id
stringlengths
14
16
text
stringlengths
20
3.26k
source
stringlengths
65
181
b0d842837a35-0
langchain_community.callbacks.arize_callback.ArizeCallbackHandler¶ class langchain_community.callbacks.arize_callback.ArizeCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None)[source]¶ Callback Handler that logs to Arize. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([model_id, model_version, ...]) Initialize callback handler. on_agent_action(action, **kwargs) Do nothing. on_agent_finish(finish, **kwargs) Run on agent end. on_chain_end(outputs, **kwargs) Do nothing. on_chain_error(error, **kwargs) Do nothing. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Do nothing. on_llm_new_token(token, **kwargs) Do nothing. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b0d842837a35-1
on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run on arbitrary text. on_tool_end(output[, observation_prefix, ...]) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. Parameters model_id (Optional[str]) – model_version (Optional[str]) – SPACE_KEY (Optional[str]) – API_KEY (Optional[str]) – __init__(model_id: Optional[str] = None, model_version: Optional[str] = None, SPACE_KEY: Optional[str] = None, API_KEY: Optional[str] = None) → None[source]¶ Initialize callback handler. Parameters model_id (Optional[str]) – model_version (Optional[str]) – SPACE_KEY (Optional[str]) – API_KEY (Optional[str]) – Return type None on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run on agent end. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b0d842837a35-2
Do nothing. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b0d842837a35-3
on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b0d842837a35-4
kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run on arbitrary text. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (Any) – observation_prefix (Optional[str]) – llm_prefix (Optional[str]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
b0d842837a35-5
Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.arize_callback.ArizeCallbackHandler.html
f8fc9cb5a9eb-0
langchain_community.callbacks.manager.get_openai_callback¶ langchain_community.callbacks.manager.get_openai_callback() → Generator[OpenAICallbackHandler, None, None][source]¶ Get the OpenAI callback handler in a context manager. which conveniently exposes token and cost information. Returns The OpenAI callback handler. Return type OpenAICallbackHandler Example >>> with get_openai_callback() as cb: ... # Use the OpenAI callback handler Examples using get_openai_callback¶ AzureChatOpenAI How to run custom functions How to track token usage for LLMs How to track token usage in ChatModels
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.manager.get_openai_callback.html
3d92b1453809-0
langchain_community.callbacks.aim_callback.AimCallbackHandler¶ class langchain_community.callbacks.aim_callback.AimCallbackHandler(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True)[source]¶ Callback Handler that logs to Aim. Parameters repo (str, optional) – Aim repository path or Repo object to which Run object is bound. If skipped, default Repo is used. experiment_name (str, optional) – Sets Run’s experiment property. ‘default’ if not specified. Can be used later to query runs/sequences. system_tracking_interval (int, optional) – Sets the tracking interval in seconds for system usage metrics (CPU, Memory, etc.). Set to None to disable system metrics tracking. log_system_params (bool, optional) – Enable/Disable logging of system params such as installed packages, git info, environment variables, etc. This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run and then logs the response to Aim. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([repo, experiment_name, ...]) Initialize callback handler. flush_tracker([repo, experiment_name, ...]) Flush the tracker and reset the session. get_custom_callback_meta() on_agent_action(action, **kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-1
get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when agent is ending. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata. setup(**kwargs)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-2
reset_callback_meta() Reset the callback metadata. setup(**kwargs) __init__(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True) → None[source]¶ Initialize callback handler. Parameters repo (Optional[str]) – experiment_name (Optional[str]) – system_tracking_interval (Optional[int]) – log_system_params (bool) – Return type None flush_tracker(repo: Optional[str] = None, experiment_name: Optional[str] = None, system_tracking_interval: Optional[int] = 10, log_system_params: bool = True, langchain_asset: Optional[Any] = None, reset: bool = True, finish: bool = False) → None[source]¶ Flush the tracker and reset the session. Parameters repo (str, optional) – Aim repository path or Repo object to which Run object is bound. If skipped, default Repo is used. experiment_name (str, optional) – Sets Run’s experiment property. ‘default’ if not specified. Can be used later to query runs/sequences. system_tracking_interval (int, optional) – Sets the tracking interval in seconds for system usage metrics (CPU, Memory, etc.). Set to None to disable system metrics tracking. log_system_params (bool, optional) – Enable/Disable logging of system params such as installed packages, git info, environment variables, etc. langchain_asset (Optional[Any]) – The langchain asset to save. reset (bool) – Whether to reset the session. finish (bool) – Whether to finish the run. Returns – None Return type None get_custom_callback_meta() → Dict[str, Any]¶ Return type Dict[str, Any]
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-3
Return type Dict[str, Any] on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-4
Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-5
kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run when agent is ending. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
3d92b1453809-6
Run when tool ends running. Parameters output (Any) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None reset_callback_meta() → None¶ Reset the callback metadata. Return type None setup(**kwargs: Any) → None[source]¶ Parameters kwargs (Any) – Return type None Examples using AimCallbackHandler¶ Aim
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.aim_callback.AimCallbackHandler.html
53b230cef556-0
langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought¶ class langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought(parent_container: DeltaGenerator, labeler: LLMThoughtLabeler, expanded: bool, collapse_on_complete: bool)[source]¶ A thought in the LLM’s thought stream. Initialize the LLMThought. Parameters parent_container (DeltaGenerator) – The container we’re writing into. labeler (LLMThoughtLabeler) – The labeler to use for this thought. expanded (bool) – Whether the thought should be expanded by default. collapse_on_complete (bool) – Whether the thought should be collapsed. Attributes container The container we're writing into. last_tool The last tool executed by this thought Methods __init__(parent_container, labeler, ...) Initialize the LLMThought. clear() Remove the thought from the screen. complete([final_label]) Finish the thought. on_agent_action(action[, color]) on_llm_end(response, **kwargs) on_llm_error(error, **kwargs) on_llm_new_token(token, **kwargs) on_llm_start(serialized, prompts) on_tool_end(output[, color, ...]) on_tool_error(error, **kwargs) on_tool_start(serialized, input_str, **kwargs) __init__(parent_container: DeltaGenerator, labeler: LLMThoughtLabeler, expanded: bool, collapse_on_complete: bool)[source]¶ Initialize the LLMThought. Parameters parent_container (DeltaGenerator) – The container we’re writing into. labeler (LLMThoughtLabeler) – The labeler to use for this thought. expanded (bool) – Whether the thought should be expanded by default.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought.html
