Datasets:

Languages:
English
ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 1 new columns ({'caption'})

This happened while the json dataset builder was generating data using

hf://datasets/a1557811266/ITCPR/query.json (at revision 5b1d0f92857a55d1eef00f93ff62965364e56477)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              file_path: string
              datasets: string
              person_id: int64
              instance_id: int64
              caption: string
              -- schema metadata --
              pandas: '{"index_columns": [], "column_indexes": [], "columns": [{"name":' + 702
              to
              {'file_path': Value(dtype='string', id=None), 'datasets': Value(dtype='string', id=None), 'person_id': Value(dtype='int64', id=None), 'instance_id': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'caption'})
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/a1557811266/ITCPR/query.json (at revision 5b1d0f92857a55d1eef00f93ff62965364e56477)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

file_path
string
datasets
string
person_id
int64
instance_id
int64
Celeb-reID/001/1_2_0.jpg
Celeb-reID
1
1
Celeb-reID/001/1_70_0.jpg
Celeb-reID
1
2
Celeb-reID/002/2_18_0.jpg
Celeb-reID
2
3
Celeb-reID/002/2_34_0.jpg
Celeb-reID
2
3
Celeb-reID/002/2_49_0.jpg
Celeb-reID
2
4
Celeb-reID/003/3_14_1.jpg
Celeb-reID
3
5
Celeb-reID/003/3_14_0.jpg
Celeb-reID
3
6
Celeb-reID/004/4_16_0.jpg
Celeb-reID
4
7
Celeb-reID/004/4_31_0.jpg
Celeb-reID
4
8
Celeb-reID/005/5_99_0.jpg
Celeb-reID
5
9
Celeb-reID/005/5_59_0.jpg
Celeb-reID
5
10
Celeb-reID/006/6_75_0.jpg
Celeb-reID
6
11
Celeb-reID/006/6_79_0.jpg
Celeb-reID
6
12
Celeb-reID/007/7_96_1.jpg
Celeb-reID
7
13
Celeb-reID/007/7_98_0.jpg
Celeb-reID
7
14
Celeb-reID/008/8_90_0.jpg
Celeb-reID
8
15
Celeb-reID/008/8_10_0.jpg
Celeb-reID
8
16
Celeb-reID/008/8_13_0.jpg
Celeb-reID
8
17
Celeb-reID/009/9_29_1.jpg
Celeb-reID
9
18
Celeb-reID/009/9_53_1.jpg
Celeb-reID
9
19
Celeb-reID/010/10_63_0.jpg
Celeb-reID
10
20
Celeb-reID/010/10_73_0.jpg
Celeb-reID
10
21
Celeb-reID/010/10_30_0.jpg
Celeb-reID
10
21
Celeb-reID/010/10_59_0.jpg
Celeb-reID
10
21
Celeb-reID/011/11_14_0.jpg
Celeb-reID
11
22
Celeb-reID/011/11_25_0.jpg
Celeb-reID
11
23
Celeb-reID/012/12_60_0.jpg
Celeb-reID
12
24
Celeb-reID/012/12_18_0.jpg
Celeb-reID
12
25
Celeb-reID/013/13_36_0.jpg
Celeb-reID
13
26
Celeb-reID/013/13_51_1.jpg
Celeb-reID
13
27
Celeb-reID/013/13_57_0.jpg
Celeb-reID
13
28
Celeb-reID/014/14_8_0.jpg
Celeb-reID
14
29
Celeb-reID/014/14_9_0.jpg
Celeb-reID
14
30
Celeb-reID/015/15_87_0.jpg
Celeb-reID
15
31
Celeb-reID/015/15_89_1.jpg
Celeb-reID
15
32
Celeb-reID/016/16_30_1.jpg
Celeb-reID
16
33
Celeb-reID/016/16_99_0.jpg
Celeb-reID
16
34
Celeb-reID/016/16_91_1.jpg
Celeb-reID
16
