Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
10K<n<100K
License:
albertvillanova
HF staff
Convert dataset sizes from base 2 to base 10 in the dataset card (#2)
3e60128
metadata
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|conll2003
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: conll
pretty_name: CoNLL++
train-eval-index:
- config: conllpp
task: token-classification
task_id: entity_extraction
splits:
train_split: train
eval_split: test
col_mapping:
tokens: tokens
ner_tags: tags
metrics:
- type: seqeval
name: seqeval
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
- name: chunk_tags
sequence:
class_label:
names:
'0': O
'1': B-ADJP
'2': I-ADJP
'3': B-ADVP
'4': I-ADVP
'5': B-CONJP
'6': I-CONJP
'7': B-INTJ
'8': I-INTJ
'9': B-LST
'10': I-LST
'11': B-NP
'12': I-NP
'13': B-PP
'14': I-PP
'15': B-PRT
'16': I-PRT
'17': B-SBAR
'18': I-SBAR
'19': B-UCP
'20': I-UCP
'21': B-VP
'22': I-VP
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-MISC
'8': I-MISC
config_name: conllpp
splits:
- name: train
num_bytes: 6931393
num_examples: 14041
- name: validation
num_bytes: 1739247
num_examples: 3250
- name: test
num_bytes: 1582078
num_examples: 3453
download_size: 4859600
dataset_size: 10252718
Dataset Card for "conllpp"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
Dataset Summary
CoNLLpp is a corrected version of the CoNLL2003 NER dataset where labels of 5.38% of the sentences in the test set have been manually corrected. The training set and development set from CoNLL2003 is included for completeness. One correction on the test set for example, is:
{
"tokens": ["SOCCER", "-", "JAPAN", "GET", "LUCKY", "WIN", ",", "CHINA", "IN", "SURPRISE", "DEFEAT", "."],
"original_ner_tags_in_conll2003": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-PER", "O", "O", "O", "O"],
"corrected_ner_tags_in_conllpp": ["O", "O", "B-LOC", "O", "O", "O", "O", "B-LOC", "O", "O", "O", "O"],
}
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure
Data Instances
conllpp
- Size of downloaded dataset files: 4.85 MB
- Size of the generated dataset: 10.26 MB
- Total amount of disk used: 15.11 MB
An example of 'train' looks as follows.
This example was too long and was cropped:
{
"chunk_tags": [11, 12, 12, 21, 13, 11, 11, 21, 13, 11, 12, 13, 11, 21, 22, 11, 12, 17, 11, 21, 17, 11, 12, 12, 21, 22, 22, 13, 11, 0],
"id": "0",
"ner_tags": [0, 3, 4, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"pos_tags": [12, 22, 22, 38, 15, 22, 28, 38, 15, 16, 21, 35, 24, 35, 37, 16, 21, 15, 24, 41, 15, 16, 21, 21, 20, 37, 40, 35, 21, 7],
"tokens": ["The", "European", "Commission", "said", "on", "Thursday", "it", "disagreed", "with", "German", "advice", "to", "consumers", "to", "shun", "British", "lamb", "until", "scientists", "determine", "whether", "mad", "cow", "disease", "can", "be", "transmitted", "to", "sheep", "."]
}
Data Fields
The data fields are the same among all splits.
conllpp
id
: astring
feature.tokens
: alist
ofstring
features.pos_tags
: alist
of classification labels, with possible values including"
(0),''
(1),#
(2),$
(3),(
(4).chunk_tags
: alist
of classification labels, with possible values includingO
(0),B-ADJP
(1),I-ADJP
(2),B-ADVP
(3),I-ADVP
(4).ner_tags
: alist
of classification labels, with possible values includingO
(0),B-PER
(1),I-PER
(2),B-ORG
(3),I-ORG
(4).
Data Splits
name | train | validation | test |
---|---|---|---|
conll2003 | 14041 | 3250 | 3453 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inproceedings{wang2019crossweigh,
title={CrossWeigh: Training Named Entity Tagger from Imperfect Annotations},
author={Wang, Zihan and Shang, Jingbo and Liu, Liyuan and Lu, Lihao and Liu, Jiacheng and Han, Jiawei},
booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
pages={5157--5166},
year={2019}
}
Contributions
Thanks to @ZihanWangKi for adding this dataset.