Dataset Viewer
Auto-converted to Parquet
starting
sequencelengths
3
8
target
int64
1
999
closest
int64
1
999
expression
stringlengths
1
53
delta
int64
0
973
score
int64
0
10
size
int64
3
8
[ 16, 59, 50 ]
702
741
((16 * 50) - 59)
39
0
3
[ 17, 62, 61 ]
244
140
((17 + 61) + 62)
104
0
3
[ 75, 39, 55, 73, 48, 28, 1, 96 ]
911
911
((((73 - 39) * 28) - 96) + 55)
0
10
8
[ 57, 84, 97, 17 ]
491
459
((84 - 57) * 17)
32
0
4
[ 30, 68, 38, 56 ]
704
684
((30 - (68 - 56)) * 38)
20
0
4
[ 72, 11, 71, 35, 91, 77 ]
687
687
(((91 - 35) * 11) + 71)
0
10
6
[ 12, 58, 3, 89, 79 ]
293
293
(((89 - 58) * 12) - 79)
0
10
5
[ 10, 93, 42, 14, 4, 6 ]
911
910
(((4 + 93) - 6) * 10)
1
9
6
[ 20, 88, 89 ]
787
197
((20 + 88) + 89)
590
0
3
[ 37, 38, 67, 34, 7, 26, 41 ]
859
859
((((67 - 34) * 26) + 38) - 37)
0
10
7
[ 41, 44, 35, 12, 48, 69 ]
776
776
(((69 - 48) * 35) + 41)
0
10
6
[ 63, 16, 53, 27 ]
712
702
(((63 - 53) + 16) * 27)
10
0
4
[ 93, 96, 61, 72, 10, 14, 74, 42 ]
742
742
(((42 * 14) + 61) + 93)
0
10
8
[ 58, 75, 35, 33 ]
508
526
(((75 - 58) * 33) - 35)
18
0
4
[ 5, 12, 73, 57, 34, 60, 11, 52 ]
911
911
((((57 + 52) - 34) * 12) + 11)
0
10
8
[ 82, 91, 42, 86, 9, 22 ]
655
656
((22 - ((91 - 86) + 9)) * 82)
1
9
6
[ 28, 1, 39, 35, 74 ]
757
740
(((39 - 1) - 28) * 74)
17
0
5
[ 79, 27, 67 ]
825
324
((79 - 67) * 27)
501
0
3
[ 66, 21, 66, 5, 81 ]
890
906
((((66 + 81) + 21) * 5) + 66)
16
0
5
[ 73, 69, 39, 24, 73 ]
355
355
((((73 - 69) * 73) + 39) + 24)
0
10
5
[ 91, 96, 78, 28, 85 ]
978
977
((((96 - 85) * 78) + 91) + 28)
1
9
5
[ 7, 37, 20, 2, 59, 8 ]
903
903
((((7 * 59) + 20) * 2) + 37)
0
10
6
[ 44, 47, 54, 76, 7, 75, 92 ]
760
760
((54 - 44) * 76)
0
10
7
[ 82, 83, 52, 67 ]
855
863
(((82 - 67) * 52) + 83)
8
2
4
[ 60, 16, 24, 5, 21, 76 ]
311
311
((((76 - 21) * 5) + 60) - 24)
0
10
6
[ 99, 33, 45, 40, 94, 33, 48, 21 ]
337
337
(((48 - 45) * 99) + 40)
0
10
8
[ 66, 54, 37, 68, 98 ]
654
648
(((98 / (68 - 66)) - 37) * 54)
6
4
5
[ 30, 32, 40, 48, 82, 82, 58 ]
305
304
((((32 - 30) * 82) + 58) + 82)
1
9
7
[ 18, 60, 70 ]
477
180
((70 - 60) * 18)
297
0
3
[ 64, 91, 15, 6, 74, 83, 48, 14 ]
792
792
(((14 - 6) * 91) + 64)
0
10
8
[ 21, 71, 62, 67 ]
175
176
(((67 - 62) * 21) + 71)
