hip
stringlengths
140
3.32k
cuda
stringlengths
84
3.33k
// !!! This is a file automatically generated by hipify!!! #include <ATen/hip\HIPContext.h> #include <hip/hip_runtime.h> namespace at { namespace hip { /** Computes ceil(a / b) */ template <typename T> __host__ __device__ __forceinline__ T ATenCeilDiv(T a, T b) { return (a + b - 1) / b; } namespace { // Threads per block for our apply kernel // FIXME: use occupancy calculator instead constexpr uint32_t AT_APPLY_THREADS_PER_BLOCK = 512; constexpr uint32_t AT_APPLY_BLOCKS_PER_SM = 4; template <int step = 1> inline bool getApplyGrid(uint64_t totalElements, dim3& grid, int64_t curDevice, int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) { if (curDevice == -1) return false; uint64_t numel_per_thread = static_cast<uint64_t>(max_threads_per_block) * static_cast<uint64_t>(step); uint64_t numBlocks = ATenCeilDiv(totalElements, numel_per_thread); uint64_t maxGridX = at::cuda::getDeviceProperties(curDevice)->maxGridSize[0]; if (numBlocks > maxGridX) numBlocks = maxGridX; grid = dim3(numBlocks); return true; } constexpr int getApplyBlocksPerSM() { return AT_APPLY_BLOCKS_PER_SM; } constexpr int getApplyBlockSize() { return AT_APPLY_THREADS_PER_BLOCK; } inline dim3 getApplyBlock(int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) { return dim3(max_threads_per_block); } } }} // namespace at::cuda ###
#include <ATen/cuda/CUDAContext.h> #include <cuda_runtime.h> namespace at { namespace cuda { /** Computes ceil(a / b) */ template <typename T> __host__ __device__ __forceinline__ T ATenCeilDiv(T a, T b) { return (a + b - 1) / b; } namespace { // Threads per block for our apply kernel // FIXME: use occupancy calculator instead constexpr uint32_t AT_APPLY_THREADS_PER_BLOCK = 512; constexpr uint32_t AT_APPLY_BLOCKS_PER_SM = 4; template <int step = 1> inline bool getApplyGrid(uint64_t totalElements, dim3& grid, int64_t curDevice, int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) { if (curDevice == -1) return false; uint64_t numel_per_thread = static_cast<uint64_t>(max_threads_per_block) * static_cast<uint64_t>(step); uint64_t numBlocks = ATenCeilDiv(totalElements, numel_per_thread); uint64_t maxGridX = at::cuda::getDeviceProperties(curDevice)->maxGridSize[0]; if (numBlocks > maxGridX) numBlocks = maxGridX; grid = dim3(numBlocks); return true; } constexpr int getApplyBlocksPerSM() { return AT_APPLY_BLOCKS_PER_SM; } constexpr int getApplyBlockSize() { return AT_APPLY_THREADS_PER_BLOCK; } inline dim3 getApplyBlock(int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK) { return dim3(max_threads_per_block); } } }} // namespace at::cuda ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/hip\HIPContext.h> #include <ATen/native/Repeat.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/NativeFunctions.h> #else #include <ATen/ops/repeat_interleave_native.h> #endif template <typename index_t> __global__ static void compute_hip_kernel( index_t* repeat_ptr, int64_t* cumsum_ptr, index_t* result_ptr, int64_t size, int64_t result_size) { CUDA_KERNEL_ASSERT(result_size == cumsum_ptr[size - 1]); int64_t idx = blockIdx.x * blockDim.x + threadIdx.x; int64_t stride = (blockDim.x * gridDim.x) / C10_WARP_SIZE; int warp_id = idx / C10_WARP_SIZE; int tid_in_warp = idx % C10_WARP_SIZE; for (int64_t i = warp_id; i < size; i += stride) { int64_t end = cumsum_ptr[i]; index_t repeat = repeat_ptr[i]; CUDA_KERNEL_ASSERT(repeat >= 0); int64_t start = end - repeat; for (int64_t j = start + tid_in_warp; j < end; j += C10_WARP_SIZE) { result_ptr[j] = i; } } } template <typename index_t> static void compute_hip( index_t* repeat_ptr, int64_t* cumsum_ptr, index_t* result_ptr, int64_t size, int64_t result_size) { int64_t block = 512; int64_t warps_per_block = block / at::cuda::warp_size(); int64_t grid = std::min<int64_t>((size + warps_per_block - 1) / warps_per_block, 2048L); hipLaunchKernelGGL(( compute_hip_kernel), dim3(grid), dim3(block), 0, at::hip::getCurrentHIPStream(), repeat_ptr, cumsum_ptr, result_ptr, size, result_size); C10_HIP_KERNEL_LAUNCH_CHECK(); } namespace at::native { Tensor repeat_interleave_hip( const Tensor& repeat, c10::optional<int64_t> output_size) { Tensor output; AT_DISPATCH_INDEX_TYPES( repeat.scalar_type(), "repeat_interleave_hip", [&]() { output = repeat_interleave_common<index_t, compute_hip<index_t>>( repeat, output_size); }); return output; } } // namespace at::native ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/cuda/CUDAContext.h> #include <ATen/native/Repeat.