.gitattributes CHANGED
@@ -1,3 +1,59 @@
1
- *.pt filter=lfs diff=lfs merge=lfs -text
2
- *.npz filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  *.npy filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mds filter=lfs diff=lfs merge=lfs -text
13
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
14
+ *.model filter=lfs diff=lfs merge=lfs -text
15
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
16
  *.npy filter=lfs diff=lfs merge=lfs -text
17
+ *.npz filter=lfs diff=lfs merge=lfs -text
18
+ *.onnx filter=lfs diff=lfs merge=lfs -text
19
+ *.ot filter=lfs diff=lfs merge=lfs -text
20
+ *.parquet filter=lfs diff=lfs merge=lfs -text
21
+ *.pb filter=lfs diff=lfs merge=lfs -text
22
+ *.pickle filter=lfs diff=lfs merge=lfs -text
23
+ *.pkl filter=lfs diff=lfs merge=lfs -text
24
+ *.pt filter=lfs diff=lfs merge=lfs -text
25
+ *.pth filter=lfs diff=lfs merge=lfs -text
26
+ *.rar filter=lfs diff=lfs merge=lfs -text
27
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
28
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
30
+ *.tar filter=lfs diff=lfs merge=lfs -text
31
+ *.tflite filter=lfs diff=lfs merge=lfs -text
32
+ *.tgz filter=lfs diff=lfs merge=lfs -text
33
+ *.wasm filter=lfs diff=lfs merge=lfs -text
34
+ *.xz filter=lfs diff=lfs merge=lfs -text
35
+ *.zip filter=lfs diff=lfs merge=lfs -text
36
+ *.zst filter=lfs diff=lfs merge=lfs -text
37
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
38
+ # Audio files - uncompressed
39
+ *.pcm filter=lfs diff=lfs merge=lfs -text
40
+ *.sam filter=lfs diff=lfs merge=lfs -text
41
+ *.raw filter=lfs diff=lfs merge=lfs -text
42
+ # Audio files - compressed
43
+ *.aac filter=lfs diff=lfs merge=lfs -text
44
+ *.flac filter=lfs diff=lfs merge=lfs -text
45
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
46
+ *.ogg filter=lfs diff=lfs merge=lfs -text
47
+ *.wav filter=lfs diff=lfs merge=lfs -text
48
+ # Image files - uncompressed
49
+ *.bmp filter=lfs diff=lfs merge=lfs -text
50
+ *.gif filter=lfs diff=lfs merge=lfs -text
51
+ *.png filter=lfs diff=lfs merge=lfs -text
52
+ *.tiff filter=lfs diff=lfs merge=lfs -text
53
+ # Image files - compressed
54
+ *.jpg filter=lfs diff=lfs merge=lfs -text
55
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
56
+ *.webp filter=lfs diff=lfs merge=lfs -text
57
+ # Video files - compressed
58
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ *.webm filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -10,61 +10,7 @@ size_categories:
10
 
11
  # Watch Market Analysis Graph Neural Network Dataset
12
 
13
- ## Link:
14
-
15
- - Github link to the code through which this dataset was generated from: [watch-market-gnn-code](https://github.com/calicartels/watch-market-gnn-code)
16
- - Link to interactive EDA that is hosted on a website : [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
17
-
18
- ## Table of Contents
19
- [Summary](#summary)
20
- [Dataset Description](#dataset-description)
21
- [Technical Details](#technical-details)
22
- [Exploratory Data Analysis](#exploratory-data-analysis)
23
- [Ethics and Limitations](#ethics-and-limitations)
24
- [Usage](#usage)
25
-
26
- <details>
27
- <summary>Detailed Table of Contents</summary>
28
-
29
- * Summary
30
- * Key Statistics
31
- * Primary Use Cases
32
- * Dataset Description
33
- * Data Structure
34
- * Features
35
- * Network Properties
36
- * Processing Parameters
37
- * Technical Details
38
- * Power Analysis
39
- * Implementation Details
40
- * Network Architecture
41
- * Embedding Dimensions
42
- * Network Parameters
43
- * Condition Scoring
44
- * Exploratory Data Analysis
45
- * Brand Distribution
46
- * Feature Correlations
47
- * Market Structure Visualizations
48
- * UMAP Analysis
49
- * t-SNE Visualization
50
- * PCA Analysis
51
- * Network Visualizations
52
- * Ethics and Limitations
53
- * Data Collection and Privacy
54
- * Known Biases
55
- * Usage Guidelines
56
- * License
57
- * Usage
58
- * Required Files
59
- * Loading the Dataset
60
- * Code Examples
61
-
62
- </details>
63
-
64
- ---
65
-
66
-
67
- ## Summary
68
 
