Datasets:
ArXiv:
License:
| license: cc-by-4.0 | |
| datasets: | |
| - Viglong/Hunyuan3D-FLUX-Gen | |
| papers: | |
| space: Viglong/Orient-Anything-V2 | |
| model: Viglong/OriAnyV2_ckpt | |
| <div align="center"> | |
| <h1>[NeurIPS 2025 Spotlight]<br> | |
| Orient Anything V2: Unifying Orientation and Rotation Understanding</h1> | |
| [**Zehan Wang**](https://scholar.google.com/citations?user=euXK0lkAAAAJ)<sup>1*</sup> · [**Ziang Zhang**](https://scholar.google.com/citations?hl=zh-CN&user=DptGMnYAAAAJ)<sup>1*</sup> · [**Jialei Wang**](https://scholar.google.com/citations?hl=en&user=OIuFz1gAAAAJ)<sup>1</sup> · [**Jiayang Xu**](https://github.com/1339354001)<sup>1</sup> · [**Tianyu Pang**](https://scholar.google.com/citations?hl=zh-CN&user=wYDbtFsAAAAJ)<sup>2</sup> · [**Du Chao**](https://scholar.google.com/citations?hl=zh-CN&user=QOp7xW0AAAAJ)<sup>2</sup> · [**Hengshuang Zhao**](https://scholar.google.com/citations?user=4uE10I0AAAAJ&hl&oi=ao)<sup>3</sup> · [**Zhou Zhao**](https://scholar.google.com/citations?user=IIoFY90AAAAJ&hl&oi=ao)<sup>1</sup> | |
| <sup>1</sup>Zhejiang University    <sup>2</sup>SEA AI Lab    <sup>3</sup>HKU | |
| *Equal Contribution | |
| <a href='https://arxiv.org/abs/2412.18605'><img src='https://img.shields.io/badge/arXiv-PDF-red' alt='Paper PDF'></a> | |
| <a href='https://orient-anythingv2.github.io'><img src='https://img.shields.io/badge/Project_Page-OriAnyV2-green' alt='Project Page'></a> | |
| <a href='https://huggingface.co/spaces/Viglong/Orient-Anything-V2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> | |
| <a href='https://huggingface.co/datasets/Viglong/OriAnyV2_Train_Render'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Train Data-orange'></a> | |
| <a href='https://huggingface.co/datasets/Viglong/OriAnyV2_Inference'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Test Data-orange'></a> | |
| <a href='https://huggingface.co/papers/2412.18605'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Paper-yellow'></a> | |
| </div> | |
| **Orient Anything V2**, a unified spatial vision model for understanding orientation, symmetry, and relative rotation, achieves SOTA performance across 14 datasets. | |
| <!--  --> | |
| ## News | |
| * **2025-10-24:** 🔥[Paper](https://arxiv.org/abs/2412.18605), [Project Page](https://orient-anythingv2.github.io), [Code](https://github.com/SpatialVision/Orient-Anything-V2), [Model Checkpoint](https://huggingface.co/Viglong/OriAnyV2_ckpt/blob/main/demo_ckpts/rotmod_realrotaug_best.pt), and [Demo](https://huggingface.co/spaces/Viglong/Orient-Anything-V2) have been released! | |
| * **2025-09-18:** 🔥Orient Anything V2 has been accepted as a Spotlight @ NeurIPS 2025! | |
| ## Pre-trained Model Weights | |
| We provide pre-trained model weights and are continuously iterating on them to support more inference scenarios: | |
| | Model | Params | Checkpoint | | |
| |:-|-:|:-:| | |
| | Orient-Anything-V2 | 5.05 GB | [Download](https://huggingface.co/Viglong/OriAnyV2_ckpt/blob/main/demo_ckpts/rotmod_realrotaug_best.pt) | | |
| ## Quick Start | |
| ### 1 Dependency Installation | |
| ```shell | |
| conda create -n orianyv2 python=3.11 | |
| conda activate orianyv2 | |
| pip install -r requirements.txt | |
| ``` | |
| ### 2 Gradio App | |
| Start gradio by executing the following script: | |
| ```bash | |
| python app.py | |
| ``` | |
| then open GUI page(default is https://127.0.0.1:7860) in web browser. | |
| or, you can try it in our [Huggingface-Space](https://huggingface.co/spaces/Viglong/Orient-Anything-V2) | |
| ### 3 Python Scripts | |
| ```python | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| import tempfile | |
| import os | |
| from paths import * | |
| from vision_tower import VGGT_OriAny_Ref | |
| from inference import * | |
| from app_utils import * | |
| mark_dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] >= 8 else torch.float16 | |