35
Celeb-reID/019/19_70_0.jpg
Celeb-reID
19
36
Celeb-reID/019/19_21_1.jpg
Celeb-reID
19
37
Celeb-reID/020/20_10_0.jpg
Celeb-reID
20
38
Celeb-reID/020/20_96_0.jpg
Celeb-reID
20
39
Celeb-reID/021/21_19_0.jpg
Celeb-reID
21
40
Celeb-reID/021/21_16_1.jpg
Celeb-reID
21
41
Celeb-reID/022/22_23_0.jpg
Celeb-reID
22
42
Celeb-reID/022/22_8_1.jpg
Celeb-reID
22
43
Celeb-reID/022/22_49_1.jpg
Celeb-reID
22
44
Celeb-reID/023/23_4_0.jpg
Celeb-reID
23
45
Celeb-reID/023/23_100_0.jpg
Celeb-reID
23
46
Celeb-reID/024/24_16_0.jpg
Celeb-reID
24
47
Celeb-reID/024/24_20_1.jpg
Celeb-reID
24
48
Celeb-reID/024/24_54_0.jpg
Celeb-reID
24
49
Celeb-reID/025/25_12_0.jpg
Celeb-reID
25
50
Celeb-reID/025/25_39_0.jpg
Celeb-reID
25
51
Celeb-reID/026/26_14_0.jpg
Celeb-reID
26
52
Celeb-reID/026/26_44_0.jpg
Celeb-reID
26
53
Celeb-reID/026/26_38_0.jpg
Celeb-reID
26
54
Celeb-reID/027/27_3_0.jpg
Celeb-reID
27
55
Celeb-reID/027/27_6_0.jpg
Celeb-reID
27
56
Celeb-reID/028/28_78_0.jpg
Celeb-reID
28
57
Celeb-reID/028/28_1_0.jpg
Celeb-reID
28
58
Celeb-reID/029/29_9_1.jpg
Celeb-reID
29
59
Celeb-reID/029/29_10_1.jpg
Celeb-reID
29
60
Celeb-reID/030/30_20_0.jpg
Celeb-reID
30
61
Celeb-reID/030/30_31_0.jpg
Celeb-reID
30
61
Celeb-reID/030/30_75_0.jpg
Celeb-reID
30
61
Celeb-reID/030/30_82_0.jpg
Celeb-reID
30
62
Celeb-reID/031/31_8_0.jpg
Celeb-reID
31
63
Celeb-reID/031/31_74_0.jpg
Celeb-reID
31
63
Celeb-reID/031/31_27_0.jpg
Celeb-reID
31
64
Celeb-reID/032/32_93_0.jpg
Celeb-reID
32
65
Celeb-reID/032/32_98_0.jpg
Celeb-reID
32
66
Celeb-reID/033/33_92_0.jpg
Celeb-reID
33
67
Celeb-reID/033/33_85_0.jpg
Celeb-reID
33
68
Celeb-reID/034/34_70_0.jpg
Celeb-reID
34
69
Celeb-reID/034/34_63_0.jpg
Celeb-reID
34
70
Celeb-reID/034/34_64_0.jpg
Celeb-reID
34
71
Celeb-reID/035/35_40_0.jpg
Celeb-reID
35
72
Celeb-reID/035/35_99_0.jpg
Celeb-reID
35
73
Celeb-reID/036/36_91_0.jpg
Celeb-reID
36
74
Celeb-reID/036/36_15_0.jpg
Celeb-reID
36
75
Celeb-reID/037/37_88_0.jpg
Celeb-reID
37
76
Celeb-reID/037/37_24_0.jpg
Celeb-reID
37
77
Celeb-reID/037/37_47_0.jpg
Celeb-reID
37
78
Celeb-reID/038/38_75_0.jpg
Celeb-reID
38
79
Celeb-reID/038/38_85_0.jpg
Celeb-reID
38
80
Celeb-reID/039/39_83_0.jpg
Celeb-reID
39
81
Celeb-reID/039/39_90_0.jpg
Celeb-reID
39
82
Celeb-reID/039/39_59_0.jpg
Celeb-reID
39
83
Celeb-reID/040/40_100_0.jpg
Celeb-reID
40
84
Celeb-reID/040/40_76_0.jpg
Celeb-reID
40
85
Celeb-reID/040/40_24_0.jpg
Celeb-reID
40
86
Celeb-reID/041/41_2_0.jpg
Celeb-reID
41
87
Celeb-reID/041/41_62_0.jpg
Celeb-reID
41
88
Celeb-reID/042/42_2_0.jpg
Celeb-reID
42
89
Celeb-reID/042/42_29_1.jpg
Celeb-reID
42
90
Celeb-reID/043/43_30_0.jpg
Celeb-reID
43
91
Celeb-reID/043/43_20_0.jpg
Celeb-reID
43
92
Celeb-reID/044/44_16_0.jpg
Celeb-reID
44
93
Celeb-reID/044/44_20_0.jpg
Celeb-reID
44
94
End of preview.