1
9
4
[ 98, 84, 33, 69, 90, 26, 59, 24 ]
717
717
(((90 - 69) * 33) + 24)
0
10
8
[ 67, 57, 26, 71, 89, 94, 59 ]
738
738
(((89 - 57) * 26) - 94)
0
10
7
[ 8, 76, 96, 97, 30, 24, 92, 23 ]
892
892
(((24 * 30) + 96) + 76)
0
10
8
[ 46, 2, 60, 49 ]
849
874
((49 - (60 / 2)) * 46)
25
0
4
[ 76, 38, 12, 94, 37, 2, 12, 77 ]
290
290
((((77 - 38) + 94) + 12) * 2)
0
10
8
[ 55, 61, 73, 11, 22, 55, 26, 35 ]
637
637
((((11 * 55) + 61) - 55) + 26)
0
10
8
[ 83, 19, 67, 73, 11, 46 ]
343
344
(((((19 * 11) + 46) - 67) + 73) + 83)
1
9
6
[ 97, 35, 61 ]
41
36
(97 - 61)
5
5
3
[ 73, 87, 28, 68, 50, 51, 76, 31 ]
574
574
((((87 - 68) * 28) + 73) - 31)
0
10
8
[ 9, 49, 99, 78, 84 ]
655
654
((((99 - 84) + 49) * 9) + 78)
1
9
5
[ 54, 45, 19, 88 ]
171
171
((54 - 45) * 19)
0
10
4
[ 83, 59, 54, 99, 65, 47 ]
481
482
(((54 - 47) * 83) - 99)
1
9
6
[ 73, 4, 22 ]
42
47
((73 - 4) - 22)
5
5
3
[ 81, 68, 49, 7, 97 ]
904
903
(((81 - 49) + 97) * 7)
1
9
5
[ 70, 54, 63 ]
841
630
((63 - 54) * 70)
211
0
3
[ 29, 68, 33 ]
121
130
((68 + 29) + 33)
9
1
3
[ 50, 71, 31, 24, 70, 44, 23 ]
242
242
(((31 - 23) * 24) + 50)
0
10
7
[ 64, 47, 98, 93, 32, 38 ]
893
893
((38 / (64 / 32)) * 47)
0
10
6
[ 51, 50, 63, 10, 42 ]
586
587
((((10 * 63) - 51) + 50) - 42)
1
9
5
[ 80, 78, 4, 16, 94, 14, 68 ]
582
582
((((78 - 16) + 80) * 4) + 14)
0
10
7
[ 15, 83, 30, 82, 60, 85, 51, 44 ]
101
101
((85 + 60) - 44)
0
10
8
[ 52, 87, 90, 1, 69, 84 ]
1
1
1
0
10
6
[ 93, 16, 52, 90, 22, 63 ]
466
467
(((22 * 16) + 63) + 52)
1
9
6
[ 24, 40, 39, 57, 8, 44, 45, 87 ]
608
608
(((57 + 24) * 8) - 40)
0
10
8
[ 25, 31, 93, 8 ]
535
541
(((25 + 31) * 8) + 93)
6
4
4
[ 58, 32, 84, 59 ]
270
233
(((58 + 59) + 32) + 84)
37
0
4
[ 10, 93, 98, 3 ]
912
900
((93 - 3) * 10)
12
0
4
[ 28, 6, 88, 50 ]
39
38
(88 - 50)
1
9
4
[ 3, 73, 57, 74, 89 ]
269
268
(((3 * 89) - 73) + 74)
1
9
5
[ 77, 43, 8, 88, 41, 91, 11 ]
961
961
((((11 * 88) - 91) + 41) + 43)
0
10
7
[ 54, 12, 22, 97, 60 ]
321
318
((22 * 12) + 54)
3
7
5
[ 10, 72, 44 ]
47
44
44
3
7
3
[ 66, 24, 78, 64, 54, 92 ]
310
310
((((78 - 64) * 24) - 92) + 66)
0
10
6
[ 72, 53, 81, 31, 17 ]
384
383
((((53 - 31) * 17) + 81) - 72)
1
9
5
[ 74, 69, 16, 1, 4, 90, 10, 9 ]