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/NativeFunctions.h> #else #include <ATen/ops/repeat_interleave_native.h> #endif template <typename index_t> __global__ static void compute_cuda_kernel( index_t* repeat_ptr, int64_t* cumsum_ptr, index_t* result_ptr, int64_t size, int64_t result_size) { CUDA_KERNEL_ASSERT(result_size == cumsum_ptr[size - 1]); int64_t idx = blockIdx.x * blockDim.x + threadIdx.x; int64_t stride = (blockDim.x * gridDim.x) / C10_WARP_SIZE; int warp_id = idx / C10_WARP_SIZE; int tid_in_warp = idx % C10_WARP_SIZE; for (int64_t i = warp_id; i < size; i += stride) { int64_t end = cumsum_ptr[i]; index_t repeat = repeat_ptr[i]; CUDA_KERNEL_ASSERT(repeat >= 0); int64_t start = end - repeat; for (int64_t j = start + tid_in_warp; j < end; j += C10_WARP_SIZE) { result_ptr[j] = i; } } } template <typename index_t> static void compute_cuda( index_t* repeat_ptr, int64_t* cumsum_ptr, index_t* result_ptr, int64_t size, int64_t result_size) { int64_t block = 512; int64_t warps_per_block = block / at::cuda::warp_size(); int64_t grid = std::min<int64_t>((size + warps_per_block - 1) / warps_per_block, 2048L); compute_cuda_kernel<<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>( repeat_ptr, cumsum_ptr, result_ptr, size, result_size); C10_CUDA_KERNEL_LAUNCH_CHECK(); } namespace at::native { Tensor repeat_interleave_cuda( const Tensor& repeat, c10::optional<int64_t> output_size) { Tensor output; AT_DISPATCH_INDEX_TYPES( repeat.scalar_type(), "repeat_interleave_cuda", [&]() { output = repeat_interleave_common<index_t, compute_cuda<index_t>>( repeat, output_size); }); return output; } } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char scaled_modified_bessel_k0_name[] = "scaled_modified_bessel_k0_forward"; void scaled_modified_bessel_k0_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k0_hip", [&]() { jitted_gpu_kernel<scaled_modified_bessel_k0_name, scalar_t, scalar_t, 1>(iterator, scaled_modified_bessel_k0_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k0_hip", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return scaled_modified_bessel_k0_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_scaled_modified_bessel_k0_stub, &scaled_modified_bessel_k0_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char scaled_modified_bessel_k0_name[] = "scaled_modified_bessel_k0_forward"; void scaled_modified_bessel_k0_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k0_cuda", [&]() { jitted_gpu_kernel<scaled_modified_bessel_k0_name, scalar_t, scalar_t, 1>(iterator, scaled_modified_bessel_k0_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k0_cuda", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return scaled_modified_bessel_k0_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_scaled_modified_bessel_k0_stub, &scaled_modified_bessel_k0_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char scaled_modified_bessel_k1_name[] = "scaled_modified_bessel_k1_forward"; void scaled_modified_bessel_k1_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k1_hip", [&]() { jitted_gpu_kernel<scaled_modified_bessel_k1_name, scalar_t, scalar_t, 1>(iterator, scaled_modified_bessel_k1_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k1_hip", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return scaled_modified_bessel_k1_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_scaled_modified_bessel_k1_stub, &scaled_modified_bessel_k1_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char scaled_modified_bessel_k1_name[] = "scaled_modified_bessel_k1_forward"; void scaled_modified_bessel_k1_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k1_cuda", [&]() { jitted_gpu_kernel<scaled_modified_bessel_k1_name, scalar_t, scalar_t, 1>(iterator, scaled_modified_bessel_k1_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "scaled_modified_bessel_k1_cuda", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return scaled_modified_bessel_k1_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_scaled_modified_bessel_k1_stub, &scaled_modified_bessel_k1_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char shifted_chebyshev_polynomial_t_name[] = "shifted_chebyshev_polynomial_t_forward"; void shifted_chebyshev_polynomial_t_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_t_hip", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_t_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_t_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_t_hip", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_t_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_t_kernel_hip } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_t_stub, &shifted_chebyshev_polynomial_t_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char shifted_chebyshev_polynomial_t_name[] = "shifted_chebyshev_polynomial_t_forward"; void shifted_chebyshev_polynomial_t_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_t_cuda", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_t_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_t_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_t_cuda", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_t_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_t_kernel_cuda } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_t_stub, &shifted_chebyshev_polynomial_t_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char shifted_chebyshev_polynomial_u_name[] = "shifted_chebyshev_polynomial_u_forward"; void shifted_chebyshev_polynomial_u_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_u_hip", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_u_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_u_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_u_hip", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_u_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_u_kernel_hip } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_u_stub, &shifted_chebyshev_polynomial_u_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char shifted_chebyshev_polynomial_u_name[] = "shifted_chebyshev_polynomial_u_forward"; void shifted_chebyshev_polynomial_u_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_u_cuda", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_u_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_u_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_u_cuda", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_u_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_u_kernel_cuda } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_u_stub, &shifted_chebyshev_polynomial_u_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char shifted_chebyshev_polynomial_v_name[] = "shifted_chebyshev_polynomial_v_forward"; void shifted_chebyshev_polynomial_v_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_v_hip", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_v_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_v_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_v_hip", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_v_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_v_kernel_hip } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_v_stub, &shifted_chebyshev_polynomial_v_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char shifted_chebyshev_polynomial_v_name[] = "shifted_chebyshev_polynomial_v_forward"; void shifted_chebyshev_polynomial_v_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_v_cuda", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_v_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_v_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_v_cuda", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_v_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_v_kernel_cuda } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_v_stub, &shifted_chebyshev_polynomial_v_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char shifted_chebyshev_polynomial_w_name[] = "shifted_chebyshev_polynomial_w_forward"; void shifted_chebyshev_polynomial_w_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_w_hip", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_w_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_w_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_w_hip", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_w_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_w_kernel_hip } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_w_stub, &shifted_chebyshev_polynomial_w_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char shifted_chebyshev_polynomial_w_name[] = "shifted_chebyshev_polynomial_w_forward"; void shifted_chebyshev_polynomial_w_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_w_cuda", [&]() { opmath_jitted_gpu_kernel_with_scalars<shifted_chebyshev_polynomial_w_name, scalar_t, scalar_t>(iterator, shifted_chebyshev_polynomial_w_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "shifted_chebyshev_polynomial_w_cuda", [&]() { gpu_kernel_with_scalars(iterator, []GPU_LAMBDA(scalar_t x, scalar_t n) -> scalar_t { return shifted_chebyshev_polynomial_w_forward<scalar_t, true>(x, n); }); }); #endif } // shifted_chebyshev_polynomial_w_kernel_cuda } // namespace (anonymous) REGISTER_DISPATCH(shifted_chebyshev_polynomial_w_stub, &shifted_chebyshev_polynomial_w_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <thrust/execution_policy.h> #include <thrust/sort.h> namespace at::native { std::vector<int64_t> infer_dense_strides_dim_last(const Tensor & self, int64_t dim) { int64_t ndim = self.dim(); // sort the strides in descending order according to its value, // keeping dim the last. std::vector<int64_t> strides = self.strides().vec(); strides[dim] = -1; std::vector<int64_t> original_dim(ndim); for (int64_t i = 0; i < ndim; i++) { original_dim[i] = i; } thrust::stable_sort_by_key( thrust::host, strides.data(), strides.data() + ndim, original_dim.data(), thrust::greater<int64_t>() ); // generate contiguous strides on permuted dims std::vector<int64_t> new_strides(ndim); std::vector<int64_t> new_strides_unsort(ndim); int64_t cumprod = 1; for (int64_t i = 0; i < ndim; i++) { new_strides[ndim - 1 - i] = cumprod; cumprod *= self.sizes()[original_dim[ndim - 1 - i]]; } // unsort new strides for (int64_t i = 0; i < ndim; i++) { new_strides_unsort[original_dim[i]] = new_strides[i]; } return new_strides_unsort; } } // namespace at::native ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <thrust/execution_policy.h> #include <thrust/sort.h> namespace at::native { std::vector<int64_t> infer_dense_strides_dim_last(const Tensor & self, int64_t dim) { int64_t ndim = self.dim(); // sort the strides in descending order according to its value, // keeping dim the last. std::vector<int64_t> strides = self.strides().vec(); strides[dim] = -1; std::vector<int64_t> original_dim(ndim); for (int64_t i = 0; i < ndim; i++) { original_dim[i] = i; } thrust::stable_sort_by_key( thrust::host, strides.data(), strides.data() + ndim, original_dim.data(), thrust::greater<int64_t>() ); // generate contiguous strides on permuted dims std::vector<int64_t> new_strides(ndim); std::vector<int64_t> new_strides_unsort(ndim); int64_t cumprod = 1; for (int64_t i = 0; i < ndim; i++) { new_strides[ndim - 1 - i] = cumprod; cumprod *= self.sizes()[original_dim[ndim - 1 - i]]; } // unsort new strides for (int64_t i = 0; i < ndim; i++) { new_strides_unsort[original_dim[i]] = new_strides[i]; } return new_strides_unsort; } } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <c10/util/Exception.