ITCPR Dataset

Overview

The ITCPR dataset is a comprehensive collection specifically designed for the Composed Person Retrieval (CPR) task. It consists of a total of 2,225 annotated triplets, derived from three distinct datasets: Celeb-reID, PRCC, and LAST.

For more details on how to use this dataset, please refer to: https://github.com/Delong-liu-bupt/Composed_Person_Retrieval

Dataset Scale

  • Total Annotated Triplets: 2,225
  • Unique Query Combinations: 2,202
  • Total Images: 1,151 from Celeb-reID, 146 from PRCC, 905 from LAST
  • Total Identities: 512 from Celeb-reID, 146 from PRCC, 541 from LAST
  • Target Gallery: 20,510 images with 2,225 corresponding ground truths

Image Sources

The images in the ITCPR dataset are sourced from the following datasets:

  • Celeb-reID
  • PRCC
  • LAST

These are utilized solely for testing purposes in the ZS-CPR task.

Annotation Files

The dataset includes two annotation files: query.json and gallery.json.

query.json Format

Each entry in the query.json file follows this structure:

{
    "file_path": "Celeb-reID/001/1_1_0.jpg",
    "datasets": "Celeb-reID",
    "person_id": 1,
    "instance_id": 1,
    "caption": "Wearing a brown plaid shirt, black leather shoes, another dark gray T-shirt, another blue jeans"
}
  • file_path: Reference image path relative to the data root directory.
  • datasets: Source dataset of the image.
  • person_id: Person ID in the original dataset.
  • instance_id: Unique identifier for gallery ground truth matching.
  • caption: Relative caption of the reference image.

gallery.json Format

Each entry in the gallery.json file follows this structure:

{
    "file_path": "Celeb-reID/001/1_2_0.jpg",
    "datasets": "Celeb-reID",
    "person_id": 1,
    "instance_id": 1
}
  • instance_id: Matches with query.json for target images; -1 for non-matching query instances.
  • Others: Correspond to target image path, original dataset, and person ID.

Data Directory Structure

data
|-- Celeb-reID
|   |-- 001
|   |-- 002
|   |-- 003
|   ...
|-- PRCC
|   |-- train
|   |-- val
|   |-- test
|-- LAST
|   |-- 000000
|   |-- 000001
|   |-- 000002
|   ...
|-- query.json
|-- gallery.json

Dataset Download and Preparation

Download and prepare the datasets as follows:

  1. Celeb-reID: GitHub Repository
  2. PRCC: Google Drive Link
  3. LAST: GitHub Repository

After downloading, use the img_process.py script to process Celeb-reID and LAST datasets into the standard format. The PRCC (subfolder PRCC/rgb) dataset can be directly placed in the corresponding directory upon extraction.

Acknowledgments

We are deeply thankful to the creators of the Celebrities-ReID, PRCC, and LAST datasets for their significant contributions to the field of person re-identification. Their commitment to open-sourcing these valuable resources has greatly facilitated advancements in academic and practical research.


  • Celebrities-ReID: "Celebrities-ReID: A Benchmark for Clothes Variation in Long-Term Person Re-Identification" - View Paper
  • PRCC: "Person Re-identification by Contour Sketch under Moderate Clothing Change" - View Paper
  • LAST: "Large-Scale Spatio-Temporal Person Re-identification: Algorithms and Benchmark" - View Paper

Citation

If you use our code or dataset, please cite:

@misc{liu2025automaticsyntheticdatafinegrained,
      title={Automatic Synthetic Data and Fine-grained Adaptive Feature Alignment for Composed Person Retrieval}, 
      author={Delong Liu and Haiwen Li and Zhaohui Hou and Zhicheng Zhao and Fei Su and Yuan Dong},
      year={2025},
      eprint={2311.16515},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2311.16515}, 
}
Downloads last month
52