Dataset Viewer
Auto-converted to Parquet
Production_Quality
float64
6.25
8.05
Production_Complexity
float64
1.45
2.69
Content_Enjoyment
float64
3.3
6
Content_Usefulness
float64
4.74
7.01
audio
stringlengths
9
9
7.719129
1.646803
5.622207
6.369165
69877.ogg
7.651095
1.575584
5.75328
6.560035
73097.ogg
7.635621
1.58746
5.631588
6.614818
72103.ogg
7.251293
1.574973
4.621085
5.755706
69323.ogg
7.740058
1.678734
5.566994
6.293418
72121.ogg
7.461479
1.630521
5.376542
6.257834
73202.ogg
7.463736
1.604905
5.517905
6.240028
70195.ogg
7.727043
1.646366
5.603029
6.607766
70420.ogg
7.580328
1.554721
5.592321
6.463693
70622.ogg
7.294374
1.63594
4.985016
6.212927
69336.ogg
7.424777
1.715613
4.869051
6.02502
70377.ogg
7.285924
1.610811
4.856692
5.825245
70044.ogg
7.8013
1.593035
5.47243
6.711462
70387.ogg
7.512769
1.656875
5.439218
6.217925
70127.ogg
7.748194
1.562533
5.622816
6.561577
70554.ogg
7.076365
1.582175
4.904228
5.882135
69369.ogg
7.79683
1.586799
5.841831
6.868271
73307.ogg
7.73059
1.594792
5.571648
6.576886
73150.ogg
7.385395
1.516261
5.040608
6.183501
71958.ogg
7.562006
1.540786
5.258349
6.387393
70529.ogg
7.611048
1.599309
5.263627
6.217264
72365.ogg
7.166603
1.695535
4.945516
6.016704
69790.ogg
7.654659
1.55313
5.14313
6.552568
73113.ogg
7.376384
1.726529
4.819602
5.859759
70118.ogg
6.53169
1.596705
4.129181
5.129191
69350.ogg
7.318962
1.595116
5.217719
6.230695
70087.ogg
7.604192
1.555349
5.487492
6.622054
72254.ogg
7.776746
1.597707
5.828626
6.786344
72005.ogg
7.69508
1.575706
5.535754
6.671169
73118.ogg
7.319996
1.661794
4.41739
6.107201
69957.ogg
7.784833
1.586148
4.842252
6.530092
72259.ogg
7.500866
1.608236
5.197021
6.005206
69792.ogg
7.648387
1.625485
5.406242
6.420945
70046.ogg
7.614425
1.635388
5.450489
6.27808
70150.ogg
7.42169
1.59527
5.24777
6.093553
69839.ogg
7.502452
1.595558
5.5107
6.412058
72100.ogg
7.476717
1.551606
5.30661
6.222286
70157.ogg
7.442202
1.788867
4.719066
5.892472
72227.ogg
7.443682
1.576303
5.431186
6.364173
72377.ogg
7.692119
1.560771
5.560678
6.670815
72396.ogg
7.583806
1.560067
5.045483
6.092305
69841.ogg
7.667203
1.675847
5.354211
6.372821
72443.ogg
7.683181
1.549343
5.568081
6.510285
70650.ogg
7.308485
1.680782
4.099781
5.349722
70173.ogg
7.321188
1.594608
4.67673
5.997241
70010.ogg
7.153304
1.579313
5.043087
5.826723
70020.ogg
7.296046
1.665634
5.152672
5.996717
69239.ogg
7.520899
1.6003
5.450366
6.504591
71954.ogg
7.821691
1.724148
5.776316
6.614633
69842.ogg
7.619382
1.645258
5.509707
6.478068
72367.ogg
7.731265
1.607691
5.482367
6.591856
70487.ogg
7.535833
1.706488
5.219807
6.371463
72353.ogg
7.624887
1.553604
5.317258
6.39256
73227.ogg
7.606212
1.563659
5.352593
6.398024
70483.ogg
7.563797
1.589864
5.611491
6.43931
72252.ogg
7.654609
1.648986
5.610815
6.506575
73165.ogg
7.573951
1.574162
5.323098
6.379136
