The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'caption'}) This happened while the json dataset builder was generating data using hf://datasets/a1557811266/ITCPR/query.json (at revision 5b1d0f92857a55d1eef00f93ff62965364e56477) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast file_path: string datasets: string person_id: int64 instance_id: int64 caption: string -- schema metadata -- pandas: '{"index_columns": [], "column_indexes": [], "columns": [{"name":' + 702 to {'file_path': Value(dtype='string', id=None), 'datasets': Value(dtype='string', id=None), 'person_id': Value(dtype='int64', id=None), 'instance_id': Value(dtype='int64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'caption'}) This happened while the json dataset builder was generating data using hf://datasets/a1557811266/ITCPR/query.json (at revision 5b1d0f92857a55d1eef00f93ff62965364e56477) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
file_path
string | datasets
string | person_id
int64 | instance_id
int64 |
---|---|---|---|
Celeb-reID/001/1_2_0.jpg | Celeb-reID | 1 | 1 |
Celeb-reID/001/1_70_0.jpg | Celeb-reID | 1 | 2 |
Celeb-reID/002/2_18_0.jpg | Celeb-reID | 2 | 3 |
Celeb-reID/002/2_34_0.jpg | Celeb-reID | 2 | 3 |
Celeb-reID/002/2_49_0.jpg | Celeb-reID | 2 | 4 |
Celeb-reID/003/3_14_1.jpg | Celeb-reID | 3 | 5 |
Celeb-reID/003/3_14_0.jpg | Celeb-reID | 3 | 6 |
Celeb-reID/004/4_16_0.jpg | Celeb-reID | 4 | 7 |
Celeb-reID/004/4_31_0.jpg | Celeb-reID | 4 | 8 |
Celeb-reID/005/5_99_0.jpg | Celeb-reID | 5 | 9 |
Celeb-reID/005/5_59_0.jpg | Celeb-reID | 5 | 10 |
Celeb-reID/006/6_75_0.jpg | Celeb-reID | 6 | 11 |
Celeb-reID/006/6_79_0.jpg | Celeb-reID | 6 | 12 |
Celeb-reID/007/7_96_1.jpg | Celeb-reID | 7 | 13 |
Celeb-reID/007/7_98_0.jpg | Celeb-reID | 7 | 14 |
Celeb-reID/008/8_90_0.jpg | Celeb-reID | 8 | 15 |
Celeb-reID/008/8_10_0.jpg | Celeb-reID | 8 | 16 |
Celeb-reID/008/8_13_0.jpg | Celeb-reID | 8 | 17 |
Celeb-reID/009/9_29_1.jpg | Celeb-reID | 9 | 18 |
Celeb-reID/009/9_53_1.jpg | Celeb-reID | 9 | 19 |
Celeb-reID/010/10_63_0.jpg | Celeb-reID | 10 | 20 |
Celeb-reID/010/10_73_0.jpg | Celeb-reID | 10 | 21 |
Celeb-reID/010/10_30_0.jpg | Celeb-reID | 10 | 21 |
Celeb-reID/010/10_59_0.jpg | Celeb-reID | 10 | 21 |
Celeb-reID/011/11_14_0.jpg | Celeb-reID | 11 | 22 |
Celeb-reID/011/11_25_0.jpg | Celeb-reID | 11 | 23 |
Celeb-reID/012/12_60_0.jpg | Celeb-reID | 12 | 24 |
Celeb-reID/012/12_18_0.jpg | Celeb-reID | 12 | 25 |
Celeb-reID/013/13_36_0.jpg | Celeb-reID | 13 | 26 |
Celeb-reID/013/13_51_1.jpg | Celeb-reID | 13 | 27 |
Celeb-reID/013/13_57_0.jpg | Celeb-reID | 13 | 28 |
Celeb-reID/014/14_8_0.jpg | Celeb-reID | 14 | 29 |
Celeb-reID/014/14_9_0.jpg | Celeb-reID | 14 | 30 |
Celeb-reID/015/15_87_0.jpg | Celeb-reID | 15 | 31 |
Celeb-reID/015/15_89_1.jpg | Celeb-reID | 15 | 32 |
Celeb-reID/016/16_30_1.jpg | Celeb-reID | 16 | 33 |
Celeb-reID/016/16_99_0.jpg | Celeb-reID | 16 | 34 |
Celeb-reID/016/16_91_1.jpg | Celeb-reID | 16 | 35 |
Celeb-reID/019/19_70_0.jpg | Celeb-reID | 19 | 36 |
Celeb-reID/019/19_21_1.jpg | Celeb-reID | 19 | 37 |
Celeb-reID/020/20_10_0.jpg | Celeb-reID | 20 | 38 |
Celeb-reID/020/20_96_0.jpg | Celeb-reID | 20 | 39 |
Celeb-reID/021/21_19_0.jpg | Celeb-reID | 21 | 40 |
