|
import os |
|
from datasets import GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split, Features, Value, Sequence, Image |
|
|
|
|
|
class TruckV2X(GeneratorBasedBuilder): |
|
VERSION = "1.0.0" |
|
|
|
def _info(self): |
|
return DatasetInfo( |
|
description="TruckV2X: A Truck-Centered Perception Dataset", |
|
features=Features({ |
|
"town": Value("string"), |
|
"frame_id": Value("string"), |
|
"agent_data": { |
|
"cav": { |
|
"camera_images": Sequence(Image()), |
|
"lidar_files": Sequence(Value("string")), |
|
"yaml_file": Value("string"), |
|
}, |
|
"roadside": { |
|
"camera_images": Sequence(Image()), |
|
"lidar_files": Sequence(Value("string")), |
|
"yaml_file": Value("string"), |
|
}, |
|
"tractor": { |
|
"camera_images": Sequence(Image()), |
|
"lidar_files": Sequence(Value("string")), |
|
"yaml_file": Value("string"), |
|
}, |
|
"trailer": { |
|
"camera_images": Sequence(Image()), |
|
"lidar_files": Sequence(Value("string")), |
|
"yaml_file": Value("string"), |
|
}, |
|
} |
|
}), |
|
supervised_keys=None, |
|
homepage="TBD", |
|
license="MIT" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_zips = [ |
|
"train/Town1_1.zip", "train/Town1_4.zip", "train/Town1_5.zip", |
|
"train/Town2_0.zip", "train/Town2_1.zip", "train/Town2_2.zip", |
|
"train/Town2_3.zip", "train/Town3_1.zip", "train/Town3_4.zip", |
|
"train/Town3_6.zip", "train/Town3_7.zip", "train/Town3_8.zip", |
|
"train/Town3_9.zip", "train/Town4_0.zip", "train/Town4_1.zip", |
|
"train/Town4_3.zip", "train/Town4_4.zip", "train/Town4_6.zip", |
|
"train/Town5_0.zip", "train/Town5_3.zip", "train/Town5_4.zip", |
|
"train/Town5_5.zip", "train/Town5_6.zip", "train/Town5_7.zip", |
|
"train/Town5_8.zip", "train/Town6_0.zip", "train/Town6_2.zip", |
|
"train/Town6_3.zip", "train/Town6_4.zip", "train/Town6_5.zip", |
|
"train/Town7_1.zip", "train/Town7_3.zip", "train/Town10_0.zip", |
|
"train/Town10_1.zip", "train/Town10_6.zip", "train/Town10_7.zip", |
|
"train/Town10_8.zip", "train/Town15_1.zip" |
|
] |
|
|
|
val_zips = [ |
|
"val/Town3_0.zip", "val/Town4_5.zip", "val/Town5_2.zip", |
|
"val/Town5_9.zip", "val/Town6_6.zip", "val/Town7_4.zip", |
|
"val/Town10_4.zip", "val/Town10_9.zip", "val/Town10_10.zip" |
|
] |
|
|
|
test_zips = [ |
|
"test/Town1_0.zip", "test/Town1_2.zip", "test/Town1_3.zip", |
|
"test/Town2_4.zip", "test/Town2_5.zip", "test/Town3_2.zip", |
|
"test/Town3_3.zip", "test/Town3_5.zip", "test/Town4_2.zip", |
|
"test/Town5_1.zip", "test/Town6_1.zip", "test/Town7_0.zip", |
|
"test/Town7_2.zip", "test/Town10_2.zip", "test/Town10_3.zip", |
|
"test/Town10_5.zip", "test/Town15_0.zip" |
|
] |
|
|
|
train_dirs = [dl_manager.extract(dl_manager.download(p)) for p in train_zips] |
|
val_dirs = [dl_manager.extract(dl_manager.download(p)) for p in val_zips] |
|
test_dirs = [dl_manager.extract(dl_manager.download(p)) for p in test_zips] |
|
|
|
return [ |
|
SplitGenerator(name=Split.TRAIN, gen_kwargs={"town_dirs": train_dirs}), |
|
SplitGenerator(name=Split.VALIDATION, gen_kwargs={"town_dirs": val_dirs}), |
|
SplitGenerator(name=Split.TEST, gen_kwargs={"town_dirs": test_dirs}), |
|
] |
|
|
|
def _generate_examples(self, town_dirs): |
|
id_ = 0 |
|
agents = ["cav", "roadside", "tractor", "trailer"] |
|
camera_counts = {"cav": 4, "roadside": 1, "tractor": 5, "trailer": 5} |
|
lidar_counts = {"cav": 1, "roadside": 1, "tractor": 2, "trailer": 2} |
|
|
|
for town_dir in town_dirs: |
|
|
|
subfolders = [f for f in os.listdir(town_dir) if os.path.isdir(os.path.join(town_dir, f))] |
|
if len(subfolders) == 1: |
|
town_dir = os.path.join(town_dir, subfolders[0]) |
|
|
|
town_name = os.path.basename(town_dir.rstrip("/\\")) |
|
|
|
|
|
cav_dir = os.path.join(town_dir, "cav") |
|
if not os.path.exists(cav_dir): |
|
continue |
|
|
|
frame_ids = sorted([ |
|
fname.replace(".yaml", "") |
|
for fname in os.listdir(cav_dir) |
|
if fname.endswith(".yaml") |
|
]) |
|
|
|
for frame_id in frame_ids: |
|
example = { |
|
"town": town_name, |
|
"frame_id": frame_id, |
|
"agent_data": {} |
|
} |
|
|
|
for agent in agents: |
|
agent_dir = os.path.join(town_dir, agent) |
|
data = { |
|
"camera_images": [], |
|
"lidar_files": [], |
|
"yaml_file": "" |
|
} |
|
|
|
for i in range(camera_counts[agent]): |
|
cam_path = os.path.join(agent_dir, f"{frame_id}_camera{i}.jpg") |
|
if os.path.exists(cam_path): |
|
data["camera_images"].append(cam_path) |
|
|
|
for i in range(lidar_counts[agent]): |
|
lidar_path = os.path.join(agent_dir, f"{frame_id}_lidar{i}.pcd") |
|
if os.path.exists(lidar_path): |
|
data["lidar_files"].append(lidar_path) |
|
|
|
yaml_path = os.path.join(agent_dir, f"{frame_id}.yaml") |
|
if os.path.exists(yaml_path): |
|
data["yaml_file"] = yaml_path |
|
|
|
example["agent_data"][agent] = data |
|
|
|
yield id_, example |
|
id_ += 1 |