73126.ogg
7.724786
1.595462
5.571887
6.631394
69928.ogg
7.532762
2.686896
4.102468
6.571054
71917.ogg
7.546916
1.58371
5.437361
6.408508
70490.ogg
7.531816
1.612816
5.002594
6.061179
70147.ogg
7.881893
1.617375
5.333791
6.538435
72156.ogg
7.524623
1.590538
5.493424
6.271604
70292.ogg
7.639019
1.753978
4.935278
6.024814
70100.ogg
7.496624
1.585212
4.967209
6.174422
72309.ogg
7.57789
1.621749
5.507859
6.407599
70403.ogg
7.342531
1.559909
5.169728
6.015076
70538.ogg
7.039207
1.618878
4.805179
5.690881
69335.ogg
7.575246
1.63131
5.200501
6.470012
72216.ogg
7.521565
1.585824
5.51766
6.498171
73186.ogg
7.460695
1.615474
5.184726
6.177481
69324.ogg
7.537317
1.555997
5.364866
6.489838
72021.ogg
7.82509
1.554308
5.718147
6.732921
72387.ogg
7.583532
1.55239
5.509273
6.518761
71984.ogg
7.051081
1.74991
4.813416
5.987527
69339.ogg
7.609929
1.58817
4.695261
6.301491
69796.ogg
7.736605
1.645827
5.627676
6.606061
72152.ogg
7.492441
1.605709
5.392685
6.378542
69950.ogg
7.69788
1.712002
5.661172
6.492538
69896.ogg
7.497232
1.623144
5.356598
6.437125
69849.ogg
7.498208
1.550338
5.229088
6.177226
71935.ogg
7.690415
1.618244
5.54672
6.39255
72169.ogg
7.538052
1.587022
5.229885
6.42164
73211.ogg
7.694535
1.617216
5.631085
6.517569
73099.ogg
7.691958
1.611061
5.575417
6.602886
72173.ogg
7.545098
1.567287
5.750327
6.568004
72065.ogg
7.662498
1.562295
5.477085
6.490619
70263.ogg
7.232512
1.577897
4.727998
5.97449
69263.ogg
7.683933
1.572114
5.63814
6.778222
73115.ogg
7.557886
1.596773
5.488512
6.653141
70628.ogg
7.566788
1.660457
5.185479
6.196609
70488.ogg
7.627393
1.557519
5.529452
6.51308
72339.ogg
7.785954
1.703542
5.694047
6.185956
70174.ogg
7.71365
1.583269
5.713295
6.68127
72337.ogg
7.565784
1.677168
5.349869
6.255412
70169.ogg
7.371661
1.553765
4.801789
5.792419
69912.ogg
7.614634
1.561299
5.452814
6.566494
72077.ogg
7.458768
1.571011
5.363208
6.278766
70496.ogg
7.604305
1.639492
5.659953
6.472561
72245.ogg
7.613749
1.562095
5.480123
6.43242
73313.ogg

Aesthetics of Open Text-to-Speech for ๐Ÿ‡บ๐Ÿ‡ฆ Ukrainian dataset

Community

What is it?

This dataset contains metrics for https://huggingface.co/datasets/Yehor/opentts-uk dataset retrieved by https://github.com/facebookresearch/audiobox-aesthetics

How metrics calculated?

You can find a audiobox_aesthetics_of_opentts_uk.ipynb file in the Files and versions tab here.

Metrics were calculated using Google Colab with L4 instance. It requires about 7-8 GB of GPU memory.

Cite this work

@misc {smoliakov_2025,
    author       = { {Smoliakov} },
    title        = { opentts-uk-aesthetics (Revision d0d2561) },
    year         = 2025,
    url          = { https://huggingface.co/datasets/Yehor/opentts-uk-aesthetics },
    doi          = { 10.57967/hf/4562 },
    publisher    = { Hugging Face }
}
Downloads last month
16