OTSurv_Dataset / README.md
soonera's picture
Update README.md
4700e1d verified
|
raw
history blame
6.86 kB
---
language: en
license: cc-by-nc-sa-4.0
tags:
- survival-analysis
- multiple-instance-learning
- optimal-transport
- medical-imaging
- deep-learning
- pytorch
model-index:
- name: OTSurv
results:
- task:
type: survival-analysis
name: Survival Prediction
dataset:
type: TCGA
name: TCGA (BLCA, BRCA, LUAD, STAD, COADREAD, KIRC)
metrics:
- type: c-index
value: 0.646
---
<div align="center">
<img src="assets/otsurv_logo.png" alt="OTSurv Logo" width="300"/>
<h2>OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport</h2>
<h4>🌟 MICCAI 2025 🌟</h4>
<p>
<a href="https://scholar.google.com.hk/citations?user=Tcg-9DcAAAAJ">Qin Ren</a><sup>1 ★</sup>&nbsp;
<a href="https://yfwang.me/">Yifan Wang</a><sup>1</sup>&nbsp;
<a href="https://lab-smile.github.io/">Ruogu Fang</a><sup>2</sup>&nbsp;
<a href="https://scholar.google.com/citations?hl=en&user=v3w4IYUAAAAJ">Haibin Ling</a><sup>1</sup>&nbsp;
<a href="https://chenyuyou.me/">Chenyu You</a><sup>1 ★</sup>
</p>
<p>
<sup>1</sup> Stony Brook University &nbsp;&nbsp;
<sup>2</sup> University of Florida &nbsp;&nbsp; <br>
★ Corresponding authors
</p>
<p align="center">
<a href="https://arxiv.org/abs/2506.20741">
<img src="https://img.shields.io/badge/💡%20Paper-MICCAI-blue?style=flat-square" alt="Paper">
</a>&nbsp;
<a href="https://huggingface.co/Y-Research-Group/OTSurv">
<img src="https://img.shields.io/badge/Hugging%20Face-Model-yellow?style=flat-square&logo=huggingface" alt="Hugging Face Model">
</a>&nbsp;
<a href="#">
<img src="https://img.shields.io/badge/PyTorch-2.0-EE4C2C?style=flat-square&logo=pytorch" alt="PyTorch 2.0">
</a>
</p>
</div>
## 🧠 DL;TR
<p>
Welcome to the official repository of <b>OTSurv</b>, a novel framework that integrates
<b>Multiple Instance Learning (MIL)</b> with <b>Heterogeneity-aware Optimal Transport (OT)</b>
to tackle the challenges of survival prediction in medical imaging and clinical data.
</p>
<blockquote>
📍 <b>To be presented at MICCAI 2025</b><br>
🧠 <b>Focus</b>: Survival Analysis · Multiple Instance Learning · Optimal Transport
</blockquote>
<div align="center">
<img src="docs/OTSurv_main.png" alt="OTSurv Framework Overview" width="800"/>
</div>
## 📁 Data Organization
### Project Structure
```
OTSurv/
├── checkpoints/
│ ├── model_blca_fold0.pth
│ ├── model_blca_fold1.pth
│ └── ...
├── data/
│ ├── tcga_blca/
│ ├── tcga_brca/
│ ├── tcga_coadread/
│ ├── tcga_kirc/
│ ├── tcga_luad/
│ └── tcga_stad/
├── result/
│ ├── exp_otsurv_test/
│ ├── exp_otsurv_train/
│ └── visualization/
├── src/
│ ├── scripts/
│ ├── analysis/
│ └── ...
└── docs/
│ ├── OTSurv_main.png
│ └── OTSurv_heatmap.png
```
### Feature Format
- **H5 Format**: Features are stored in `.h5` files (directories ending with `feats_h5/`)
For patch feature extraction, please refer to [CLAM](https://github.com/mahmoodlab/CLAM).
You can download the preprocessed features from [this link](#) (link to be provided).
<br>
## 🚀 Quick Start
### Prerequisites
- Python 3.8+
- GPU or CPU-only
- Conda package manager
### Installation
```bash
# Clone the repository
git clone https://github.com/Y-Research-SBU/OTSurv.git
cd OTSurv
# Create conda environment
conda env create -f env.yaml
conda activate otsurv
```
### Training
```bash
# Training results will be saved under result/exp_otsurv_train
cd src
# Train on all datasets
bash scripts/train_otsurv.sh
# Train on TCGA-BLCA dataset specifically
bash scripts/train_blca.sh
```
### Evaluation
You can download pre-trained checkpoints from [this link](#) (link to be provided).
```bash
# Test results will be saved under result/exp_otsurv_test
cd src
# Test on all datasets
bash scripts/test_otsurv.sh
# Test on TCGA-BLCA dataset specifically
bash scripts/test_blca.sh
```
```bash
cd src
# Calculate performance metrics
python analysis/calculate_CIndex_mean_std.py
```
```bash
# Generated figures will be saved under result/visualization
cd src
# Generate survival curves
python analysis/plot_survival_curv.py
```
The survival curve for TCGA-BLCA looks like this:
<div align="center">
<img src="result/visulization/BLCA_km.png" alt="TCGA-BLCA Survival Curve" width="500"/>
</div>
<br>
## 📊 Performance Results
Below are the C-Index performance results of OTSurv across different cancer types:
| Cancer Type | Mean C-Index | Std Dev |
|-------------|-------------|---------|
| **BRCA** | 0.621 | ±0.071 |
| **BLCA** | 0.637 | ±0.065 |
| **LUAD** | 0.638 | ±0.077 |
| **STAD** | 0.565 | ±0.057 |
| **COADREAD** | 0.667 | ±0.111 |
| **KIRC** | 0.750 | ±0.149 |
**Overall Performance**: Average C-Index across all datasets is **0.646**
> 💡 **Note**: C-Index (Concordance Index) is a commonly used performance metric in survival analysis, where values closer to 1.0 indicate better prediction performance.
<br>
## 📚 Citation
If you find this work useful, please cite our paper:
```bibtex
@inproceedings{ren2025otsurv,
title={A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport},
author={Ren, Qin and Wang, Yifan and Fang, Ruogu and Ling, Haibin and You, Chenyu},
booktitle={Medical Image Computing and Computer Assisted Intervention (MICCAI)},
year={2025},
note={Accepted for publication}
}
```
> 📝 **Note**: This paper has been accepted at MICCAI 2025. The citation details will be updated once the paper is officially published.
>
<br>
## 🙏 Acknowledgements
This work builds upon the excellent research from:
- [PANTHER](https://openaccess.thecvf.com/content/CVPR2024/html/Song_Morphological_Prototyping_for_Unsupervised_Slide_Representation_Learning_in_Computational_Pathology_CVPR_2024_paper.html)
- [MMP](https://github.com/mahmoodlab/MMP)
- [CLAM](https://github.com/mahmoodlab/CLAM)
- [PPOT](https://github.com/rhfeiyang/PPOT)
<br>
## 📄 License
This project is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License - see the [LICENSE.md](LICENSE.md) file for details.
<br>
## 🤝 Contributing
We welcome contributions to **OTSurv**! If you have suggestions, bug reports, or want to add features or experiments, feel free to:
- 🐞 Submit an issue
- 🔧 Open a pull request
- 💬 Start a discussion
---
<p align="center">
<strong>If you find this repository helpful, please consider starring it!</strong>
</p>