Celeb-reID/021/21_16_1.jpg | Celeb-reID | 21 | 41 |
Celeb-reID/022/22_23_0.jpg | Celeb-reID | 22 | 42 |
Celeb-reID/022/22_8_1.jpg | Celeb-reID | 22 | 43 |
Celeb-reID/022/22_49_1.jpg | Celeb-reID | 22 | 44 |
Celeb-reID/023/23_4_0.jpg | Celeb-reID | 23 | 45 |
Celeb-reID/023/23_100_0.jpg | Celeb-reID | 23 | 46 |
Celeb-reID/024/24_16_0.jpg | Celeb-reID | 24 | 47 |
Celeb-reID/024/24_20_1.jpg | Celeb-reID | 24 | 48 |
Celeb-reID/024/24_54_0.jpg | Celeb-reID | 24 | 49 |
Celeb-reID/025/25_12_0.jpg | Celeb-reID | 25 | 50 |
Celeb-reID/025/25_39_0.jpg | Celeb-reID | 25 | 51 |
Celeb-reID/026/26_14_0.jpg | Celeb-reID | 26 | 52 |
Celeb-reID/026/26_44_0.jpg | Celeb-reID | 26 | 53 |
Celeb-reID/026/26_38_0.jpg | Celeb-reID | 26 | 54 |
Celeb-reID/027/27_3_0.jpg | Celeb-reID | 27 | 55 |
Celeb-reID/027/27_6_0.jpg | Celeb-reID | 27 | 56 |
Celeb-reID/028/28_78_0.jpg | Celeb-reID | 28 | 57 |
Celeb-reID/028/28_1_0.jpg | Celeb-reID | 28 | 58 |
Celeb-reID/029/29_9_1.jpg | Celeb-reID | 29 | 59 |
Celeb-reID/029/29_10_1.jpg | Celeb-reID | 29 | 60 |
Celeb-reID/030/30_20_0.jpg | Celeb-reID | 30 | 61 |
Celeb-reID/030/30_31_0.jpg | Celeb-reID | 30 | 61 |
Celeb-reID/030/30_75_0.jpg | Celeb-reID | 30 | 61 |
Celeb-reID/030/30_82_0.jpg | Celeb-reID | 30 | 62 |
Celeb-reID/031/31_8_0.jpg | Celeb-reID | 31 | 63 |
Celeb-reID/031/31_74_0.jpg | Celeb-reID | 31 | 63 |
Celeb-reID/031/31_27_0.jpg | Celeb-reID | 31 | 64 |
Celeb-reID/032/32_93_0.jpg | Celeb-reID | 32 | 65 |
Celeb-reID/032/32_98_0.jpg | Celeb-reID | 32 | 66 |
Celeb-reID/033/33_92_0.jpg | Celeb-reID | 33 | 67 |
Celeb-reID/033/33_85_0.jpg | Celeb-reID | 33 | 68 |
Celeb-reID/034/34_70_0.jpg | Celeb-reID | 34 | 69 |
Celeb-reID/034/34_63_0.jpg | Celeb-reID | 34 | 70 |
Celeb-reID/034/34_64_0.jpg | Celeb-reID | 34 | 71 |
Celeb-reID/035/35_40_0.jpg | Celeb-reID | 35 | 72 |
Celeb-reID/035/35_99_0.jpg | Celeb-reID | 35 | 73 |
Celeb-reID/036/36_91_0.jpg | Celeb-reID | 36 | 74 |
Celeb-reID/036/36_15_0.jpg | Celeb-reID | 36 | 75 |
Celeb-reID/037/37_88_0.jpg | Celeb-reID | 37 | 76 |
Celeb-reID/037/37_24_0.jpg | Celeb-reID | 37 | 77 |
Celeb-reID/037/37_47_0.jpg | Celeb-reID | 37 | 78 |
Celeb-reID/038/38_75_0.jpg | Celeb-reID | 38 | 79 |
Celeb-reID/038/38_85_0.jpg | Celeb-reID | 38 | 80 |
Celeb-reID/039/39_83_0.jpg | Celeb-reID | 39 | 81 |
Celeb-reID/039/39_90_0.jpg | Celeb-reID | 39 | 82 |
Celeb-reID/039/39_59_0.jpg | Celeb-reID | 39 | 83 |
Celeb-reID/040/40_100_0.jpg | Celeb-reID | 40 | 84 |
Celeb-reID/040/40_76_0.jpg | Celeb-reID | 40 | 85 |
Celeb-reID/040/40_24_0.jpg | Celeb-reID | 40 | 86 |
Celeb-reID/041/41_2_0.jpg | Celeb-reID | 41 | 87 |
Celeb-reID/041/41_62_0.jpg | Celeb-reID | 41 | 88 |
Celeb-reID/042/42_2_0.jpg | Celeb-reID | 42 | 89 |
Celeb-reID/042/42_29_1.jpg | Celeb-reID | 42 | 90 |
Celeb-reID/043/43_30_0.jpg | Celeb-reID | 43 | 91 |
Celeb-reID/043/43_20_0.jpg | Celeb-reID | 43 | 92 |
Celeb-reID/044/44_16_0.jpg | Celeb-reID | 44 | 93 |
Celeb-reID/044/44_20_0.jpg | Celeb-reID | 44 | 94 |
ITCPR Dataset
Overview
The ITCPR dataset is a comprehensive collection specifically designed for the Composed Person Retrieval (CPR) task. It consists of a total of 2,225 annotated triplets, derived from three distinct datasets: Celeb-reID, PRCC, and LAST.
