The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'MODEL 1'}) and 3 missing columns ({'rmsd', '# vina_score', 'pdbid'}). This happened while the csv dataset builder was generating data using zip://PDBdata/10/10GS-VWW/10GS-VWW_decoys.pdbqt::hf://datasets/YupuZ/DecoyDB@fc5a2b8a3e5574c4b441ab65c1594235f92ca9db/structures.zip Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast MODEL 1: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 376 to {'pdbid': Value(dtype='string', id=None), '# vina_score': Value(dtype='float64', id=None), 'rmsd': Value(dtype='float64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'MODEL 1'}) and 3 missing columns ({'rmsd', '# vina_score', 'pdbid'}). This happened while the csv dataset builder was generating data using zip://PDBdata/10/10GS-VWW/10GS-VWW_decoys.pdbqt::hf://datasets/YupuZ/DecoyDB@fc5a2b8a3e5574c4b441ab65c1594235f92ca9db/structures.zip Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
pdbid
string | # vina_score
float64 | rmsd
float64 |
---|---|---|
10GS-VWW | -6.849 | 4.659878 |
10GS-VWW | -6.829 | 3.814967 |
10GS-VWW | -6.669 | 6.303845 |
10GS-VWW | -6.594 | 5.977943 |
10GS-VWW | -6.588 | 6.288187 |
10GS-VWW | -6.416 | 5.541668 |
10GS-VWW | -6.363 | 6.640499 |
10GS-VWW | -6.359 | 5.967768 |
10GS-VWW | -6.35 | 7.182811 |
10GS-VWW | -6.277 | 8.001085 |
10GS-VWW | -6.265 | 6.555503 |
10GS-VWW | -6.185 | 9.312336 |
10GS-VWW | -6.176 | 6.826641 |
10GS-VWW | -6.058 | 6.573407 |
10GS-VWW | -6.012 | 8.351678 |
10GS-VWW | -6.009 | 7.063061 |
10GS-VWW | -5.961 | 6.413722 |
10GS-VWW | -5.926 | 4.692872 |
10GS-VWW | -5.916 | 6.794795 |
10GS-VWW | -5.907 | 6.496293 |
10GS-VWW | -5.885 | 6.101104 |
10GS-VWW | -5.755 | 5.054888 |
10GS-VWW | -5.747 | 6.996554 |
10GS-VWW | -5.723 | 5.806851 |
10GS-VWW | -5.651 | 9.811802 |
10GS-VWW | -5.605 | 5.497033 |
10GS-VWW | -5.585 | 8.170451 |
10GS-VWW | -5.564 | 8.490276 |
10GS-VWW | -5.555 | 7.647462 |
10GS-VWW | -5.545 | 6.1256 |
10GS-VWW | -5.535 | 8.37163 |
10GS-VWW | -5.508 | 5.935044 |
10GS-VWW | -5.489 | 8.461925 |
10GS-VWW | -5.473 | 8.154902 |
10GS-VWW | -5.454 | 6.627912 |
10GS-VWW | -5.441 | 7.29316 |
10GS-VWW | -5.418 | 8.125244 |
10GS-VWW | -5.398 | 5.572532 |
10GS-VWW | -5.362 | 7.276332 |
10GS-VWW | -5.354 | 7.596731 |
10GS-VWW | -5.313 | 9.205617 |
10GS-VWW | -5.281 | 7.960158 |
10GS-VWW | -5.28 | 9.585594 |
10GS-VWW | -5.275 | 8.71343 |
10GS-VWW | -5.258 | 6.925304 |
10GS-VWW | -5.247 | 7.505578 |
10GS-VWW | -5.233 | 5.790226 |
10GS-VWW | -5.226 | 8.361425 |
10GS-VWW | -5.217 | 8.399775 |
10GS-VWW | -5.213 | 6.354485 |
10GS-VWW | -5.205 | 9.179231 |
10GS-VWW | -5.204 | 9.562518 |
10GS-VWW | -5.203 | 6.373942 |
10GS-VWW | -5.197 | 8.777455 |
10GS-VWW | -5.196 | 6.866523 |
10GS-VWW | -5.186 | 6.359702 |
10GS-VWW | -5.177 | 7.591611 |
10GS-VWW | -5.175 | 7.157656 |
10GS-VWW | -5.155 | 6.123518 |
10GS-VWW | -5.15 | 5.781893 |
10GS-VWW | -5.123 | 9.105703 |
10GS-VWW | -5.123 | 8.614573 |
10GS-VWW | -5.119 | 9.583221 |
10GS-VWW | -5.119 | 9.608389 |
10GS-VWW | -5.106 | 6.312141 |
10GS-VWW | -5.103 | 6.421252 |
10GS-VWW | -5.09 | 6.236233 |
10GS-VWW | -5.084 | 6.828954 |
