Datasets:
File size: 8,815 Bytes
1a4c0f5 ec1bd07 1a4c0f5 ec1bd07 1a4c0f5 3810d76 fdebd15 988152f 3810d76 58bada7 1d4bfe2 58bada7 9b3a92f 58bada7 1d4bfe2 58bada7 9b3a92f 58bada7 1d4bfe2 58bada7 9b3a92f 58bada7 1a4c0f5 fdebd15 1a4c0f5 fdebd15 1a4c0f5 fdebd15 1a4c0f5 fdebd15 1a4c0f5 fdebd15 1a4c0f5 fdebd15 1a4c0f5 8c68d8e 1a4c0f5 8c68d8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: scitldr
pretty_name: SciTLDR
tags:
- scientific-documents-summarization
dataset_info:
- config_name: Abstract
features:
- name: source
sequence: string
- name: source_labels
sequence:
class_label:
names:
'0': non-oracle
'1': oracle
- name: rouge_scores
sequence: float32
- name: paper_id
dtype: string
- name: target
sequence: string
splits:
- name: train
num_bytes: 2738065
num_examples: 1992
- name: test
num_bytes: 1073656
num_examples: 618
- name: validation
num_bytes: 994876
num_examples: 619
download_size: 5483987
dataset_size: 4806597
- config_name: AIC
features:
- name: source
sequence: string
- name: source_labels
sequence:
class_label:
names:
'0': 0
'1': 1
- name: rouge_scores
sequence: float32
- name: paper_id
dtype: string
- name: ic
dtype: bool_
- name: target
sequence: string
splits:
- name: train
num_bytes: 14473822
num_examples: 1992
- name: test
num_bytes: 4822026
num_examples: 618
- name: validation
num_bytes: 4476237
num_examples: 619
download_size: 25545108
dataset_size: 23772085
- config_name: FullText
features:
- name: source
sequence: string
- name: source_labels
sequence:
class_label:
names:
'0': non-oracle
'1': oracle
- name: rouge_scores
sequence: float32
- name: paper_id
dtype: string
- name: target
sequence: string
splits:
- name: train
num_bytes: 66917363
num_examples: 1992
- name: test
num_bytes: 20182554
num_examples: 618
- name: validation
num_bytes: 18790651
num_examples: 619
download_size: 110904552
dataset_size: 105890568
---
# Dataset Card for SciTLDR
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/allenai/scitldr
- **Repository:** https://github.com/allenai/scitldr
- **Paper:** https://arxiv.org/abs/2004.15011
- **Leaderboard:**
- **Point of Contact:** {isabelc,kylel,armanc,danw}@allenai.org
### Dataset Summary
`SciTLDR`: Extreme Summarization of Scientific Documents
SciTLDR is a new multi-target dataset of 5.4K TLDRs over 3.2K papers. SciTLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
### Supported Tasks and Leaderboards
summarization
### Languages
English
## Dataset Structure
SciTLDR is split in to a 60/20/20 train/dev/test split. For each file, each line is a json, formatted as follows
```
{
"source":[
"sent0",
"sent1",
"sent2",
...
],
"source_labels":[binary list in which 1 is the oracle sentence],
"rouge_scores":[precomputed rouge-1 scores],
"paper_id":"PAPER-ID",
"target":[
"author-tldr",
"pr-tldr0",
"pr-tldr1",
...
],
"title":"TITLE"
}
```
The keys `rouge_scores` and `source_labels` are not necessary for any code to run, precomputed Rouge scores are provided for future research.
### Data Instances
{
"source": [
"Mixed precision training (MPT) is becoming a practical technique to improve the speed and energy efficiency of training deep neural networks by leveraging the fast hardware support for IEEE half-precision floating point that is available in existing GPUs.",
"MPT is typically used in combination with a technique called loss scaling, that works by scaling up the loss value up before the start of backpropagation in order to minimize the impact of numerical underflow on training.",
"Unfortunately, existing methods make this loss scale value a hyperparameter that needs to be tuned per-model, and a single scale cannot be adapted to different layers at different training stages.",
"We introduce a loss scaling-based training method called adaptive loss scaling that makes MPT easier and more practical to use, by removing the need to tune a model-specific loss scale hyperparameter.",
"We achieve this by introducing layer-wise loss scale values which are automatically computed during training to deal with underflow more effectively than existing methods.",
"We present experimental results on a variety of networks and tasks that show our approach can shorten the time to convergence and improve accuracy, compared with using the existing state-of-the-art MPT and single-precision floating point."
],
"source_labels": [
0,
0,
0,
1,
0,
0
],
"rouge_scores": [
0.2399999958000001,
0.26086956082230633,
0.19999999531250012,
0.38095237636054424,
0.2051282003944774,
0.2978723360796741
],
"paper_id": "rJlnfaNYvB",
"target": [
"We devise adaptive loss scaling to improve mixed precision training that surpass the state-of-the-art results.",
"Proposal for an adaptive loss scaling method during backpropagation for mix precision training where scale rate is decided automatically to reduce the underflow.",
"The authors propose a method to train models in FP16 precision that adopts a more elaborate way to minimize underflow in every layer simultaneously and automatically."
],
"title": "Adaptive Loss Scaling for Mixed Precision Training"
}
### Data Fields
- `source`: The Abstract, Introduction and Conclusion (AIC) or Full text of the paper, with one sentence per line.
- `source_labels`: Binary 0 or 1, 1 denotes the oracle sentence.
- `rouge_scores`: Precomputed ROUGE baseline scores for each sentence.
- `paper_id`: Arxiv Paper ID.
- `target`: Multiple summaries for each sentence, one sentence per line.
- `title`: Title of the paper.
### Data Splits
| | train | valid | test |
|-------------------|-------|--------|------|
| SciTLDR-A | 1992 | 618 | 619 |
| SciTLDR-AIC | 1992 | 618 | 619 |
| SciTLDR-FullText | 1992 | 618 | 619 |
## Dataset Creation
[More Information Needed]
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
https://allenai.org/
### Annotations
#### Annotation process
Given the title and first 128 words of a reviewer comment about a paper,
re-write the summary (if it exists) into a single sentence or an incomplete
phrase. Summaries must be no more than one sentence.
Most summaries are between 15 and 25 words. The average rewritten summary is
20 words long.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
To encourage further research in the area of extreme summarization of scientific documents.
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Apache License 2.0
### Citation Information
@article{cachola2020tldr,
title={{TLDR}: Extreme Summarization of Scientific Documents},
author={Isabel Cachola and Kyle Lo and Arman Cohan and Daniel S. Weld},
journal={arXiv:2004.15011},
year={2020},
}
### Contributions
Thanks to [@Bharat123rox](https://github.com/Bharat123rox) for adding this dataset. |