The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
|
1images_dots
|
Dataset of the Publication: Your other Left! Vision-Language Models Fail to Identify Relative Positions in Medical Images (MICCAI 2025)
For more Information:
- Visit the Project Page
- Or read the Paper
Information about the Dataset:
Each subfolder for the Research Questions (RQ1, RQ2, RQ3) and the Ablation Study (AS) contains:
- Image folders with the rotated/flipped CT slices
- JSON files with corresponding question-answer (QA) pairs for each CT slice
Example for each Research Question:
For details, check the paper summary on our Project Page.
Folder Structure of the MIRP Dataset:
π RQ1 (Research Question 1)
images/
β CT slicesqa.json
β Question-answer pairs
π RQ2 (Research Question 2)
image_dots/
β CT slices with dot markersimage_letters/
β CT slices with letter markersimage_numbers/
β CT slices with number markersqa_dots.json
β QA pairs with anatomical names for dot markersqa_letters.json
β QA pairs with anatomical names for letter markersqa_numbers.json
β QA pairs with anatomical names for number markers
π RQ3 (Research Question 3(2))
image_dots/
β CT slices with dot markersimage_letters/
β CT slices with letter markersimage_numbers/
β CT slices with number markersqa_dots.json
β QA pairs without anatomical names for dot markersqa_letters.json
β QA pairs without anatomical names for letter markersqa_numbers.json
β QA pairs without anatomical names for number markers
π AS (Ablation Study)
image_dots/
β White images with dot markersimage_letters/
β White images with letter markersimage_numbers/
β White images with number markersqa_dots.json
β QA pairs for dot markersqa_letters.json
β QA pairs for letter markersqa_numbers.json
β QA pairs for number markers
Note:
- RQ3 is the dataset we used for RQ3(2).
- For RQ3(1), we use the same data as RQ1 β only the evaluation method later differs (answers are later checked for standard anatomy correctness instead of image orientation correctness).
- Need a refresher on the research questions? Check the paper summary on our Project Page.
Anatomic Structures that we use in MIRP:
We extracted the anatomical structures that the questions refer to using the Totalsegmentatior: https://github.com/wasserth/TotalSegmentator
The correct answers to the relative positioning questions are obtained by comparing the centers of mass of the two structures being evaluated.
Here is the list of all the structures (we have grouped the different vertebrae and ribs together):
Index | TotalSegmentator name |
---|---|
1 | spleen |
2 | kidney_right |
3 | kidney_left |
4 | gallbladder |
5 | liver |
6 | stomach |
7 | pancreas |
8 | adrenal_gland_right |
9 | adrenal_gland_left |
10 | lung_upper_lobe_left |
11 | lung_lower_lobe_left |
12 | lung_upper_lobe_right |
13 | lung_middle_lobe_right |
14 | lung_lower_lobe_right |
15 | esophagus |
16 | trachea |
17 | thyroid_gland |
18 | small_bowel |
19 | duodenum |
20 | colon |
21 | urinary_bladder |
22 | prostate |
23 | kidney_cyst_left |
24 | kidney_cyst_right |
25 | sacrum |
26 | vertebrae |
51 | heart |
52 | aorta |
53 | pulmonary_vein |
54 | brachiocephalic_trunk |
55 | subclavian_artery_right |
56 | subclavian_artery_left |
57 | common_carotid_artery_right |
58 | common_carotid_artery_left |
59 | brachiocephalic_vein_left |
60 | brachiocephalic_vein_right |
61 | atrial_appendage_left |
62 | superior_vena_cava |
63 | inferior_vena_cava |
64 | portal_vein_and_splenic_vein |
65 | iliac_artery_left |
66 | iliac_artery_right |
67 | iliac_vena_left |
68 | iliac_vena_right |
69 | humerus_left |
70 | humerus_right |
71 | scapula_left |
72 | scapula_right |
73 | clavicula_left |
74 | clavicula_right |
75 | femur_left |
76 | femur_right |
77 | hip_left |
78 | hip_right |
79 | spinal_cord |
80 | gluteus_maximus_left |
81 | gluteus_maximus_right |
82 | gluteus_medius_left |
83 | gluteus_medius_right |
84 | gluteus_minimus_left |
85 | gluteus_minimus_right |
86 | autochthon_left |
87 | autochthon_right |
88 | iliopsoas_left |
89 | iliopsoas_right |
90 | brain |
91 | skull |
92 | rib_left |
93 | rib_right |
116 | sternum |
117 | costal_cartilages |
Details on the Question-Answer JSON Files:
This is one exmaple element of a question answer json file.
{
"filename": "amos_0002.nii_slice-20_classes-22_perc-12.png",
"base_name": "amos_0002.nii",
"slice_index": 20,
"classes_count": 22,
"multiple_components_same_label": true,
"question_answer": [
{
"object1_name": "left kidney",
"object2_name": "inferior vena cava",
"object1_gray": 3,
"object2_gray": 63,
"object1_center_x": 346.97574777687953,
"object1_center_y": 214.49151172190784,
"object2_center_x": 231.29456193353474,
"object2_center_y": 290.3836858006042,
"question": "Is the left kidney below the inferior vena cava?",
"answer": 0
}
],
"rotate_flip_short": "A3",
"rotate_flip_long": "Horizontal flip and 180 degree rotation"
},
filename
: Filename of the PNG image to match the question to the imagebase_name
: The original CT volume where the slice was extraced from (Either a volume from the Amos dataset or from the BTCV dataset)slice_index
: Slice number within the CT volume.classes_count
: Number of anatomical structures segmented by TotalSegmentator that are visible in the slice.multiple_components_same_label
: Whether there are multiple disconnected components of the same anatomical structure in the slice. (We only asked questions about structures that appear once per slice.)question_answer
object_name
: Anatomical names of the structures.object_gray
: Label index from the TotalSegmentator table (used for number markers; letter markers start at AA for 1 and continue with AB, AC, β¦).object_center
: x and y coordinates of the center of mass of the two structures the correct answers to the questions were derived from these centers).question
: The question presented to the model.answer
: The correct answer (0 = no, 1 = yes).
rotate_flip_short
: Information on how the image is roated and flipped (A: Flip: A1 0Β°, A2: 90Β°, A3: 180Β°, A4 270Β° || B: Not Flipped: B1 0Β°, B2: 90Β°, B3: 180Β°, B4 270Β°)
Fixed Prompt:
The json files contain the questions that we pass to the model.
In addition to the question, we add a fixed text prompt:
RQ1, RQ2, RQ3:
"The image is a 2D axial slice of an abdominal CT scan with soft tissue windowing. "
"Answer strictly with '1' for Yes or '0' for No. No explanations, no additional text. "
"Your output must contain exactly one character: '1' or '0'."
"Ignore anatomical correctness; focus solely on what the image shows.\n"
"Example:\n"
"Q: "Is the aorta above the spleen?" A: 1\n"
"Now answer the real question:\n\n"
f"Q: {question_from_json}"
AS:
"Answer strictly with '1' for Yes or '0' for No. No explanations, no additional text. "
"Your output must contain exactly one character: '1' or '0'."
"Focus solely on what the image shows.\n"
"Example:\n"
"Q: "Is the red dot above the blue dot" A: 1\n"
"Now answer the real question:\n\n"
f"Q: {question_from_json}"
The example questions in the fixed prompt are chosen to match the question in the task.
For example, RQ2 with dot marks: "Is the aorta (red) above the spleen (blue)?
The 2_inference_code/
already contains those fixed prompts.
- Downloads last month
- 50