53b230cef556-1
expanded (bool) – Whether the thought should be expanded by default. collapse_on_complete (bool) – Whether the thought should be collapsed. clear() → None[source]¶ Remove the thought from the screen. A cleared thought can’t be reused. Return type None complete(final_label: Optional[str] = None) → None[source]¶ Finish the thought. Parameters final_label (Optional[str]) – Return type None on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Parameters action (AgentAction) – color (Optional[str]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str]) → None[source]¶ Parameters serialized (Dict[str, Any]) – prompts (List[str]) – Return type None on_tool_end(output: Any, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Parameters output (Any) – color (Optional[str]) – observation_prefix (Optional[str]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought.html
53b230cef556-2
color (Optional[str]) – observation_prefix (Optional[str]) – llm_prefix (Optional[str]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.streamlit_callback_handler.LLMThought.html
438ac1143d5e-0
langchain_core.callbacks.manager.AsyncRunManager¶ class langchain_core.callbacks.manager.AsyncRunManager(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None)[source]¶ Async Run Manager. Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Methods __init__(*, run_id, handlers, ...[, ...]) Initialize the run manager. get_noop_manager() Return a manager that doesn't perform any operations. get_sync() Get the equivalent sync RunManager. on_retry(retry_state, **kwargs) Run on a retry event. on_text(text, **kwargs) Run when text is received.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncRunManager.html
438ac1143d5e-1
on_text(text, **kwargs) Run when text is received. __init__(*, run_id: UUID, handlers: List[BaseCallbackHandler], inheritable_handlers: List[BaseCallbackHandler], parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, inheritable_tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None) → None¶ Initialize the run manager. Parameters run_id (UUID) – The ID of the run. handlers (List[BaseCallbackHandler]) – The list of handlers. inheritable_handlers (List[BaseCallbackHandler]) – The list of inheritable handlers. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. tags (Optional[List[str]]) – The list of tags. inheritable_tags (Optional[List[str]]) – The list of inheritable tags. metadata (Optional[Dict[str, Any]]) – The metadata. inheritable_metadata (Optional[Dict[str, Any]]) – The inheritable metadata. Return type None classmethod get_noop_manager() → BRM¶ Return a manager that doesn’t perform any operations. Returns The noop manager. Return type BaseRunManager abstract get_sync() → RunManager[source]¶ Get the equivalent sync RunManager. Returns The sync RunManager. Return type RunManager async on_retry(retry_state: RetryCallState, **kwargs: Any) → None[source]¶ Run on a retry event. Parameters retry_state (RetryCallState) – kwargs (Any) – Return type None async on_text(text: str, **kwargs: Any) → Any[source]¶ Run when text is received. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncRunManager.html
438ac1143d5e-2
Run when text is received. Parameters text (str) – The received text. kwargs (Any) – Returns The result of the callback. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncRunManager.html
6cd429f4081a-0
langchain_community.callbacks.mlflow_callback.construct_html_from_prompt_and_generation¶ langchain_community.callbacks.mlflow_callback.construct_html_from_prompt_and_generation(prompt: str, generation: str) → Any[source]¶ Construct an html element from a prompt and a generation. Parameters prompt (str) – The prompt. generation (str) – The generation. Returns The html string. Return type (str)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.construct_html_from_prompt_and_generation.html
6ef2120b1e5b-0
langchain_nvidia_ai_endpoints.callbacks.get_usage_callback¶ langchain_nvidia_ai_endpoints.callbacks.get_usage_callback(price_map: dict = {}, callback: Optional[UsageCallbackHandler] = None) → Generator[UsageCallbackHandler, None, None][source]¶ Get the OpenAI callback handler in a context manager. which conveniently exposes token and cost information. Returns The OpenAI callback handler. Return type OpenAICallbackHandler Parameters price_map (dict) – callback (Optional[UsageCallbackHandler]) – Example >>> with get_openai_callback() as cb: ... # Use the OpenAI callback handler
https://api.python.langchain.com/en/latest/callbacks/langchain_nvidia_ai_endpoints.callbacks.get_usage_callback.html
eb7167697e97-0
langchain_community.callbacks.openai_info.OpenAICallbackHandler¶ class langchain_community.callbacks.openai_info.OpenAICallbackHandler[source]¶ Callback Handler that tracks OpenAI info. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. completion_tokens ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. prompt_tokens raise_error run_inline successful_requests total_cost total_tokens Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Collect token usage. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, **kwargs) Print out the token.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-1
on_llm_new_token(token, **kwargs) Print out the token. on_llm_start(serialized, prompts, **kwargs) Print out the prompts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__() → None[source]¶ Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-2
Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-3
kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Collect token usage. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Print out the token. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-4
Print out the token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Print out the prompts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-5
metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
eb7167697e97-6
kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.OpenAICallbackHandler.html
512115fc7184-0
langchain_community.callbacks.mlflow_callback.analyze_text¶ langchain_community.callbacks.mlflow_callback.analyze_text(text: str, nlp: Optional[Any] = None, textstat: Optional[Any] = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. nlp (spacy.lang) – The spacy language model to use for visualization. textstat (Optional[Any]) – The textstat library to use for complexity metrics calculation. Returns A dictionary containing the complexity metrics and visualizationfiles serialized to HTML string. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.analyze_text.html
e32c01b00b1b-0
langchain_community.callbacks.infino_callback.InfinoCallbackHandler¶ class langchain_community.callbacks.infino_callback.InfinoCallbackHandler(model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False)[source]¶ Callback Handler that logs to Infino. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([model_id, model_version, verbose]) on_agent_action(action, **kwargs) Do nothing when agent takes a specific action. on_agent_finish(finish, **kwargs) Do nothing. on_chain_end(outputs, **kwargs) Do nothing when LLM chain ends. on_chain_error(error, **kwargs) Need to log the error. on_chain_start(serialized, inputs, **kwargs) Do nothing when LLM chain starts. on_chat_model_start(serialized, messages, ...) Run when LLM starts running. on_llm_end(response, **kwargs) Log the latency, error, token usage, and response to Infino. on_llm_error(error, **kwargs) Set the error flag. on_llm_new_token(token, **kwargs) Do nothing when a new token is generated. on_llm_start(serialized, prompts, **kwargs) Log the prompts to Infino, and set start time and error flag. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e32c01b00b1b-1
Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Do nothing. on_tool_end(output[, observation_prefix, ...]) Do nothing when tool ends. on_tool_error(error, **kwargs) Do nothing when tool outputs an error. on_tool_start(serialized, input_str, **kwargs) Do nothing when tool starts. Parameters model_id (Optional[str]) – model_version (Optional[str]) – verbose (bool) – __init__(model_id: Optional[str] = None, model_version: Optional[str] = None, verbose: bool = False) → None[source]¶ Parameters model_id (Optional[str]) – model_version (Optional[str]) – verbose (bool) – Return type None on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Do nothing when agent takes a specific action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Do nothing. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when LLM chain ends. Parameters outputs (Dict[str, Any]) – kwargs (Any) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e32c01b00b1b-2
Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Need to log the error. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Do nothing when LLM chain starts. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], **kwargs: Any) → None[source]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – kwargs (Any) – Return type None on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Log the latency, error, token usage, and response to Infino. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Set the error flag. Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Do nothing when a new token is generated. Parameters token (str) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e32c01b00b1b-3
token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Log the prompts to Infino, and set start time and error flag. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
e32c01b00b1b-4
parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Do nothing. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: str, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when tool ends. Parameters output (str) – observation_prefix (Optional[str]) – llm_prefix (Optional[str]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Do nothing when tool outputs an error. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Do nothing when tool starts. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None Examples using InfinoCallbackHandler¶ Infino
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.infino_callback.InfinoCallbackHandler.html
0a64945a4790-0
langchain_community.callbacks.utils.BaseMetadataCallbackHandler¶ class langchain_community.callbacks.utils.BaseMetadataCallbackHandler[source]¶ Handle the metadata and associated function states for callbacks. step¶ The current step. Type int starts¶ The number of times the start method has been called. Type int ends¶ The number of times the end method has been called. Type int errors¶ The number of times the error method has been called. Type int text_ctr¶ The number of times the text method has been called. Type int ignore_llm_¶ Whether to ignore llm callbacks. Type bool ignore_chain_¶ Whether to ignore chain callbacks. Type bool ignore_agent_¶ Whether to ignore agent callbacks. Type bool ignore_retriever_¶ Whether to ignore retriever callbacks. Type bool always_verbose_¶ Whether to always be verbose. Type bool chain_starts¶ The number of times the chain start method has been called. Type int chain_ends¶ The number of times the chain end method has been called. Type int llm_starts¶ The number of times the llm start method has been called. Type int llm_ends¶ The number of times the llm end method has been called. Type int llm_streams¶ The number of times the text method has been called. Type int tool_starts¶ The number of times the tool start method has been called. Type int tool_ends¶ The number of times the tool end method has been called. Type int agent_ends¶ The number of times the agent end method has been called. Type int on_llm_start_records¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html
0a64945a4790-1
Type int on_llm_start_records¶ A list of records of the on_llm_start method. Type list on_llm_token_records¶ A list of records of the on_llm_token method. Type list on_llm_end_records¶ A list of records of the on_llm_end method. Type list on_chain_start_records¶ A list of records of the on_chain_start method. Type list on_chain_end_records¶ A list of records of the on_chain_end method. Type list on_tool_start_records¶ A list of records of the on_tool_start method. Type list on_tool_end_records¶ A list of records of the on_tool_end method. Type list on_agent_finish_records¶ A list of records of the on_agent_end method. Type list Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_llm Whether to ignore LLM callbacks. Methods __init__() get_custom_callback_meta() reset_callback_meta() Reset the callback metadata. __init__() → None[source]¶ Return type None get_custom_callback_meta() → Dict[str, Any][source]¶ Return type Dict[str, Any] reset_callback_meta() → None[source]¶ Reset the callback metadata. Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.utils.BaseMetadataCallbackHandler.html
0caf77282456-0
langchain_community.callbacks.wandb_callback.analyze_text¶ langchain_community.callbacks.wandb_callback.analyze_text(text: str, complexity_metrics: bool = True, visualize: bool = True, nlp: Optional[Any] = None, output_dir: Optional[Union[str, Path]] = None) → dict[source]¶ Analyze text using textstat and spacy. Parameters text (str) – The text to analyze. complexity_metrics (bool) – Whether to compute complexity metrics. visualize (bool) – Whether to visualize the text. nlp (spacy.lang) – The spacy language model to use for visualization. output_dir (str) – The directory to save the visualization files to. Returns A dictionary containing the complexity metrics and visualizationfiles serialized in a wandb.Html element. Return type (dict)
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.wandb_callback.analyze_text.html
9be8fb2a5a92-0
langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup¶ class langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: AsyncCallbackManagerForChainRun, **kwargs: Any)[source]¶ Async callback manager for the chain group. Initialize callback manager. Attributes is_async Return whether the handler is async. Methods __init__(handlers[, inheritable_handlers, ...]) Initialize callback manager. add_handler(handler[, inherit]) Add a handler to the callback manager. add_metadata(metadata[, inherit]) add_tags(tags[, inherit]) configure([inheritable_callbacks, ...]) Configure the async callback manager. copy() Copy the callback manager. on_chain_end(outputs, **kwargs) Run when traced chain group ends. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs[, run_id]) Run when chain starts running. on_chat_model_start(serialized, messages[, ...]) Run when LLM starts running. on_llm_start(serialized, prompts[, run_id]) Run when LLM starts running. on_retriever_start(serialized, query[, ...]) Run when retriever starts running. on_tool_start(serialized, input_str[, ...]) Run when tool starts running. remove_handler(handler) Remove a handler from the callback manager. remove_metadata(keys) remove_tags(tags) set_handler(handler[, inherit]) Set handler as the only handler on the callback manager. set_handlers(handlers[, inherit]) Set handlers as the only handlers on the callback manager. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
9be8fb2a5a92-1
Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – parent_run_manager (AsyncCallbackManagerForChainRun) – kwargs (Any) – __init__(handlers: List[BaseCallbackHandler], inheritable_handlers: Optional[List[BaseCallbackHandler]] = None, parent_run_id: Optional[UUID] = None, *, parent_run_manager: AsyncCallbackManagerForChainRun, **kwargs: Any) → None[source]¶ Initialize callback manager. Parameters handlers (List[BaseCallbackHandler]) – inheritable_handlers (Optional[List[BaseCallbackHandler]]) – parent_run_id (Optional[UUID]) – parent_run_manager (AsyncCallbackManagerForChainRun) – kwargs (Any) – Return type None add_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Add a handler to the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None add_metadata(metadata: Dict[str, Any], inherit: bool = True) → None¶ Parameters metadata (Dict[str, Any]) – inherit (bool) – Return type None add_tags(tags: List[str], inherit: bool = True) → None¶ Parameters tags (List[str]) – inherit (bool) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
9be8fb2a5a92-2
tags (List[str]) – inherit (bool) – Return type None classmethod configure(inheritable_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, local_callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, verbose: bool = False, inheritable_tags: Optional[List[str]] = None, local_tags: Optional[List[str]] = None, inheritable_metadata: Optional[Dict[str, Any]] = None, local_metadata: Optional[Dict[str, Any]] = None) → AsyncCallbackManager¶ Configure the async callback manager. Parameters inheritable_callbacks (Optional[Callbacks], optional) – The inheritable callbacks. Defaults to None. local_callbacks (Optional[Callbacks], optional) – The local callbacks. Defaults to None. verbose (bool, optional) – Whether to enable verbose mode. Defaults to False. inheritable_tags (Optional[List[str]], optional) – The inheritable tags. Defaults to None. local_tags (Optional[List[str]], optional) – The local tags. Defaults to None. inheritable_metadata (Optional[Dict[str, Any]], optional) – The inheritable metadata. Defaults to None. local_metadata (Optional[Dict[str, Any]], optional) – The local metadata. Defaults to None. Returns The configured async callback manager. Return type AsyncCallbackManager copy() → AsyncCallbackManagerForChainGroup[source]¶ Copy the callback manager. Return type AsyncCallbackManagerForChainGroup async on_chain_end(outputs: Union[Dict[str, Any], Any], **kwargs: Any) → None[source]¶ Run when traced chain group ends. Parameters outputs (Union[Dict[str, Any], Any]) – The outputs of the chain. kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
9be8fb2a5a92-3
kwargs (Any) – Return type None async on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (Exception or KeyboardInterrupt) – The error. kwargs (Any) – Return type None async on_chain_start(serialized: Dict[str, Any], inputs: Union[Dict[str, Any], Any], run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForChainRun¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – The serialized chain. inputs (Union[Dict[str, Any], Any]) – The inputs to the chain. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The async callback managerfor the chain run. Return type AsyncCallbackManagerForChainRun async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], run_id: Optional[UUID] = None, **kwargs: Any) → List[AsyncCallbackManagerForLLMRun]¶ Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. messages (List[List[BaseMessage]]) – The list of messages. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The list ofasync callback managers, one for each LLM Run corresponding to each inner message list. Return type List[AsyncCallbackManagerForLLMRun] async on_llm_start(serialized: Dict[str, Any], prompts: List[str], run_id: Optional[UUID] = None, **kwargs: Any) → List[AsyncCallbackManagerForLLMRun]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
9be8fb2a5a92-4
Run when LLM starts running. Parameters serialized (Dict[str, Any]) – The serialized LLM. prompts (List[str]) – The list of prompts. run_id (UUID, optional) – The ID of the run. Defaults to None. kwargs (Any) – Returns The list of asynccallback managers, one for each LLM Run corresponding to each prompt. Return type List[AsyncCallbackManagerForLLMRun] async on_retriever_start(serialized: Dict[str, Any], query: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForRetrieverRun¶ Run when retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (Optional[UUID]) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type AsyncCallbackManagerForRetrieverRun async on_tool_start(serialized: Dict[str, Any], input_str: str, run_id: Optional[UUID] = None, parent_run_id: Optional[UUID] = None, **kwargs: Any) → AsyncCallbackManagerForToolRun¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – The serialized tool. input_str (str) – The input to the tool. run_id (UUID, optional) – The ID of the run. Defaults to None. parent_run_id (UUID, optional) – The ID of the parent run. Defaults to None. kwargs (Any) – Returns The async callback managerfor the tool run. Return type AsyncCallbackManagerForToolRun remove_handler(handler: BaseCallbackHandler) → None¶ Remove a handler from the callback manager.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
9be8fb2a5a92-5
Remove a handler from the callback manager. Parameters handler (BaseCallbackHandler) – Return type None remove_metadata(keys: List[str]) → None¶ Parameters keys (List[str]) – Return type None remove_tags(tags: List[str]) → None¶ Parameters tags (List[str]) – Return type None set_handler(handler: BaseCallbackHandler, inherit: bool = True) → None¶ Set handler as the only handler on the callback manager. Parameters handler (BaseCallbackHandler) – inherit (bool) – Return type None set_handlers(handlers: List[BaseCallbackHandler], inherit: bool = True) → None¶ Set handlers as the only handlers on the callback manager. Parameters handlers (List[BaseCallbackHandler]) – inherit (bool) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.manager.AsyncCallbackManagerForChainGroup.html
0f8b0567c1da-0
langchain_community.callbacks.clearml_callback.import_clearml¶ langchain_community.callbacks.clearml_callback.import_clearml() → Any[source]¶ Import the clearml python package and raise an error if it is not installed. Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.clearml_callback.import_clearml.html
c0b2dc75bf4d-0
langchain_community.callbacks.streamlit.mutable_expander.ChildType¶ class langchain_community.callbacks.streamlit.mutable_expander.ChildType(value)[source]¶ Enumerator of the child type. MARKDOWN = 'MARKDOWN'¶ EXCEPTION = 'EXCEPTION'¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.streamlit.mutable_expander.ChildType.html
798773a461e5-0
langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler¶ class langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler(*, project_name: str = 'langchain', key_type: str = 'openai', api_key: str = 'sk-****************', model: str = 'gpt-3.5-turbo', log_results: bool = True)[source]¶ Callback Handler that logs evaluation results to uptrain and the console. Parameters project_name (str) – The project name to be shown in UpTrain dashboard. key_type (str) – Type of key to use. Must be ‘uptrain’ or ‘openai’. api_key (str) – API key for the UpTrain or OpenAI API. GPT.) ((This key is required to perform evaluations using) – model (str) – log_results (bool) – Raises ValueError – If the key type is invalid. ImportError – If the uptrain package is not installed. Initializes the UpTrainCallbackHandler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(*[, project_name, key_type, ...]) Initializes the UpTrainCallbackHandler. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-1
Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Do nothing when chain starts on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Log records to uptrain when an LLM ends. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id])
