Dataset Viewer
Auto-converted to Parquet
id
stringlengths
11
11
VeVUL07UG-Q
uOnvnNAufeA
o9-IWbFxUtk
XmI260swiss
En2Gn5ViJjI
Drdvcf_wIzA
EgZUOASE5l4
h4U7Of942sA
8kkadA5lm70
VvNNQ6bon4E
DynA5PXna0Y
7HOsQDD1Res
DlShMKZnO3M
xRD2m5Fiz90
1dlQFPwYsoU
hZenRBr7meU
Y-ExAIYRxbw
9moWzpfAeZ0
uJNUhk2CWcc
B99AVTqdyp0
cON78rNeTWI
N_OhApvf6_c
yy03rTEZe-s
gYsQRQFnUcI
OkqDaSLavlo
2LMwCAOc3Z8
qj5kSX4dUpA
bmoboolrVQQ
vefmUL7k7HE
2vxPfVCimNc
JXe-n10xNdI
CycT4_9FuxY
42zRwBZJfLo
cS31Zk8HTDI
vnS7915eL_s
YduSZ1AeZJQ
DnQszhC416w
pxDmMfBYtrw
IZdsTSWBEbQ
gcGKYHdRrXQ
xJj69ZEJ1us
jXWeICGYm_8
b9Gu4qqe3WA
48_u42JFNYs
yv1_uiPqSqA
NfoEMdx6Ilc
KWCr2vLbdWw
zb5F9Gq8AHc
zYpo0yWAaS4
cZvb3f5aBRc
mSRgD-pYBJg
VS3aoSyfnUk
g-zc_96CPPc
OpAZ_O80EzI
_g69X9aP2DA
hXloRHqJ3MA
y_mveVlZDV8
G8C0xAZR4QE
w-MpWfUA3_o
WyJsUHlZmqE
x6VasHT_Hdw
DolG-pTiCDs
XOPgSC2I2zM
LHrcmfVPb2o
lDWC1xKO5I4
Un6M7SCqYlw
E5uUBXOo0l4
15dUSPvCPTg
CELZUDroYWo
aMFWFNCZVQo
9BV8X76iLF8
0aRmfSU0z4w
xLUyErMdkXg
TvcFoURKBnY
TpkuuUyEAC8
fJS8gthnhsM
cVROrGjuy3g
3a7EjWShH1Q
slKm_e5BlM8
INR5E0H10_I
YOJ5tb7djtE
wPLsMj3Mmmo
Vb-1V0k-AWA
re13YkkwC6c
3DhDbXHOCeY
1sPto972Wxw
zFnBdxl6EZ4
NkxMZMllCSA
eir_HChNMjI
-RUfbFy0-08
LCORr8Kx2_g
pzDkRtQwbLA
dH0fBgejL1A
YRMOctGda3g
-mNIMjXoBAw
lUgzWGUoATE
SpU-wjIq-ks
j8X_XKzJTmI
cfHwo0NIhD0
6rMndNj18rA
End of preview. Expand in Data Studio

OLMoASR-Pool is a web-scale audio-text dataset collected from the public internet, consisting of approximately 3M hours of audio and 17M transcripts.

With OLMoASR-Pool, we trained OLMoASR πŸ’¬πŸŽ™οΈ, a series of English speech recognition models and observed strong generalization and robust capabilities!

Content

  • The dataset contains 18,761,823 unique IDs spanning approximately 3.4M hours of audio.
  • It also spans across a variety speaking styles, accents and audio setups such as news segments πŸ“°, podcasts πŸŽ™οΈ, outdoors πŸŒ³πŸ™οΈ, crowds πŸ§‘β€πŸ€β€πŸ§‘, speeches 🎀, commentary πŸ—£οΈ, interviews 🀳 and more!
  • OLMoASR-Pool is multilingual as it can contain non-English audio/transcripts. To retrieve an English-only dataset, it is critical to perform audio-text language alignment.
  • After downloading the collection for training, only 3M hours of audio and 17M transcripts remains.

Usage

  1. Download from HuggingFace
    • Retrieve HF access token from here to gain access to the dataset.
    • Run pip install huggingface_hub[cli]
    • Run huggingface-cli login in your CLI and paste the HF access token to login
    • Use the code below to access the IDs
      from datasets import load_dataset
      dataset = load_dataset("allenai/OLMoASR-Pool", streaming=True)
      print(dataset) # features: ['id']
      print(next(iter(dataset['train'])))
      
    • If you're downloading all the IDs, you can run the code below
    from datasets import load_dataset
    dataset = load_dataset("allenai/OLMoASR-Pool", streaming=False, cache_dir=<where you want to download the IDs to>)
    
  2. Download the audio and transcript files from ID information.
  3. Preprocess the audio and transcript files. Follow the instructions at the OLMoASR repo

Uses

The collection was used to train a speech recognition model, but it can also be used in research areas such as conversational data, audio understanding, speaker diarization, voice detection and more.

License

This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's Responsible Use Guidelines.

Reference

Downloads last month
76