0d76c50064e
RegModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/j6/cj64llgr242z2ptf4xvfog453crncnnboqxutnblzjvwwafoakko.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + (0)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp6 = tmp3 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module import functools import torch.nn as nn from typing import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp3 = tmp0 * tmp2 tmp6 = tmp3 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class PrePostInitMeta(type): """A metaclass that calls optional `__pre_init__` and `__post_init__` methods""" def __new__(cls, name, bases, dct): x = super().__new__(cls, name, bases, dct) def _pass(self, *args, **kwargs): pass for o in ('__init__', '__pre_init__', '__post_init__'): if not hasattr(x, o): setattr(x, o, _pass) old_init = x.__init__ @functools.wraps(old_init) def _init(self, *args, **kwargs): self.__pre_init__() old_init(self, *args, **kwargs) self.__post_init__() setattr(x, '__init__', _init) return x class Module(nn.Module, metaclass=PrePostInitMeta): """Same as `nn.Module`, but no need for subclasses to call `super().__init__`""" def __pre_init__(self): super().__init__() def __init__(self): pass class RegModelNew(Module): def __init__(self): self.a, self.b = nn.Parameter(torch.randn(1)), nn.Parameter(torch. randn(1)) def forward(self, input_0): primals_1 = self.a primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
davidpfahler/fastai_dev
RegModel
false
10,054
[ "Apache-2.0" ]
0
a86b15f86138a9902e8649e3f745e76a19139ab3
https://github.com/davidpfahler/fastai_dev/tree/a86b15f86138a9902e8649e3f745e76a19139ab3