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-2
on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. uptrain_evaluate(evaluation_name, data, checks) Run an evaluation on the UpTrain server using UpTrain client. __init__(*, project_name: str = 'langchain', key_type: str = 'openai', api_key: str = 'sk-****************', model: str = 'gpt-3.5-turbo', log_results: bool = True) → None[source]¶ Initializes the UpTrainCallbackHandler. Parameters project_name (str) – key_type (str) – api_key (str) – model (str) – log_results (bool) – Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-3
Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → None[source]¶ Do nothing when chain starts Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – tags (Optional[List[str]]) – parent_run_id (Optional[UUID]) – metadata (Optional[Dict[str, Any]]) – run_type (Optional[str]) – name (Optional[str]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-4
Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶ Log records to uptrain when an LLM ends. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type None on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-5
Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-6
Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
798773a461e5-7
Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any uptrain_evaluate(evaluation_name: str, data: List[Dict[str, Any]], checks: List[str]) → None[source]¶ Run an evaluation on the UpTrain server using UpTrain client. Parameters evaluation_name (str) – data (List[Dict[str, Any]]) – checks (List[str]) – Return type None Examples using UpTrainCallbackHandler¶ UpTrain
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.uptrain_callback.UpTrainCallbackHandler.html
d172e76c4eb0-0
langchain_community.callbacks.sagemaker_callback.save_json¶ langchain_community.callbacks.sagemaker_callback.save_json(data: dict, file_path: str) → None[source]¶ Save dict to local file path. Parameters data (dict) – The dictionary to be saved. file_path (str) – Local file path. Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.sagemaker_callback.save_json.html
aadb94cfe764-0
langchain_nvidia_ai_endpoints.callbacks.get_token_cost_for_model¶ langchain_nvidia_ai_endpoints.callbacks.get_token_cost_for_model(model_name: str, num_tokens: int, price_map: dict, is_completion: bool = False) → float[source]¶ Get the cost in USD for a given model and number of tokens. Parameters model_name (str) – Name of the model num_tokens (int) – Number of tokens. price_map (dict) – Map of model names to cost per 1000 tokens. Defaults to AI Foundation Endpoint pricing per https://www.together.ai/pricing. is_completion (bool) – Whether the model is used for completion or not. Defaults to False. Returns Cost in USD. Return type float
https://api.python.langchain.com/en/latest/callbacks/langchain_nvidia_ai_endpoints.callbacks.get_token_cost_for_model.html
bc07779374b1-0
langchain_community.callbacks.openai_info.get_openai_token_cost_for_model¶ langchain_community.callbacks.openai_info.get_openai_token_cost_for_model(model_name: str, num_tokens: int, is_completion: bool = False) → float[source]¶ Get the cost in USD for a given model and number of tokens. Parameters model_name (str) – Name of the model num_tokens (int) – Number of tokens. is_completion (bool) – Whether the model is used for completion or not. Defaults to False. Returns Cost in USD. Return type float
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.openai_info.get_openai_token_cost_for_model.html
579440953bae-0
langchain_core.callbacks.base.ToolManagerMixin¶ class langchain_core.callbacks.base.ToolManagerMixin[source]¶ Mixin for tool callbacks. Methods __init__() on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. __init__()¶ on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.base.ToolManagerMixin.html
4f14112bff9a-0
langchain_core.callbacks.file.FileCallbackHandler¶ class langchain_core.callbacks.file.FileCallbackHandler(filename: str, mode: str = 'a', color: Optional[str] = None)[source]¶ Callback Handler that writes to a file. Initialize callback handler. Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(filename[, mode, color]) Initialize callback handler. on_agent_action(action[, color]) Run on agent action. on_agent_finish(finish[, color]) Run on agent end. on_chain_end(outputs, **kwargs) Print out that we finished a chain. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Print out that we are entering a chain. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-1
Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text[, color, end]) Run when agent ends. on_tool_end(output[, color, ...]) If not the final action, print out observation. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. Parameters filename (str) – mode (str) – color (Optional[str]) – __init__(filename: str, mode: str = 'a', color: Optional[str] = None) → None[source]¶ Initialize callback handler. Parameters filename (str) – mode (str) – color (Optional[str]) – Return type None on_agent_action(action: AgentAction, color: Optional[str] = None, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – color (Optional[str]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-2
color (Optional[str]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, color: Optional[str] = None, **kwargs: Any) → None[source]¶ Run on agent end. Parameters finish (AgentFinish) – color (Optional[str]) – kwargs (Any) – Return type None on_chain_end(outputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we finished a chain. Parameters outputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Print out that we are entering a chain. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-3
Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM ends running. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-4
Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-5
Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, color: Optional[str] = None, end: str = '', **kwargs: Any) → None[source]¶ Run when agent ends. Parameters text (str) – color (Optional[str]) – end (str) – kwargs (Any) – Return type None on_tool_end(output: str, color: Optional[str] = None, observation_prefix: Optional[str] = None, llm_prefix: Optional[str] = None, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
4f14112bff9a-6
If not the final action, print out observation. Parameters output (str) – color (Optional[str]) – observation_prefix (Optional[str]) – llm_prefix (Optional[str]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_core.callbacks.file.FileCallbackHandler.html
ce172a882a85-0
langchain_community.callbacks.llmonitor_callback.identify¶ langchain_community.callbacks.llmonitor_callback.identify(user_id: str, user_props: Optional[Any] = None) → UserContextManager[source]¶ Builds an LLMonitor UserContextManager Parameters user_id (-) – The user id. user_props (-) – The user properties. Returns A context manager that sets the user context. Return type UserContextManager Examples using identify¶ LLMonitor
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.identify.html
bad382c9e4aa-0
langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler¶ class langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler(app_id: Optional[str] = None, api_url: Optional[str] = None, verbose: bool = False)[source]¶ Callback Handler for LLMonitor`. #### Parameters: app_id: The app id of the app you want to report to. Defaults to None, which means that LLMONITOR_APP_ID will be used. - api_url: The url of the LLMonitor API. Defaults to None, which means that either LLMONITOR_API_URL environment variable or https://app.llmonitor.com will be used. #### Raises: ValueError: if app_id is not provided either as an argument or as an environment variable. - ConnectionError: if the connection to the API fails. #### Example: ```python from langchain_community.llms import OpenAI from langchain_community.callbacks import LLMonitorCallbackHandler llmonitor_callback = LLMonitorCallbackHandler() llm = OpenAI(callbacks=[llmonitor_callback], metadata={“userId”: “user-123”}) llm.invoke(“Hello, how are you?”) ``` Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([app_id, api_url, verbose]) on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-1
Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, *, run_id[, parent_run_id]) Run when LLM ends running. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-2
Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. Parameters app_id (Optional[str]) – api_url (Optional[str]) – verbose (bool) – __init__(app_id: Optional[str] = None, api_url: Optional[str] = None, verbose: bool = False) → None[source]¶ Parameters app_id (Optional[str]) – api_url (Optional[str]) – verbose (bool) – Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-3
kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any[source]¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-4
run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type None on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – The new token. chunk (GenerationChunk | ChatGenerationChunk) – The new generated chunk, information. (containing content and other) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-5
kwargs (Any) – Return type Any on_llm_start(serialized: Dict[str, Any], prompts: List[str], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-6
kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
bad382c9e4aa-7
run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any[source]¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None Examples using LLMonitorCallbackHandler¶ LLMonitor
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.llmonitor_callback.LLMonitorCallbackHandler.html
fe7c257d2058-0
langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler¶ class langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None, run_id: Optional[str] = None, artifacts_dir: str = '')[source]¶ Callback Handler that logs metrics and artifacts to mlflow server. Parameters name (str) – Name of the run. experiment (str) – Name of the experiment. tags (dict) – Tags to be attached for the run. tracking_uri (str) – MLflow tracking server uri. run_id (Optional[str]) – artifacts_dir (str) – This handler will utilize the associated callback method called and formats the input of each callback function with metadata regarding the state of LLM run, and adds the response to the list of records for both the {method}_records and action. It then logs the response to mlflow server. Initialize callback handler. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([name, experiment, tags, ...]) Initialize callback handler. flush_tracker([langchain_asset, finish]) get_custom_callback_meta() on_agent_action(action, **kwargs) Run on agent action. on_agent_finish(finish, **kwargs) Run when agent ends running.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
fe7c257d2058-1
on_agent_finish(finish, **kwargs) Run when agent ends running. on_chain_end(outputs, **kwargs) Run when chain ends running. on_chain_error(error, **kwargs) Run when chain errors. on_chain_start(serialized, inputs, **kwargs) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run when LLM generates a new token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts. on_retriever_end(documents, **kwargs) Run when Retriever ends running. on_retriever_error(error, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, **kwargs) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, **kwargs) Run when text is received. on_tool_end(output, **kwargs) Run when tool ends running. on_tool_error(error, **kwargs) Run when tool errors. on_tool_start(serialized, input_str, **kwargs) Run when tool starts running. reset_callback_meta() Reset the callback metadata.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
fe7c257d2058-2
Run when tool starts running. reset_callback_meta() Reset the callback metadata. __init__(name: Optional[str] = 'langchainrun-%', experiment: Optional[str] = 'langchain', tags: Optional[Dict] = None, tracking_uri: Optional[str] = None, run_id: Optional[str] = None, artifacts_dir: str = '') → None[source]¶ Initialize callback handler. Parameters name (Optional[str]) – experiment (Optional[str]) – tags (Optional[Dict]) – tracking_uri (Optional[str]) – run_id (Optional[str]) – artifacts_dir (str) – Return type None flush_tracker(langchain_asset: Optional[Any] = None, finish: bool = False) → None[source]¶ Parameters langchain_asset (Optional[Any]) – finish (bool) – Return type None get_custom_callback_meta() → Dict[str, Any]¶ Return type Dict[str, Any] on_agent_action(action: AgentAction, **kwargs: Any) → Any[source]¶ Run on agent action. Parameters action (AgentAction) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, **kwargs: Any) → None[source]¶ Run when agent ends running. Parameters finish (AgentFinish) – kwargs (Any) – Return type None on_chain_end(outputs: Union[Dict[str, Any], str, List[str]], **kwargs: Any) → None[source]¶ Run when chain ends running. Parameters outputs (Union[Dict[str, Any], str, List[str]]) – kwargs (Any) – Return type None on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
fe7c257d2058-3
on_chain_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when chain errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any) → None[source]¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – kwargs (Any) – Return type None on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when LLM errors. Parameters error (BaseException) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
fe7c257d2058-4
Parameters error (BaseException) – kwargs (Any) – Return type None on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run when LLM generates a new token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], **kwargs: Any) → Any[source]¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, **kwargs: Any) → Any[source]¶ Run when Retriever errors. Parameters error (BaseException) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, **kwargs: Any) → Any[source]¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
fe7c257d2058-5
kwargs (Any) – Return type Any on_text(text: str, **kwargs: Any) → None[source]¶ Run when text is received. Parameters text (str) – kwargs (Any) – Return type None on_tool_end(output: Any, **kwargs: Any) → None[source]¶ Run when tool ends running. Parameters output (Any) – kwargs (Any) – Return type None on_tool_error(error: BaseException, **kwargs: Any) → None[source]¶ Run when tool errors. Parameters error (BaseException) – kwargs (Any) – Return type None on_tool_start(serialized: Dict[str, Any], input_str: str, **kwargs: Any) → None[source]¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – kwargs (Any) – Return type None reset_callback_meta() → None¶ Reset the callback metadata. Return type None Examples using MlflowCallbackHandler¶ MLflow
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.mlflow_callback.MlflowCallbackHandler.html
a28e8e6da30a-0
langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler¶ class langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler[source]¶ Callback Handler that tracks bedrock anthropic info. Attributes always_verbose Whether to call verbose callbacks even if verbose is False. completion_tokens ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. prompt_tokens raise_error run_inline successful_requests total_cost total_tokens Methods __init__() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, parent_run_id]) Run when chain ends running. on_chain_error(error, *, run_id[, parent_run_id]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Collect token usage. on_llm_error(error, *, run_id[, parent_run_id]) Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. :type kwargs: Any.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-1
