Datasets:
url
stringlengths 18
9.49k
| natural_score
float32 0
1
⌀ |
---|---|
http://brightbazaaar.wpengine.netdna-cdn.com/wp-content/uploads/2013/06/colorful-home-in-mexico.jpg | 0.202178 |
http://ichef.bbci.co.uk/images/ic/336xn/p036k3pp.jpg | 0.89958 |
0.04968 |
|
0.171863 |
|
https://images.ulta.com/is/image/Ulta/2302320?$detail$ | 0.30632 |
0.935128 |
|
0.868931 |
|
0.220399 |
|
0.124186 |
|
0.873063 |
|
0.556558 |
|
0.259737 |
|
0.488934 |
|
0.075599 |
|
0.075599 |
|
http://lr-assets.storage.googleapis.com/gardimg/400/9780435049607.jpg | 0.055118 |
0.192867 |
|
0.392829 |
|
0.012658 |
|
0.158149 |
|
0.075137 |
|
0.644879 |
|
0.256467 |
|
0.797264 |
|
0.073661 |
|
0.200006 |
|
https://chairish-prod.global.ssl.fastly.net/image/product/sized/5044fac4-2745-4311-9dc3-f9d640b1204d/helmut-lubke-sculptural-bar-stools-set-of-3-9404?aspect=fit&width=320&height=320 | 0.267561 |
0.200006 |
|
0.200006 |
|
http://www.jewelsforme.com/productimages/large/y/10/2374e.jpg | 0.371927 |
0.096557 |
|
http://s7d2.scene7.com/is/image/Motosport/MOS-BAG-003B_is?$productdetail264$ | 0.224823 |
0.036101 |
|
http://s7d2.scene7.com/is/image/Motosport/MOS-BAG-003B_is?$productdetail264$ | 0.224823 |
0.453489 |
|
http://decorstainless.com/uploadfiles/image/201911/1239.png | 0.087862 |
0.11193 |
|
http://image1.slideserve.com/1582656/slide11-n.jpg | 0.015946 |
https://tse3.mm.bing.net/th?id=OIP.gs-55Dlc8KYT9XTfrAGOnQEsDH&pid=15.1&P=0&w=300&h=300 | 0.565278 |
0.31788 |
|
0.060966 |
|
0.914777 |
|
0.923865 |
|
0.007298 |
|
0.973418 |
|
http://image.lampsplus.com/is/image/R4996.fpx?qlt=65&wid=236&hei=236&fmt=jpeg | 0.295743 |
0.17519 |
|
http://img.omni7.jp/co/productimage/0001/product/42/1106416942/image/1106416942_main_m.jpg | 0.012136 |
http://www.magment.com/wp-content/uploads/2016/10/Brown-Copper-and-Gold-Christmas-Tree.jpg | 0.930325 |
http://st.depositphotos.com/1401847/2610/i/110/depositphotos_26107209-Beekeepers.jpg | 0.944331 |
http://tse2.mm.bing.net/th?id=OIP.b37NMGP3NFDLaQMEYqn-9wHaJ4 | 0.894893 |
https://lf.lids.com/hwl?set=sku[20952141],c[2],w[400],h[300]&call=url[file:product] | 0.245889 |
https://images.carpages.ca/inventory/3056997.92439747?w=320&h=240&q=75&s=19dee924cabd2c8147ce310d91ede192 | 0.391937 |
http://www.lovablequote.com/wp-content/uploads/2017/09/i-promise-i-will-always-do-whatever-i-can-love-lovable-quote.jpg | 0.041598 |
0.940367 |
|
0.057772 |
|
http://sc02.alicdn.com/kf/HTB12ADaKpXXXXaUXVXXq6xXFXXXx/custom-made-metal-dog-tag-with-printed.jpg_200x200.jpg | 0.186894 |
http://sc01.alicdn.com/kf/HTB1TcfEj22H8KJjy1zkq6xr7pXa3/193612510/HTB1TcfEj22H8KJjy1zkq6xr7pXa3.jpg | 0.130072 |
http://sc01.alicdn.com/kf/HTB1TcfEj22H8KJjy1zkq6xr7pXa3/193612510/HTB1TcfEj22H8KJjy1zkq6xr7pXa3.jpg | 0.130072 |
0.252772 |
|
0.004496 |
|
0.42363 |
|
0.781965 |
|
0.087165 |
|
0.250631 |
|
0.1262 |
|
0.683728 |
|
0.077801 |
|
0.036165 |
|
0.040446 |
|
0.071291 |
|
0.879757 |
|
0.19366 |
|
http://www.davidsanger.com/images/sanfrancisco/5-620-9915.hongkongshow.x.jpg | 0.533288 |
0.827446 |
|
0.877989 |
|
0.006249 |
|
http://images.crestock.com/5050000-5059999/5058344-xs.jpg | 0.570638 |
0.653473 |
|
0.095641 |
|