193
193
(((69 * 4) - 74) - 9)
0
10
8
[ 96, 24, 29, 59, 19, 72, 46, 27 ]
391
391
(((29 - 24) * 59) + 96)
0
10
8
[ 39, 78, 43, 71 ]
711
858
(((39 + 43) - 71) * 78)
147
0
4
[ 9, 3, 32, 52, 65, 89, 30 ]
937
937
(((((3 + 65) + 32) * 9) - 52) + 89)
0
10
7
[ 48, 32, 54, 31, 64, 20 ]
149
149
((64 + 54) + 31)
0
10
6
[ 7, 37, 16, 80, 25, 25, 85, 76 ]
211
211
(((16 + 25) * 7) - 76)
0
10
8
[ 49, 10, 29 ]
522
519
((10 * 49) + 29)
3
7
3
[ 49, 89, 49, 36, 17, 76, 23 ]
403
403
((((23 - 17) * 76) + 36) - 89)
0
10
7
[ 100, 4, 52 ]
771
608
((52 + 100) * 4)
163
0
3
[ 10, 69, 66, 68, 93, 60 ]
418
418
(((66 - 60) * 68) + 10)
0
10
6
[ 66, 14, 76 ]
78
76
76
2
8
3
[ 87, 30, 9, 12 ]
640
645
(((87 - 12) * 9) - 30)
5
5
4
[ 53, 65, 28, 71, 26 ]
946
944
((((65 - 28) * 26) - 71) + 53)
2
8
5
[ 58, 71, 6, 2, 67, 6, 98, 73 ]
383
383
(((98 + 58) * 2) + 71)
0
10
8
[ 92, 99, 92, 61, 87 ]
682
671
(((99 - (92 / 92)) - 87) * 61)
11
0
5
[ 47, 10, 25, 45, 62 ]
176
175
(((47 - 25) * 10) - 45)
1
9
5
[ 28, 71, 15 ]
844
923
((28 - 15) * 71)
79
0
3
[ 22, 61, 40, 31, 90, 40 ]
456
457
((((40 - 22) * 31) - 61) - 40)
1
9
6
[ 55, 64, 11, 29, 92, 34, 88 ]
587
587
(((64 * 11) - 29) - 88)
0
10
7
[ 2, 25, 45 ]
815
140
((25 + 45) * 2)
675
0
3
[ 32, 18, 17, 53, 95, 98, 85, 69 ]
469
469
(((98 - 85) * 32) + 53)
0
10
8
[ 76, 26, 4 ]
502
494
((76 / 4) * 26)
8
2
3
[ 12, 89, 25 ]
829
768
((89 - 25) * 12)
61
0
3
[ 5, 89, 24 ]
277
325
((89 - 24) * 5)
48
0
3
[ 83, 81, 76 ]
219
240
((76 + 81) + 83)
21
0
3
[ 95, 23, 48, 26, 20, 90 ]
99
99
((((95 + 20) - 90) + 48) + 26)
0
10
6
[ 61, 51, 64, 66, 75, 52 ]
418
418
(((66 / (75 - 64)) * 61) + 52)
0
10
6
[ 21, 51, 49, 6 ]
125
126
(21 * 6)
1
9
4
[ 84, 97, 64, 96, 79, 71, 71 ]
469
469
(((71 - 64) * 79) - 84)
0
10
7
[ 40, 89, 46, 62, 94, 70, 83, 56 ]
51
51
(89 - (94 - 56))
0
10
8
[ 25, 67, 63, 98, 67, 36, 7 ]
471
471
((((7 * 67) - 36) + 63) - 25)
0
10
7
[ 78, 14, 93 ]
587
210
((93 - 78) * 14)
377
0
3
[ 88, 83, 44, 21, 97, 5 ]
819
819
((44 - 5) * 21)
0
10
6
[ 99, 54, 82, 45, 3 ]
387
388
((((54 * 3) + 99) + 82) + 45)
1
9
5
[ 14, 42, 60, 21, 36, 71, 15, 69 ]
424
424
(((69 - 36) * 15) - 71)
0
10
8
End of preview. Expand in Data Studio