on_llm_new_token(token, **kwargs) Print out the token. on_llm_start(serialized, prompts, **kwargs) Print out the prompts. on_retriever_end(documents, *, run_id[, ...]) Run when Retriever ends running. on_retriever_error(error, *, run_id[, ...]) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id[, parent_run_id]) Run when tool ends running. on_tool_error(error, *, run_id[, parent_run_id]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__() → None[source]¶ Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-2
Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-3
kwargs (Any) – Return type Any on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Collect token usage. Parameters response (LLMResult) – kwargs (Any) – Return type None on_llm_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when LLM errors. :param error: The error that occurred. :type error: BaseException :param kwargs: Additional keyword arguments. response (LLMResult): The response which was generated beforethe error occurred. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Print out the token. Parameters
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-4
Print out the token. Parameters token (str) – kwargs (Any) – Return type None on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Print out the prompts. Parameters serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever ends running. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when Retriever errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when Retriever starts running. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-5
metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
a28e8e6da30a-6
kwargs (Any) – Return type Any on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.bedrock_anthropic_callback.BedrockAnthropicTokenUsageCallbackHandler.html
16ab9aae97fa-0
langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler¶ class langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False)[source]¶ Callback handler that returns an async iterator. Only the final output of the agent will be iterated. Instantiate AsyncFinalIteratorCallbackHandler. Parameters answer_prefix_tokens (Optional[List[str]]) – Token sequence that prefixes the answer. Default is [“Final”, “Answer”, “:”] strip_tokens (bool) – Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix (bool) – Should answer prefix itself also be streamed? Attributes always_verbose ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__(*[, answer_prefix_tokens, ...]) Instantiate AsyncFinalIteratorCallbackHandler. aiter() append_to_last_tokens(token) check_if_answer_reached() on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end. on_chain_end(outputs, *, run_id[, ...]) Run when chain ends running. on_chain_error(error, *, run_id[, ...]) Run when chain errors. on_chain_start(serialized, inputs, *, run_id)
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-1
on_chain_start(serialized, inputs, *, run_id) Run when chain starts running. on_chat_model_start(serialized, messages, *, ...) Run when a chat model starts running. on_llm_end(response, **kwargs) Run when LLM ends running. on_llm_error(error, **kwargs) Run when LLM errors. on_llm_new_token(token, **kwargs) Run on new LLM token. on_llm_start(serialized, prompts, **kwargs) Run when LLM starts running. on_retriever_end(documents, *, run_id[, ...]) Run on retriever end. on_retriever_error(error, *, run_id[, ...]) Run on retriever error. on_retriever_start(serialized, query, *, run_id) Run on retriever start. on_retry(retry_state, *, run_id[, parent_run_id]) Run on a retry event. on_text(text, *, run_id[, parent_run_id, tags]) Run on arbitrary text. on_tool_end(output, *, run_id[, ...]) Run when tool ends running. on_tool_error(error, *, run_id[, ...]) Run when tool errors. on_tool_start(serialized, input_str, *, run_id) Run when tool starts running. __init__(*, answer_prefix_tokens: Optional[List[str]] = None, strip_tokens: bool = True, stream_prefix: bool = False) → None[source]¶ Instantiate AsyncFinalIteratorCallbackHandler. Parameters answer_prefix_tokens (Optional[List[str]]) – Token sequence that prefixes the answer. Default is [“Final”, “Answer”, “:”]
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-2
Default is [“Final”, “Answer”, “:”] strip_tokens (bool) – Ignore white spaces and new lines when comparing answer_prefix_tokens to last tokens? (to determine if answer has been reached) stream_prefix (bool) – Should answer prefix itself also be streamed? Return type None async aiter() → AsyncIterator[str]¶ Return type AsyncIterator[str] append_to_last_tokens(token: str) → None[source]¶ Parameters token (str) – Return type None check_if_answer_reached() → bool[source]¶ Return type bool async on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain ends running. Parameters outputs (Dict[str, Any]) –
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-3
Run when chain ends running. Parameters outputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_chain_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when chain errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when chain starts running. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None async on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Any¶ Run when a chat model starts running.
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-4
Run when a chat model starts running. ATTENTION: This method is called for chat models. If you’re implementinga handler for a non-chat model, you should use on_llm_start instead. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Any async on_llm_end(response: LLMResult, **kwargs: Any) → None[source]¶ Run when LLM ends running. Parameters response (LLMResult) – kwargs (Any) – Return type None async on_llm_error(error: BaseException, **kwargs: Any) → None¶ Run when LLM errors. Parameters error (BaseException) – The error that occurred. kwargs (Any) – Additional keyword arguments. - response (LLMResult): The response which was generated before the error occurred. Return type None async on_llm_new_token(token: str, **kwargs: Any) → None[source]¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) – kwargs (Any) – Return type None async on_llm_start(serialized: Dict[str, Any], prompts: List[str], **kwargs: Any) → None[source]¶ Run when LLM starts running. ATTENTION: This method is called for non-chat models (regular LLMs). Ifyou’re implementing a handler for a chat model, you should use on_chat_model_start instead. Parameters serialized (Dict[str, Any]) – prompts (List[str]) –
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-5
serialized (Dict[str, Any]) – prompts (List[str]) – kwargs (Any) – Return type None async on_retriever_end(documents: Sequence[Document], *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever end. Parameters documents (Sequence[Document]) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_retriever_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on retriever error. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_retriever_start(serialized: Dict[str, Any], query: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run on retriever start. Parameters serialized (Dict[str, Any]) – query (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-6
