Add task category, paper/code links, and evaluation usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +25 -5
README.md CHANGED
@@ -1,5 +1,8 @@
1
  ---
2
  license: apache-2.0
 
 
 
3
  tags:
4
  - math
5
  - reasoning
@@ -7,9 +10,8 @@ tags:
7
  - bode-plot
8
  - llm-evaluation
9
  - scientific-question-answering
10
- pretty_name: "MathBode"
11
- size_categories:
12
- - "10K<n<100K"
13
  configs:
14
  - config_name: linear_solve
15
  data_files: linear_solve.parquet
@@ -25,6 +27,8 @@ configs:
25
 
26
  # MathBode: A Dynamic Benchmark for Mathematical Reasoning
27
 
 
 
28
  <!-- Updated: 2025-09-22 -->
29
 
30
  **MathBode** is a benchmark designed to evaluate the dynamic reasoning capabilities of large language models (LLMs) by treating parametric math problems as dynamic systems. Instead of testing static accuracy on fixed problems, MathBode treats parametric math problems as dynamic systems. It sinusoidally varies a parameter and measures the model's response in terms of **gain** (amplitude tracking) and **phase** (reasoning lag), analogous to a Bode plot in control theory.
@@ -49,7 +53,9 @@ The dataset is provided in a single Parquet file and contains the following colu
49
  | `ground_truth` | The correct numerical answer for the given prompt. |
50
  | `symbolic_baseline_answer` | The answer from a perfect symbolic solver (identical to `ground_truth`). |
51
 
52
- ## Usage
 
 
53
 
54
  You can load the dataset easily using the `datasets` library:
55
 
@@ -63,6 +69,20 @@ dataset = load_dataset("cognitive-metrology-lab/MathBode")
63
  print(dataset['train'][0])
64
  ```
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  ## Citing
67
 
68
  If you use this dataset, please cite our work.
@@ -76,4 +96,4 @@ If you use this dataset, please cite our work.
76
  primaryClass = {cs.AI},
77
  url = {https://arxiv.org/abs/2509.23143}
78
  }
79
- ```
 
1
  ---
2
  license: apache-2.0
3
+ size_categories:
4
+ - 10K<n<100K
5
+ pretty_name: MathBode
6
  tags:
7
  - math
8
  - reasoning
 
10
  - bode-plot
11
  - llm-evaluation
12
  - scientific-question-answering
13
+ task_categories:
14
+ - text-generation
 
15
  configs:
16
  - config_name: linear_solve
17
  data_files: linear_solve.parquet
 
27
 
28
  # MathBode: A Dynamic Benchmark for Mathematical Reasoning
29
 
30
+ [Paper](https://huggingface.co/papers/2509.23143) | [Code](https://github.com/charleslwang/MathBode-Eval)
31
+
32
  <!-- Updated: 2025-09-22 -->
33
 
34
  **MathBode** is a benchmark designed to evaluate the dynamic reasoning capabilities of large language models (LLMs) by treating parametric math problems as dynamic systems. Instead of testing static accuracy on fixed problems, MathBode treats parametric math problems as dynamic systems. It sinusoidally varies a parameter and measures the model's response in terms of **gain** (amplitude tracking) and **phase** (reasoning lag), analogous to a Bode plot in control theory.
 
53
  | `ground_truth` | The correct numerical answer for the given prompt. |
54
  | `symbolic_baseline_answer` | The answer from a perfect symbolic solver (identical to `ground_truth`). |
55
 
56
+ ## Sample Usage
57
+
58
+ ### Load the dataset
59
 
60
  You can load the dataset easily using the `datasets` library:
61
 
 
69
  print(dataset['train'][0])
70
  ```
71
 
72
+ ### Run Evaluations
73
+
74
+ To run evaluations using the associated code, follow the instructions in the [GitHub repository](https://github.com/charleslwang/MathBode-Eval). A quick smoke test can be run as follows:
75
+
76
+ ```bash
77
+ # First, clone the repository and install dependencies
78
+ # git clone https://github.com/charleslwang/MathBode-Eval.git
79
+ # cd MathBode-Eval
80
+ # pip install -r requirements.txt
81
+
82
+ # Then, run the smoke test
83
+ CONFIG=SMOKE ./run_matrix.sh
84
+ ```
85
+
86
  ## Citing
87
 
88
  If you use this dataset, please cite our work.
 
96
  primaryClass = {cs.AI},
97
  url = {https://arxiv.org/abs/2509.23143}
98
  }
99
+ ```