Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 2 new columns ({'__index_level_0__', '['}) and 5 missing columns ({'type', 'ticker', 'quantity', 'purchaseDate', 'unitPrice'}).

This happened while the csv dataset builder was generating data using

hf://datasets/Tejas0252/document/embedding.csv (at revision dd7a7052aaaada1e190961b510391d10786ab0d5)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              [: double
              __index_level_0__: string
              -- schema metadata --
              pandas: '{"index_columns": ["__index_level_0__"], "column_indexes": [{"na' + 435
              to
              {'ticker': Value(dtype='string', id=None), 'unitPrice': Value(dtype='int64', id=None), 'quantity': Value(dtype='int64', id=None), 'purchaseDate': Value(dtype='string', id=None), 'type': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1323, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 938, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 2 new columns ({'__index_level_0__', '['}) and 5 missing columns ({'type', 'ticker', 'quantity', 'purchaseDate', 'unitPrice'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/Tejas0252/document/embedding.csv (at revision dd7a7052aaaada1e190961b510391d10786ab0d5)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

ticker
string
unitPrice
int64
quantity
int64
purchaseDate
string
type
string
[
null
__index_level_0__
string
AAPL
150
1
3-1-2017
buy
null
null
PYPL
200
2
1-2-2017
buy
null
null
null
null
null
null
null
null
0.017034638673067093
null
null
null
null
null
null
-0.01902974210679531
null
null
null
null
null
null
-0.04733406379818916
null
null
null
null
null
null
-0.0017384394304826856
null
null
null
null
null
null
-0.03345480188727379
null
null
null
null
null
null
-0.010307137854397297
null
null
null
null
null
null
0.0263032466173172
null
null
null
null
null
null
0.07989870011806488
null
null
null
null
null
null
-0.06486641615629196
null
null
null
null
null
null
0.01367536373436451
null
null
null
null
null
null
0.026975614950060844
null
null
null
null
null
null
-0.08678656071424484
null
null
null
null
null
null
0.05431675910949707
null
null
null
null
null
null
-0.035370223224163055
null
null
null
null
null
null
-0.03024323657155037
null
null
null
null
null
null
0.039807163178920746
null
null
null
null
null
null
0.008147169835865498
null
null
null
null
null
null
-0.0247354656457901
null
null
null
null
null
null
-0.05708594247698784
null
null
null
null
null
null
-0.01137172244489193
null
null
null
null
null
null
0.006263071671128273
null
null
null
null
null
null
-0.04874172434210777
null
null
null
null
null
null
-0.03771721199154854
null
null
null
null
null
null
-0.02856474556028843
null
null
null
null
null
null
0.08782076835632324
null
null
null
null
null
null
0.10216008871793747
null
null
null
null
null
null
-0.06069325655698776
null
null
null
null
null
null
0.032079216092824936
null
null
null
null
null
null
0.0037238607183098793
null
null
null
null
null
null
-0.016706760972738266
null
null
null
null
null
null
-0.03646333888173103
null
null
null
null
null
null
0.04830699414014816
null
null
null
null
null
null
0.04393991455435753
null
null
null
null
null
null
-0.01395447924733162
null
null
null
null
null
null
0.013139201328158379
null
null
null
null
null
null
-0.013870768249034882
null
null
null
null
null
null
-0.04078831151127815
null
null
null
null
null
null
-0.031162824481725693
null
null
null
null
null
null
-0.0041415574960410595
null
null
null
null
null
null
0.00501385610550642
null
null
null
null
null
null
-0.014862275682389736
null
null
null
null
null
null
-0.0391167588531971
null
null
null
null
null
null
-0.04597495496273041
null
null
null
null
null
null
0.03237268328666687
null
null
null
null
null
null
-0.002983898390084505
null
null
null
null
null
null
-0.05656392499804497
null
null
null
null
null
null
-0.05518878251314163
null
null
null
null
null
null
0.028316905722022057
null
null
null
null
null
null
0.03970561549067497
null
null
null
null
null
null
0.08908018469810486
null
null
null
null
null
null
-0.022321190685033798
null
null
null
null
null
null
-0.01271065417677164
null
null
null
null
null
null
-0.02796812355518341
null
null
null
null
null
null
0.0474015548825264
null
null
null
null
null
null
0.009692773222923279
null
null
null
null
null
null
-0.10173927992582321
null
null
null
null
null
null
-0.03185562044382095
null
null
null
null
null
null
0.011005613021552563
null
null
null
null
null
null
0.03056609444320202
null
null
null
null
null
null
0.07775525003671646
null
null
null
null
null
null
-0.0952528864145279
null
null
null
null
null
null
-0.045066557824611664
null
null
null
null
null
null
-0.02943584881722927
null
null
null
null
null
null
0.0061069056391716
null
null
null
null
null
null
0.007064912002533674
null
null
null
null
null
null
0.028081923723220825
null
null
null
null
null
null
-0.062467146664857864
null
null
null
null
null
null
-0.0899793952703476
null
null
null
null
null
null
0.03319532796740532
null
null
null
null
null
null
0.012483913451433182
null
null
null
null
null
null
-0.08317693322896957
null
null
null
null
null
null
0.02505665458738804
null
null
null
null
null
null
0.0013471891870722175
null
null
null
null
null
null
0.0016840059543028474
null
null
null
null
null
null
-0.018936438485980034
null
null
null
null
null
null
0.0028046101797372103
null
null
null
null
null
null
0.09566091746091843
null
null
null
null
null
null
-0.028609899803996086
null
null
null
null
null
null
-0.019269386306405067
null
null
null
null
null
null
-0.08693569898605347
null
null
null
null
null
null
-0.08658237755298615
null
null
null
null
null
null
0.020269786939024925
null
null
null
null
null
null
-0.008279570378363132
null
null
null
null
null
null
0.03475974127650261
null
null
null
null
null
null
0.06291695684194565
null
null
null
null
null
null
0.003329674946144223
null
null
null
null
null
null
0.019779101014137268
null
null
null
null
null
null
0.0573238842189312
null
null
null
null
null
null
0.1017524003982544
null
null
null
null
null
null
-0.028966708108782768
null
null
null
null
null
null
0.06946277618408203
null
null
null
null
null
null
0.04203783720731735
null
null
null
null
null
null
-0.033568497747182846
null
null
null
null
null
null
-0.019955486059188843
null
null
null
null
null
null
-0.02575427107512951
null
null
null
null
null
null
0.03599230572581291
null
null
null
null
null
null
-0.02423810213804245
null
null
null
null
null
null
-0.05316999927163124
End of preview.
README.md exists but content is empty.
Downloads last month
4