10GS-VWW | -5.081 | 6.596879 |
10GS-VWW | -5.081 | 6.416339 |
10GS-VWW | -5.067 | 6.892225 |
10GS-VWW | -5.058 | 9.562727 |
10GS-VWW | -5.052 | 8.009839 |
10GS-VWW | -5.049 | 6.516289 |
10GS-VWW | -5.036 | 8.385843 |
10GS-VWW | -5.032 | 6.326549 |
10GS-VWW | -5.022 | 6.316435 |
10GS-VWW | -5.015 | 8.474068 |
10GS-VWW | -5.007 | 8.969239 |
10GS-VWW | -5.001 | 7.542822 |
10GS-VWW | -5 | 8.043035 |
10GS-VWW | -4.989 | 9.028502 |
10GS-VWW | -4.989 | 8.864614 |
10GS-VWW | -4.988 | 9.448008 |
10GS-VWW | -4.977 | 8.062363 |
10GS-VWW | -4.974 | 7.306424 |
10GS-VWW | -4.971 | 9.695047 |
10GS-VWW | -4.954 | 7.665555 |
10GS-VWW | -4.952 | 6.684864 |
10GS-VWW | -4.94 | 8.420167 |
10GS-VWW | -4.937 | 6.52071 |
10GS-VWW | -4.92 | 7.079571 |
10GS-VWW | -4.918 | 6.508571 |
10GS-VWW | -4.917 | 6.532794 |
10GS-VWW | -4.907 | 7.125179 |
10GS-VWW | -4.906 | 9.009592 |
10GS-VWW | -4.895 | 5.558379 |
10GS-VWW | -4.882 | 8.119142 |
10GS-VWW | -4.864 | 6.683162 |
10GS-VWW | -4.831 | 5.532565 |
Dataset Summary
DecoyDB is a curated dataset of high-resolution protein-ligand complexes and their associated decoy structures. It is designed to support research on graph contrastive learning, binding affinity prediction, and structure-based drug discovery. The dataset is derived from experimentally resolved complexes and refined to ensure data quality.
Data Structure
Each protein-ligand complex is stored in a nested directory under DecoyDB/, using the format:
DecoyDB
├── README.md # This file
├── merged_decoy_scores.csv # RMSD and Vina score for all decoys
├── structures.zip # Structures for proteins, ligands and decoys
├── {prefix}/ # {prefix} = first 2 characters of the complex ID (e.g., '1A', '2B')
│ └── {complex_id}/ # Unique identifier for each complex (e.g., 1A2C_H1Q)
│ ├── {complex_id}_ligand.pdbqt # Ligand structure in AutoDock format
│ ├── {complex_id}_target.pdbqt # Protein structure in AutoDock format
│ ├── {complex_id}_decoys.pdbqt # Concatenated decoy structures
│ └── {complex_id}_decoys_scores.csv # Corresponding RMSD scores for each decoy
Dataset Details
Dataset Refinement
To construct DecoyDB, we first filtered protein–ligand complexes from the Protein Data Bank (PDB) with a resolution ≤ 2.5 Å and applied the following refinement steps:
- Removed ligands with molecular weights outside the (50, 1000) range.
- Excluded complexes involving metal clusters, monoatomic ions, and common crystallization molecules.
- Retained ligands with elements limited to C, N, O, H, S, P, and halogens.
- Retained those protein chains with at least one atom within 10 Å of the ligand.
- Saved the ligand and protein separately.
Decoy Generation
For each refined protein–ligand complex, 100 decoy poses were generated using AutoDock Vina 1.2, with a 5 Å padding grid box and an exhaustiveness parameter of 8 and remove unrealistic generated structures.
Dataset Statistics
- Number of protein–ligand complexes: 61,104
- Number of decoys: 5,353,307
- Average number of decoys per complex: 88
- Average RMSD: 7.22 Å
- RMSD range: [0.03, 25.56] Å
Contact
- Yupu Zhang ([email protected])
- Zhe Jiang ([email protected])
- Downloads last month
- 638