Countdown Numbers Game Dataset

This dataset contains configurations and solutions for variations of the Countdown numbers game. Each example comprises a sequence of numbers, a target number, the computed solution (closest value), the arithmetic expression that achieves that value, the difference between the target and the computed value, and the final Countdown score.

HuggingFace Download Links

Dataset Variant Dataset Name Download
Random countdown-numbers-3-8 🤗 HuggingFace
Random Solvable countdown-numbers-3-8-nz 🤗 HuggingFace
Coundown Game Rules countdown-numbers-6-gr 🤗 HuggingFace

Dataset Overview

Each data point in the dataset includes:

  • Numbers:
    A sequence of $n$ integers $s_1, s_2, \ldots, s_n$ where $s_i \in {1, 2, \ldots, 100}$ for all $i \in {1, 2, \ldots, n}$, and $n \in {3, 4, \ldots, 8}$. (Note: In the traditional Countdown game, the numbers are subject to more specific restrictions.)

  • Target:
    An integer $t \in {1, 2, \ldots, 999}$. (For context, the standard Countdown game usually features targets from 101 and above.)

  • Closest:
    The value computed by a solver $r \in {1, 2, \ldots, 999}$ that is closest to the target number.

  • Expression:
    The arithmetic expression used to compute the closest value. For instance, $((2 + 48) \times 5) \div 10$

  • Delta:
    The absolute difference between the target and the closest value, i.e. $|t - r|$.

  • Score:
    The Countdown score calculated as $\max(0, 10 - |t - r|)$. This score reflects how close the computed value is to the target.


Dataset Variants

This dataset is provided in three variants:

  1. Random:
    Configurations and solutions generated by uniformly sampling and solving one million game instances, without additional restrictions.

  2. Random Solvable (Score > 0):
    Configurations are generated by uniformly sampling numbers and then rejecting any sample that results in an unsolvable instance (i.e., a score of 0). This variant ensures that each instance has a solution that yields a positive score.

  3. Countdown:
    Configurations generated by sampling 6 numbers in the style of the British TV show Countdown.

Score Distributions

The following histograms show the distribution of scores for each dataset variant:

Random Variant

Random Solvable (Score > 0) Variant

Countdown Game Rules


Generation Process

The dataset was created by:

  • Uniformly sampling numbers within the specified ranges.
  • Solving each sampled instance to determine the closest value, the corresponding expression, the difference from the target, and the score.
  • For the Random Solvable (Score > 0) variant, rejection sampling was applied: instances that did not yield a positive score were discarded.

The train and test splits were created by randomly partitioning the instances into 80% training and 20% testing, using a stratified split based on the score and number of starting values.

Split Score/Size Distributions

The final distributions of scores and numbers are shown in the following histograms:

Random Variant

Random Solvable (Score > 0) Variant

Countdown Game Rules


How to Use the Dataset

You can load and use this dataset with the Hugging Face datasets library. For example:

from datasets import load_dataset

dataset = load_dataset("alexjackson17/countdown-numbers-6-gr")

# Example: Access the first entry in the training split
example = dataset["train"][0]
print("Numbers: ", example["starting"])
print("Target: ", example["target"])
print("Closest: ", example["closest"])
print("Expression: ", example["expression"])
print("Difference: ", example["delta"])
print("Score: ", example["score"])

Citation

If you use this dataset in your research or projects, please cite it as follows:

@misc{jackson2025countdown,
  title = {Countdown Numbers Game Dataset},
  author = {Alex Jackson},
  year = {2025},
  note = {Released under the MIT License},
}

Funding Attribution

This work was supported by UK Research and Innovation [grant number EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and Trusted Artificial Intelligence (www.safeandtrustedai.org).


License

This dataset is released under the MIT License. See the LICENSE file for more information.

For questions, feedback, or further information, please contact Alex Jackson.

Downloads last month
50