TruckV2X / TruckV2X.py
XieTenghu1's picture
Add files using upload-large-folder tool
86d089c verified
import os
from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Sequence, Image
class TruckV2X(GeneratorBasedBuilder):
VERSION = "1.0.0"
def _info(self):
return DatasetInfo(
description="TruckV2X: A Truck-Centered Perception Dataset",
features=Features({
"town": Value("string"),
"frame_id": Value("string"),
"agent_data": {
"cav": {
"camera_images": Sequence(Image()),
"lidar_files": Sequence(Value("string")),
"yaml_file": Value("string"),
},
"roadside": {
"camera_images": Sequence(Image()),
"lidar_files": Sequence(Value("string")),
"yaml_file": Value("string"),
},
"tractor": {
"camera_images": Sequence(Image()),
"lidar_files": Sequence(Value("string")),
"yaml_file": Value("string"),
},
"trailer": {
"camera_images": Sequence(Image()),
"lidar_files": Sequence(Value("string")),
"yaml_file": Value("string"),
},
}
}),
supervised_keys=None,
homepage="TBD",
license="MIT"
)
def _split_generators(self, dl_manager):
# 直接用 dl_manager 下载并自动解压
train_zips = [
"train/Town1_1.zip", "train/Town1_4.zip", "train/Town1_5.zip",
"train/Town2_0.zip", "train/Town2_1.zip", "train/Town2_2.zip",
"train/Town2_3.zip", "train/Town3_1.zip", "train/Town3_4.zip",
"train/Town3_6.zip", "train/Town3_7.zip", "train/Town3_8.zip",
"train/Town3_9.zip", "train/Town4_0.zip", "train/Town4_1.zip",
"train/Town4_3.zip", "train/Town4_4.zip", "train/Town4_6.zip",
"train/Town5_0.zip", "train/Town5_3.zip", "train/Town5_4.zip",
"train/Town5_5.zip", "train/Town5_6.zip", "train/Town5_7.zip",
"train/Town5_8.zip", "train/Town6_0.zip", "train/Town6_2.zip",
"train/Town6_3.zip", "train/Town6_4.zip", "train/Town6_5.zip",
"train/Town7_1.zip", "train/Town7_3.zip", "train/Town10_0.zip",
"train/Town10_1.zip", "train/Town10_6.zip", "train/Town10_7.zip",
"train/Town10_8.zip", "train/Town15_1.zip"
]
val_zips = [
"val/Town3_0.zip", "val/Town4_5.zip", "val/Town5_2.zip",
"val/Town5_9.zip", "val/Town6_6.zip", "val/Town7_4.zip",
"val/Town10_4.zip", "val/Town10_9.zip", "val/Town10_10.zip"
]
test_zips = [
"test/Town1_0.zip", "test/Town1_2.zip", "test/Town1_3.zip",
"test/Town2_4.zip", "test/Town2_5.zip", "test/Town3_2.zip",
"test/Town3_3.zip", "test/Town3_5.zip", "test/Town4_2.zip",
"test/Town5_1.zip", "test/Town6_1.zip", "test/Town7_0.zip",
"test/Town7_2.zip", "test/Town10_2.zip", "test/Town10_3.zip",
"test/Town10_5.zip", "test/Town15_0.zip"
]
train_dirs = [dl_manager.extract(dl_manager.download(p)) for p in train_zips]
val_dirs = [dl_manager.extract(dl_manager.download(p)) for p in val_zips]
test_dirs = [dl_manager.extract(dl_manager.download(p)) for p in test_zips]
return [
SplitGenerator(name=Split.TRAIN, gen_kwargs={"town_dirs": train_dirs}),
SplitGenerator(name=Split.VALIDATION, gen_kwargs={"town_dirs": val_dirs}),
SplitGenerator(name=Split.TEST, gen_kwargs={"town_dirs": test_dirs}),
]
def _generate_examples(self, town_dirs):
id_ = 0
agents = ["cav", "roadside", "tractor", "trailer"]
camera_counts = {"cav": 4, "roadside": 1, "tractor": 5, "trailer": 5}
lidar_counts = {"cav": 1, "roadside": 1, "tractor": 2, "trailer": 2}
for town_dir in town_dirs:
# 如果自动解压后是有一级文件夹,进入它
subfolders = [f for f in os.listdir(town_dir) if os.path.isdir(os.path.join(town_dir, f))]
if len(subfolders) == 1:
town_dir = os.path.join(town_dir, subfolders[0])
town_name = os.path.basename(town_dir.rstrip("/\\"))
# 用cav目录判断帧ID
cav_dir = os.path.join(town_dir, "cav")
if not os.path.exists(cav_dir):
continue
frame_ids = sorted([
fname.replace(".yaml", "")
for fname in os.listdir(cav_dir)
if fname.endswith(".yaml")
])
for frame_id in frame_ids:
example = {
"town": town_name,
"frame_id": frame_id,
"agent_data": {}
}
for agent in agents:
agent_dir = os.path.join(town_dir, agent)
data = {
"camera_images": [],
"lidar_files": [],
"yaml_file": ""
}
for i in range(camera_counts[agent]):
cam_path = os.path.join(agent_dir, f"{frame_id}_camera{i}.jpg")
if os.path.exists(cam_path):
data["camera_images"].append(cam_path)
for i in range(lidar_counts[agent]):
lidar_path = os.path.join(agent_dir, f"{frame_id}_lidar{i}.pcd")
if os.path.exists(lidar_path):
data["lidar_files"].append(lidar_path)
yaml_path = os.path.join(agent_dir, f"{frame_id}.yaml")
if os.path.exists(yaml_path):
data["yaml_file"] = yaml_path
example["agent_data"][agent] = data
yield id_, example
id_ += 1