VideoRoPE / vision_niah_d /eval_debug_interrupt.sh
Wiselnn's picture
Upload folder using huggingface_hub (#1)
4eedc1a verified
#!/bin/bash
set -x
models=(
"/mnt/petrelfs/weixilin/cache/Qwen2-VL-t_scale2_change_freq-128frames-16card_8k-context-330k-llava-video"
)
rope_types=(
# "m_rope"
"videorope"
)
# basic port
base_port=6011
# iterate each model
for i in "${!models[@]}"; do
model=${models[$i]}
rope_type=${rope_types[$i]}
port=$((base_port + i))
echo "evaluating model: $model"
echo "using rope_type: $rope_type"
echo "port: $port"
accelerate launch --num_processes 8 --config_file easy_context/accelerate_configs/deepspeed_inference.yaml \
--main_process_port "$port" vision_niah_d/eval_vision_niah_interrupt.py \
--model "$model" \
--needle_dataset vision_niah_d/needle_datasets/dataset.json \
--needle_embedding_dir vision_niah_d/video_needle_haystack/data/needle_qwen2_embeddings_144tokens_dataset \
--needle_embedding_interrupt_dir vision_niah_d/video_needle_haystack/data/needle_qwen2_embeddings_144tokens_dataset_interrupt \
--haystack_dir vision_niah_d/video_needle_haystack/data/haystack_qwen2_embeddings_6000frames \
--prompt_template qwen2 \
--max_frame_num 3000 \
--min_frame_num 100 \
--frame_interval 200 \
--output_path vision_niah_d/niah_output_interrupt \
--rope_type "$rope_type" \
--image_tokens 144 \
--depth_interval 0.2
echo "model $model evaluation has done."
echo "------------------------------------"
done