69
  This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
70
  It addresses three key market characteristics that traditional recommendation systems often miss:
@@ -119,82 +65,30 @@ Key features include:
119
  - Edge Generation Batch: 32 watches
120
  - Network Architecture: Combined GCN and GAT layers with 4 attention heads
121
 
122
- ## Technical Details
123
-
124
- ### Power Analysis
125
- Minimum sample requirements based on statistical analysis:
126
- - Basic Network: 10,671 nodes (95% confidence, 3% margin)
127
- - GNN Requirements: 14,400 samples (feature space dimensionality)
128
- - Brand Coverage: 768 watches per brand
129
- - Price Segments: 4,320 watches per segment
130
-
131
- Current dataset (284,491 watches) exceeds requirements with:
132
- - 5,000+ samples per major brand
133
- - 50,000+ samples per price segment
134
- - Sufficient network density
135
-
136
- ### Implementation Details
137
-
138
- #### Network Architecture
139
- - 3 GNN layers with residual connections
140
- - 64 hidden channels
141
- - 20% dropout rate
142
- - 4 attention heads
143
- - Learning rate: 0.001
144
-
145
- #### Embedding Dimensions
146
- - Brand: 128
147
- - Material: 64
148
- - Movement: 64
149
- - Temporal: 32
150
-
151
- #### Network Parameters
152
- - Connections per watch: 3-5
153
- - Similarity threshold: 70%
154
- - Batch size: 50 watches
155
- - Processing window: 1000 watches
156
-
157
- #### Condition Scoring
158
- - New: 1.0
159
- - Unworn: 0.95
160
- - Very Good: 0.8
161
- - Good: 0.7
162
- - Fair: 0.5
163
 
164
  ## Exploratory Data Analysis
165
 
166
- **NOTE:**
167
- Only certain selected visualizations have been mentioned here, to see all the visualizations that have been explored in high-quality interactive graphs, please visit this site:
168
- [Watch Market Analysis Report](https://incomparable-torrone-ccda90.netlify.app/)
169
-
170
  ### Brand Distribution
171
-
172
- ![Brand Distribution Treemap](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/2.png)
173
-
174
  The treemap visualization provides a hierarchical view of market presence:
175
  - Rolex dominates with the highest representation, reflecting its market leadership
176
- - Omega and Seiko follow as major players, indicating a strong market presence
177
  - Distribution reveals clear tiers in the luxury watch market
178
  - Brand representation correlates with market positioning and availability
179
 
 
180
 
181
  ### Feature Correlations
182
-
183
- ![Feature Correlation Matrix](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/3.png)
184
-
185
  The correlation matrix reveals important market dynamics:
186
  - **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
187
  - **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
188
  - **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
189
  - Each feature contributes unique information, validated by the lack of strong correlations across all variables
190
 
 
191
 
192
  ### Market Structure Visualizations
193
 
194
  #### UMAP Analysis
195
-
196
- ![UMAP Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/4.png)
197
-
198
  The UMAP visualization unveils complex market positioning dynamics:
199
  - Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
200
  - Omega and Breitling cluster in the left segment, indicating strategic market alignment
@@ -202,11 +96,9 @@ The UMAP visualization unveils complex market positioning dynamics:
202
  - Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
203
  - Smaller, specialized clusters indicate distinct horological collections and style categories
204
 
 
205
 
206
  #### t-SNE Visualization
207
-
208
- ![t-SNE Analysis](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/5.png)
209
-
210
  T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
211
  - **Entry-Level Segment ($50-$4,000)**
212
  - Anchored by Seiko in the left segment
@@ -217,13 +109,12 @@ T-SNE analysis reveals clear market stratification with logarithmic pricing from
217
  - Cartier demonstrates strategic positioning between luxury and mid-range
218
  - **Ultra-Luxury Segment ($35,000-$3.2M)**
219
  - Dominated by Patek Philippe and Audemars Piguet
220
- - Clear separation in the right segment
221
  - Strong brand clustering indicating market alignment
222
 
223
- #### PCA Analysis
224
-
225
- ![PCA Visualization](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/6.png)
226
 