https://process.fs.grailed.com/AJdAgnqCST4iPtnUxiGtTz/cache=expiry:max/rotate=deg:exif/resize=width:2400,fit:crop/output=quality:70/compress/https://process.fs.grailed.com/uYDIyR47T2yelP0xVSUh | 0.343877 |
0.481573 |
|
0.91981 |
|
0.389525 |
|
http://i0.wp.com/venueeventartist.com/imateq/event/446/1126/366730/900SC0/419292.jpeg?strip=all | 0.206685 |
0.244809 |
|
0.008085 |
|
http://images.shopflowers.net/images/products/SW0_512290.jpg | 0.397581 |
0.019927 |
|
0.792261 |
|
0.030368 |
|
0.046875 |
|
http://m.olokaustos.org/uploaded_images/c1597594-dansion-kyrgyzstan-p080-series-pump-p080-03r5c-h8p-00.jpg | 0.212421 |
0.886475 |
|
0.037512 |
|
http://images.fineartamerica.com/images-small-5/1-golden-sunset-over-farm-field-with-hay-bales-elena-elisseeva.jpg | 0.251134 |
0.344486 |
|
0.356114 |
|
0.441749 |
|
http://brookeandyara.com/wp-content/uploads/2017/08/how-to-write-an-awesome-college-essay.png | 0.047471 |
relaion2B-en-research-safe natural scores
This dataset contains naturalness scores for images in RELAION2B-en-safe. The scores predict how "natural" or "photographic" an image looks (vs artificial/rendered content). Scores range from 0-1, where higher values = more natural.
Quick stats:
- ~2M+ image URLs from RELAION2B
- Only URLs that were also in LAION-2B-en have scores
- File format: Snappy-compressed Parquet
Dataset Structure
Column | Description |
---|---|
url |
Image URL from RELAION2B |
natural_score |
Naturalness prediction (0-1), null if no match |
Files are named relaion2b_natural_part-*.snappy.parquet
and match the original relaion2b-en-safe dataset.
Dataset creation
We first obtained a small set of natural and non-natural images, by manually labeling 200k images from LAION-2B-en in an active learning loop. Selection criteria for natural images were:
- No watermarks, logos, or banners in the image
- No heavy editing (black-and-white filters, high contrast or saturation, etc., photoshopped images)
- Real-world scene or object
We trained a logistic regression model on CLIP ViT-L/14 features (768-dim) of the images and applied the model to image embeddings of the original LAION-2B-en dataset. As this dataset can't be shared any longer, we finally matched URLs between it and the new relaion2b-en-safe dataset.
Usage
Load with pandas:
import pandas as pd
df = pd.read_parquet("relaion2b_natural_part-000.snappy.parquet")
# Get natural images only
natural = df[df['natural_score'] > 0.7]
Load everything:
import glob
files = glob.glob("relaion2b_natural_part-*.snappy.parquet")
df_all = pd.concat([pd.read_parquet(f) for f in files])
With Hugging Face datasets:
from datasets import load_dataset
dataset = load_dataset("your-username/relaion2b-natural")
Use cases
- Filtering image datasets for natural/photographic content
- Quality assessment for computer vision training data
- Research on image naturalness
- Preprocessing step before training vision models
Limitations
- "Naturalness" is based on our specific training data - might not match your definition
- These are ML predictions, not ground truth
- Some URLs might be broken or point to different images now, but we can't check for that
Citation
TBD.
Questions? Issues? Let me know in the discussions!
- Downloads last month
- 199