kwargs (Any) – Return type None async on_retry(retry_state: RetryCallState, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on a retry event. Parameters retry_state (RetryCallState) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any async on_text(text: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run on arbitrary text. Parameters text (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_tool_end(output: Any, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool ends running. Parameters output (Any) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None async on_tool_error(error: BaseException, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, **kwargs: Any) → None¶ Run when tool errors. Parameters error (BaseException) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
16ab9aae97fa-7
kwargs (Any) – Return type None async on_tool_start(serialized: Dict[str, Any], input_str: str, *, run_id: UUID, parent_run_id: Optional[UUID] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → None¶ Run when tool starts running. Parameters serialized (Dict[str, Any]) – input_str (str) – run_id (UUID) – parent_run_id (Optional[UUID]) – tags (Optional[List[str]]) – metadata (Optional[Dict[str, Any]]) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type None
https://api.python.langchain.com/en/latest/callbacks/langchain.callbacks.streaming_aiter_final_only.AsyncFinalIteratorCallbackHandler.html
766ccdb1d9b2-0
langchain_community.callbacks.tracers.wandb.WandbTracer¶ class langchain_community.callbacks.tracers.wandb.WandbTracer(run_args: Optional[WandbRunArgs] = None, **kwargs: Any)[source]¶ Callback Handler that logs to Weights and Biases. This handler will log the model architecture and run traces to Weights and Biases. This will ensure that all LangChain activity is logged to W&B. Initializes the WandbTracer. Parameters run_args (Optional[WandbRunArgs]) – (dict, optional) Arguments to pass to wandb.init(). If not provided, wandb.init() will be called with no arguments. Please refer to the wandb.init for more details. kwargs (Any) – To use W&B to monitor all LangChain activity, add this tracer like any other LangChain callback: ``` from wandb.integration.langchain import WandbTracer tracer = WandbTracer() chain = LLMChain(llm, callbacks=[tracer]) # …end of notebook / script: tracer.finish() ``` Attributes ignore_agent Whether to ignore agent callbacks. ignore_chain Whether to ignore chain callbacks. ignore_chat_model Whether to ignore chat model callbacks. ignore_llm Whether to ignore LLM callbacks. ignore_retriever Whether to ignore retriever callbacks. ignore_retry Whether to ignore retry callbacks. raise_error run_inline Methods __init__([run_args]) Initializes the WandbTracer. finish() Waits for all asynchronous processes to finish and data to upload. on_agent_action(action, *, run_id[, ...]) Run on agent action. on_agent_finish(finish, *, run_id[, ...]) Run on agent end.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
766ccdb1d9b2-1
Run on agent end. on_chain_end(outputs, *, run_id[, inputs]) End a trace for a chain run. on_chain_error(error, *[, inputs]) Handle an error for a chain run. on_chain_start(serialized, inputs, *, run_id) Start a trace for a chain run. on_chat_model_start(serialized, messages, *, ...) Start a trace for an LLM run. on_llm_end(response, *, run_id, **kwargs) End a trace for an LLM run. on_llm_error(error, *, run_id, **kwargs) Handle an error for an LLM run. on_llm_new_token(token, *[, chunk, ...]) Run on new LLM token. on_llm_start(serialized, prompts, *, run_id) Start a trace for an LLM run. on_retriever_end(documents, *, run_id, **kwargs) Run when Retriever ends running. on_retriever_error(error, *, run_id, **kwargs) Run when Retriever errors. on_retriever_start(serialized, query, *, run_id) Run when Retriever starts running. on_retry(retry_state, *, run_id, **kwargs) Run on a retry event. on_text(text, *, run_id[, parent_run_id]) Run on arbitrary text. on_tool_end(output, *, run_id, **kwargs) End a trace for a tool run. on_tool_error(error, *, run_id, **kwargs) Handle an error for a tool run.
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
766ccdb1d9b2-2
Handle an error for a tool run. on_tool_start(serialized, input_str, *, run_id) Start a trace for a tool run. __init__(run_args: Optional[WandbRunArgs] = None, **kwargs: Any) → None[source]¶ Initializes the WandbTracer. Parameters run_args (Optional[WandbRunArgs]) – (dict, optional) Arguments to pass to wandb.init(). If not provided, wandb.init() will be called with no arguments. Please refer to the wandb.init for more details. kwargs (Any) – Return type None To use W&B to monitor all LangChain activity, add this tracer like any other LangChain callback: ``` from wandb.integration.langchain import WandbTracer tracer = WandbTracer() chain = LLMChain(llm, callbacks=[tracer]) # …end of notebook / script: tracer.finish() ``` finish() → None[source]¶ Waits for all asynchronous processes to finish and data to upload. Proxy for wandb.finish(). Return type None on_agent_action(action: AgentAction, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent action. Parameters action (AgentAction) – run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_agent_finish(finish: AgentFinish, *, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Any¶ Run on agent end. Parameters finish (AgentFinish) – run_id (UUID) – parent_run_id (Optional[UUID]) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
766ccdb1d9b2-3
run_id (UUID) – parent_run_id (Optional[UUID]) – kwargs (Any) – Return type Any on_chain_end(outputs: Dict[str, Any], *, run_id: UUID, inputs: Optional[Dict[str, Any]] = None, **kwargs: Any) → Run¶ End a trace for a chain run. Parameters outputs (Dict[str, Any]) – run_id (UUID) – inputs (Optional[Dict[str, Any]]) – kwargs (Any) – Return type Run on_chain_error(error: BaseException, *, inputs: Optional[Dict[str, Any]] = None, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for a chain run. Parameters error (BaseException) – inputs (Optional[Dict[str, Any]]) – run_id (UUID) – kwargs (Any) – Return type Run on_chain_start(serialized: Dict[str, Any], inputs: Dict[str, Any], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, run_type: Optional[str] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for a chain run. Parameters serialized (Dict[str, Any]) – inputs (Dict[str, Any]) – run_id (UUID) – tags (Optional[List[str]]) – parent_run_id (Optional[UUID]) – metadata (Optional[Dict[str, Any]]) – run_type (Optional[str]) – name (Optional[str]) – kwargs (Any) – Return type Run
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html
766ccdb1d9b2-4
name (Optional[str]) – kwargs (Any) – Return type Run on_chat_model_start(serialized: Dict[str, Any], messages: List[List[BaseMessage]], *, run_id: UUID, tags: Optional[List[str]] = None, parent_run_id: Optional[UUID] = None, metadata: Optional[Dict[str, Any]] = None, name: Optional[str] = None, **kwargs: Any) → Run¶ Start a trace for an LLM run. Parameters serialized (Dict[str, Any]) – messages (List[List[BaseMessage]]) – run_id (UUID) – tags (Optional[List[str]]) – parent_run_id (Optional[UUID]) – metadata (Optional[Dict[str, Any]]) – name (Optional[str]) – kwargs (Any) – Return type Run on_llm_end(response: LLMResult, *, run_id: UUID, **kwargs: Any) → Run¶ End a trace for an LLM run. Parameters response (LLMResult) – run_id (UUID) – kwargs (Any) – Return type Run on_llm_error(error: BaseException, *, run_id: UUID, **kwargs: Any) → Run¶ Handle an error for an LLM run. Parameters error (BaseException) – run_id (UUID) – kwargs (Any) – Return type Run on_llm_new_token(token: str, *, chunk: Optional[Union[GenerationChunk, ChatGenerationChunk]] = None, run_id: UUID, parent_run_id: Optional[UUID] = None, **kwargs: Any) → Run¶ Run on new LLM token. Only available when streaming is enabled. Parameters token (str) –
https://api.python.langchain.com/en/latest/callbacks/langchain_community.callbacks.tracers.wandb.WandbTracer.html