 
227
  Principal Component Analysis provides robust market insights with 56.6% total explained variance:
228
  - **First Principal Component (31.3%)**
229
  - Predominantly captures price dynamics
@@ -234,33 +125,28 @@ Principal Component Analysis provides robust market insights with 56.6% total ex
234
  - **Brand Trajectory**
235
  - Natural progression from Seiko through Longines, Breitling, and Omega
236
  - Culminates in Rolex and Patek Philippe
237
- - Diagonal trend line serves as a market positioning indicator
238
  - **Market Implications**
239
  - Successful brands occupy optimal positions along both dimensions
240
  - Clear differentiation between adjacent competitors
241
  - Evidence of strategic market positioning
242
 
 
243
 
244
  #### Network Visualizations
245
 
246
-
247
  **Force-Directed Graph**
248
-
249
- ![Force-Directed Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/7.png)
250
-
251
  The force-directed layout reveals natural market clustering:
252
  - Richard Mille's peripheral positioning highlights ultra-luxury strategy
253
  - Dense central clustering shows mainstream luxury brand interconnectivity
254
  - Edge patterns reveal shared market characteristics
255
  - Node proximity indicates competitive positioning
256
 
 
257
 
258
  **Starburst Visualization**
259
-
260
- ![Starburst Graph](https://raw.githubusercontent.com/calicartels/watch-market-gnn-code/main/images/8.png)
261
-
262
  Radial architecture provides a hierarchical market perspective:
263
- - Central node represents the overall market
264
  - Green nodes show brand territories with strategic spacing
265
  - Blue peripheral nodes indicate individual timepieces
266
  - Node density reveals:
@@ -269,6 +155,8 @@ Radial architecture provides a hierarchical market perspective:
269
  - Segment diversification
270
  - Balanced spacing between brand nodes indicates market segmentation
271
 
 
 
272
 
273
  ## Ethics and Limitations
274
 
@@ -339,6 +227,48 @@ While requiring:
339
  - Preserve attributions
340
 
341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
  ## Usage
343
 
344
  ### Required Files
 
10
 
11
  # Watch Market Analysis Graph Neural Network Dataset
12
 
13
+ ## Executive Summary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
16
  It addresses three key market characteristics that traditional recommendation systems often miss:
 
65
  - Edge Generation Batch: 32 watches
66
  - Network Architecture: Combined GCN and GAT layers with 4 attention heads
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Exploratory Data Analysis
70
 
 
 
 
 
71
  ### Brand Distribution
 
 
 
72
  The treemap visualization provides a hierarchical view of market presence:
73
  - Rolex dominates with the highest representation, reflecting its market leadership
74
+ - Omega and Seiko follow as major players, indicating strong market presence
75
  - Distribution reveals clear tiers in the luxury watch market
76
  - Brand representation correlates with market positioning and availability
77
 
78
+ [Treemap Image]
79
 
80
  ### Feature Correlations
 
 
 
81
  The correlation matrix reveals important market dynamics:
82
  - **Size vs. Year**: Positive correlation indicating a trend toward larger case sizes in modern watches
83
  - **Price vs. Size**: Moderate correlation showing larger watches generally command higher prices
84
  - **Price vs. Year**: Notably low correlation, demonstrating that vintage watches maintain value
85
  - Each feature contributes unique information, validated by the lack of strong correlations across all variables
86
 
87
+ [Correlation Matrix Image]
88
 
89
  ### Market Structure Visualizations
90
 
91
  #### UMAP Analysis
 
 
 
92
  The UMAP visualization unveils complex market positioning dynamics:
93
  - Rolex maintains a dominant central position around coordinates (0, -5), showing unparalleled brand cohesion
94
  - Omega and Breitling cluster in the left segment, indicating strategic market alignment
 
96
  - Premium timepieces (yellower/greener hues) show tighter clustering, suggesting standardized luxury attributes
97
  - Smaller, specialized clusters indicate distinct horological collections and style categories
98
 
99
+ [UMAP Image]
100
 
101
  #### t-SNE Visualization
 
 
 
102
  T-SNE analysis reveals clear market stratification with logarithmic pricing from $50 to $3.2M:
103
  - **Entry-Level Segment ($50-$4,000)**
104
  - Anchored by Seiko in the left segment
 
109
  - Cartier demonstrates strategic positioning between luxury and mid-range
110
  - **Ultra-Luxury Segment ($35,000-$3.2M)**
111
  - Dominated by Patek Philippe and Audemars Piguet
112
+ - Clear separation in right segment
113
  - Strong brand clustering indicating market alignment
114
 
115
+ [t-SNE Image]
 