| # device = 'cuda:0' | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| if os.path.exists(LOCAL_CKPT_PATH): | |
| ckpt_path = LOCAL_CKPT_PATH | |
| else: | |
| from huggingface_hub import hf_hub_download | |
| ckpt_path = hf_hub_download(repo_id="Viglong/Orient-Anything-V2", filename=HF_CKPT_PATH, repo_type="model", cache_dir='./', resume_download=True) | |
| model = VGGT_OriAny_Ref(out_dim=900, dtype=mark_dtype, nopretrain=True) | |
| model.load_state_dict(torch.load(ckpt_path, map_location='cpu')) | |
| model.eval() | |
| model = model.to(device) | |
| print('Model loaded.') | |
| @torch.no_grad() | |
| def run_inference(pil_ref, pil_tgt=None, do_rm_bkg=True): | |
| if pil_tgt is not None: | |
| if do_rm_bkg: | |
| pil_ref = background_preprocess(pil_ref, True) | |
| pil_tgt = background_preprocess(pil_tgt, True) | |
| else: | |
| if do_rm_bkg: | |
| pil_ref = background_preprocess(pil_ref, True) | |
| try: | |
| ans_dict = inf_single_case(model, pil_ref, pil_tgt) | |
| except Exception as e: | |
| print("Inference error:", e) | |
| raise gr.Error(f"Inference failed: {str(e)}") | |
| def safe_float(val, default=0.0): | |
| try: | |
| return float(val) | |
| except: | |
| return float(default) | |
| az = safe_float(ans_dict.get('ref_az_pred', 0)) | |
| el = safe_float(ans_dict.get('ref_el_pred', 0)) | |
| ro = safe_float(ans_dict.get('ref_ro_pred', 0)) | |
| alpha = int(ans_dict.get('ref_alpha_pred', 1)) | |
| if pil_tgt is not None: | |
| rel_az = safe_float(ans_dict.get('rel_az_pred', 0)) | |
| rel_el = safe_float(ans_dict.get('rel_el_pred', 0)) | |
| rel_ro = safe_float(ans_dict.get('rel_ro_pred', 0)) | |
| print("Relative Pose: Azi",rel_az,"Ele",rel_el,"Rot",rel_ro) | |
| image_ref_path = 'assets/examples/F35-0.jpg' | |
| image_tgt_path = 'assets/examples/F35-1.jpg' # optional | |
| image_ref = Image.open(image_ref_path).convert('RGB') | |
| image_tgt = Image.open(image_tgt_path).convert('RGB') | |
| run_inference(image_ref, image_tgt, True) | |
| ``` | |
| ## Evaluate Orient-Anything-V2 | |
| ### Data Preparation | |
| Download the absolute orientation, relative rotation, and symm-orientation test datasets from [Huggingface Dataset](https://huggingface.co/datasets/Viglong/OriAnyV2_Inference). | |
| ```shell | |
| # set mirror endpoint to accelerate | |
| # export HF_ENDPOINT='https://hf-mirror.com' | |
| huggingface-cli download --repo-type dataset Viglong/OriAnyV2_Inference --local-dir OriAnyV2_Inference | |
| ``` | |
| Use the following command to extract the dataset: | |
| ```shell | |
| cd OriAnyV2_Inference | |
| for f in *.tar.gz; do | |
| tar -xzf "$f" | |
| done | |
| ``` | |
| Modify `DATA_ROOT` in `paths.py` to point to the dataset root directory(`/path/to/OriAnyV2_Inference`). | |
| ### Evaluate with torch-lightning | |
| To evaluate on test datasets, run the following code: | |
| ```shell | |
| python eval_on_dataset.py | |
| ``` | |
| ## Train Orient-Anything-V2 | |
| We use `FLUX.1-dev` and `Hunyuan3D-2.0` to generate our training data and render it with Blender. We provide the fully rendered data, which you can obtain from the link below. | |
| [Hunyuan3D-FLUX-Gen](https://huggingface.co/datasets/Viglong/Hunyuan3D-FLUX-Gen) | |
| To store all this data, we recommend having at least **2TB** of free disk space on your server. | |
| We are currently organizing the complete **data construction pipeline** and **training code** for Orient-Anything-V2 — stay tuned. | |
| ## Acknowledgement | |
| We would like to express our sincere gratitude to the following excellent works: | |
| - [VGGT](https://github.com/facebookresearch/vggt) | |
| - [FLUX](https://github.com/black-forest-labs/flux) | |
| - [Hunyuan3D-2.0](https://github.com/Tencent-Hunyuan/Hunyuan3D-2) | |
| - [Blender](https://github.com/blender/blender) | |
| - [rembg](https://github.com/danielgatis/rembg) | |
| ## Citation | |
| If you find this project useful, please consider citing: | |
| ```bibtex | |
| ``` | |