For more details on how to use this dataset, please refer to: https://github.com/Delong-liu-bupt/Composed_Person_Retrieval
Dataset Scale
- Total Annotated Triplets: 2,225
- Unique Query Combinations: 2,202
- Total Images: 1,151 from Celeb-reID, 146 from PRCC, 905 from LAST
- Total Identities: 512 from Celeb-reID, 146 from PRCC, 541 from LAST
- Target Gallery: 20,510 images with 2,225 corresponding ground truths
Image Sources
The images in the ITCPR dataset are sourced from the following datasets:
- Celeb-reID
- PRCC
- LAST
These are utilized solely for testing purposes in the ZS-CPR task.
Annotation Files
The dataset includes two annotation files: query.json
and gallery.json
.
query.json
Format
Each entry in the query.json
file follows this structure:
{
"file_path": "Celeb-reID/001/1_1_0.jpg",
"datasets": "Celeb-reID",
"person_id": 1,
"instance_id": 1,
"caption": "Wearing a brown plaid shirt, black leather shoes, another dark gray T-shirt, another blue jeans"
}
file_path
: Reference image path relative to the data root directory.datasets
: Source dataset of the image.person_id
: Person ID in the original dataset.instance_id
: Unique identifier for gallery ground truth matching.caption
: Relative caption of the reference image.
gallery.json
Format
Each entry in the gallery.json
file follows this structure:
{
"file_path": "Celeb-reID/001/1_2_0.jpg",
"datasets": "Celeb-reID",
"person_id": 1,
"instance_id": 1
}
instance_id
: Matches withquery.json
for target images; -1 for non-matching query instances.- Others: Correspond to target image path, original dataset, and person ID.
Data Directory Structure
data
|-- Celeb-reID
| |-- 001
| |-- 002
| |-- 003
| ...
|-- PRCC
| |-- train
| |-- val
| |-- test
|-- LAST
| |-- 000000
| |-- 000001
| |-- 000002
| ...
|-- query.json
|-- gallery.json
Dataset Download and Preparation
Download and prepare the datasets as follows:
- Celeb-reID: GitHub Repository
- PRCC: Google Drive Link
- LAST: GitHub Repository
After downloading, use the img_process.py
script to process Celeb-reID and LAST datasets into the standard format. The PRCC (subfolder PRCC/rgb) dataset can be directly placed in the corresponding directory upon extraction.
Acknowledgments
We are deeply thankful to the creators of the Celebrities-ReID, PRCC, and LAST datasets for their significant contributions to the field of person re-identification. Their commitment to open-sourcing these valuable resources has greatly facilitated advancements in academic and practical research.
- Celebrities-ReID: "Celebrities-ReID: A Benchmark for Clothes Variation in Long-Term Person Re-Identification" - View Paper
- PRCC: "Person Re-identification by Contour Sketch under Moderate Clothing Change" - View Paper
- LAST: "Large-Scale Spatio-Temporal Person Re-identification: Algorithms and Benchmark" - View Paper
Citation
If you use our code or dataset, please cite:
@misc{liu2025automaticsyntheticdatafinegrained,
title={Automatic Synthetic Data and Fine-grained Adaptive Feature Alignment for Composed Person Retrieval},
author={Delong Liu and Haiwen Li and Zhaohui Hou and Zhicheng Zhao and Fei Su and Yuan Dong},
year={2025},
eprint={2311.16515},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.16515},
}
- Downloads last month
- 52