 
116
 
117
+ #### PCA Analysis
118
  Principal Component Analysis provides robust market insights with 56.6% total explained variance:
119
  - **First Principal Component (31.3%)**
120
  - Predominantly captures price dynamics
 
125
  - **Brand Trajectory**
126
  - Natural progression from Seiko through Longines, Breitling, and Omega
127
  - Culminates in Rolex and Patek Philippe
128
+ - Diagonal trend line serves as market positioning indicator
129
  - **Market Implications**
130
  - Successful brands occupy optimal positions along both dimensions
131
  - Clear differentiation between adjacent competitors
132
  - Evidence of strategic market positioning
133
 
134
+ [PCA Image]
135
 
136
  #### Network Visualizations
137
 
 
138
  **Force-Directed Graph**
 
 
 
139
  The force-directed layout reveals natural market clustering:
140
  - Richard Mille's peripheral positioning highlights ultra-luxury strategy
141
  - Dense central clustering shows mainstream luxury brand interconnectivity
142
  - Edge patterns reveal shared market characteristics
143
  - Node proximity indicates competitive positioning
144
 
145
+ [Force-Directed Graph Image]
146
 
147
  **Starburst Visualization**
 
 
 
148
  Radial architecture provides a hierarchical market perspective:
149
+ - Central node represents overall market
150
  - Green nodes show brand territories with strategic spacing
151
  - Blue peripheral nodes indicate individual timepieces
152
  - Node density reveals:
 
155
  - Segment diversification
156
  - Balanced spacing between brand nodes indicates market segmentation
157
 
158
+ [Starburst Graph Image]
159
+
160
 
161
  ## Ethics and Limitations
162
 
 
227
  - Preserve attributions
228
 
229
 
230
+ ## Technical Details
231
+
232
+ ### Power Analysis
233
+ Minimum sample requirements based on statistical analysis:
234
+ - Basic Network: 10,671 nodes (95% confidence, 3% margin)
235
+ - GNN Requirements: 14,400 samples (feature space dimensionality)
236
+ - Brand Coverage: 768 watches per brand
237
+ - Price Segments: 4,320 watches per segment
238
+
239
+ Current dataset (284,491 watches) exceeds requirements with:
240
+ - 5,000+ samples per major brand
241
+ - 50,000+ samples per price segment
242
+ - Sufficient network density
243
+
244
+ ### Implementation Details
245
+
246
+ #### Network Architecture
247
+ - 3 GNN layers with residual connections
248
+ - 64 hidden channels
249
+ - 20% dropout rate
250
+ - 4 attention heads
251
+ - Learning rate: 0.001
252
+
253
+ #### Embedding Dimensions
254
+ - Brand: 128
255
+ - Material: 64
256
+ - Movement: 64
257
+ - Temporal: 32
258
+
259
+ #### Network Parameters
260
+ - Connections per watch: 3-5
261
+ - Similarity threshold: 70%
262
+ - Batch size: 50 watches
263
+ - Processing window: 1000 watches
264
+
265
+ #### Condition Scoring
266
+ - New: 1.0
267
+ - Unworn: 0.95
268
+ - Very Good: 0.8
269
+ - Good: 0.7
270
+ - Fair: 0.5
271
+
272
  ## Usage
273
 
274
  ### Required Files
dataset_infos.json DELETED
@@ -1,18 +0,0 @@
1
- {
2
- "default": {
3
- "description": "Watch Market GNN Dataset",
4
- "homepage": "https://huggingface.co/datasets/TMVishnu/watch-market-gnn",
5
- "license": "apache-2.0",
6
- "features": {
7
- "watch_gnn_data": "torch_geometric",
8
- "edges": "numpy",
9
- "features": "numpy"
10
- },
11
- "task_templates": [
12
- {
13
- "task": "graph-ml",
14
- "task_categories": ["graph-ml"]
15
- }
16
- ]
17
- }
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/edges.npz → edges.npz RENAMED
File without changes
data/features.npy → features.npy RENAMED
File without changes
final_embeddings.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:313cc9d898844574164a483e87759df9bb9105d5fd837d2a0f301c0215de417b
3
+ size 291320009
loaded_data.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9c0fffa25354d19a3f933a3034eb96c7d49d97bf0aac4739c97951c495d5edf
3
+ size 36141191
processed_df.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef91906c5313e76804e010ecbf95bfc960bdf8f72973b7f6ae360913925cf709
3
+ size 615675312
data/watch_gnn_data.pt → watch_gnn_data.pt RENAMED
File without changes