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/NativeFunctions.h> #else #include <ATen/ops/sspaddmm_native.h> #endif namespace at::native { // sparse, sparse, sparse, dense, real, real -> sparse Tensor& _sspaddmm_out_only_sparse_hip(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Tensor& result) { AT_ERROR("tensor.sspaddmm(...) can only be called on sparse tensors"); } Tensor& _sspaddmm_out_hip(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Tensor& result) { AT_ERROR("NYI: HIP sspaddmm is not implemented"); } } // namespace at::native ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <c10/util/Exception.h> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/NativeFunctions.h> #else #include <ATen/ops/sspaddmm_native.h> #endif namespace at::native { // sparse, sparse, sparse, dense, real, real -> sparse Tensor& _sspaddmm_out_only_sparse_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Tensor& result) { AT_ERROR("tensor.sspaddmm(...) can only be called on sparse tensors"); } Tensor& _sspaddmm_out_cuda(const Tensor& self, const Tensor& mat1, const Tensor& mat2, const Scalar& beta, const Scalar& alpha, Tensor& result) { AT_ERROR("NYI: CUDA sspaddmm is not implemented"); } } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/hip/HIPMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_HIP char spherical_bessel_j0_name[] = "spherical_bessel_j0_forward"; void spherical_bessel_j0_kernel_hip(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "spherical_bessel_j0_hip", [&]() { jitted_gpu_kernel<spherical_bessel_j0_name, scalar_t, scalar_t, 1>(iterator, spherical_bessel_j0_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "spherical_bessel_j0_hip", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return spherical_bessel_j0_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_spherical_bessel_j0_stub, &spherical_bessel_j0_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/native/UnaryOps.h> #include <limits> #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/Math.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> #include <ATen/NumericUtils.h> #include <c10/core/Scalar.h> #include <c10/cuda/CUDAMathCompat.h> #include <c10/util/complex.h> namespace at::native { namespace { CONSTEXPR_EXCEPT_WIN_CUDA char spherical_bessel_j0_name[] = "spherical_bessel_j0_forward"; void spherical_bessel_j0_kernel_cuda(TensorIteratorBase& iterator) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "spherical_bessel_j0_cuda", [&]() { jitted_gpu_kernel<spherical_bessel_j0_name, scalar_t, scalar_t, 1>(iterator, spherical_bessel_j0_string); }); #else AT_DISPATCH_FLOATING_TYPES(iterator.common_dtype(), "spherical_bessel_j0_cuda", [&]() { gpu_kernel(iterator, []GPU_LAMBDA(scalar_t a) -> scalar_t { return spherical_bessel_j0_forward(a); }); }); #endif // AT_USE_JITERATOR() } } REGISTER_DISPATCH(special_spherical_bessel_j0_stub, &spherical_bessel_j0_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #pragma once #include <ATen/core/TensorBase.h> #include <ATen/hip/detail\TensorInfo.cuh> #include <ATen/native/CanUse32BitIndexMath.h> namespace at { namespace hip { namespace detail { TORCH_HIP_CU_API bool maybeOverlappingIndices(const at::TensorBase &t); using at::native::canUse32BitIndexMath; template <typename scalar, typename IndexType> TensorInfo<scalar, IndexType> getTensorInfo(const at::TensorBase &t) { IndexType sz[MAX_TENSORINFO_DIMS]; IndexType st[MAX_TENSORINFO_DIMS]; int dims = t.dim(); for (int i = 0; i < dims; ++i) { sz[i] = t.size(i); st[i] = t.stride(i); } return TensorInfo<scalar, IndexType>( t.data_ptr<scalar>(), dims, sz, st); } } // detail } // cuda } // at ###
#pragma once #include <ATen/core/TensorBase.h> #include <ATen/cuda/detail/TensorInfo.cuh> #include <ATen/native/CanUse32BitIndexMath.h> namespace at { namespace cuda { namespace detail { TORCH_CUDA_CU_API bool maybeOverlappingIndices(const at::TensorBase &t); using at::native::canUse32BitIndexMath; template <typename scalar, typename IndexType> TensorInfo<scalar, IndexType> getTensorInfo(const at::TensorBase &t) { IndexType sz[MAX_TENSORINFO_DIMS]; IndexType st[MAX_TENSORINFO_DIMS]; int dims = t.dim(); for (int i = 0; i < dims; ++i) { sz[i] = t.size(i); st[i] = t.stride(i); } return TensorInfo<scalar, IndexType>( t.data_ptr<scalar>(), dims, sz, st); } } // detail } // cuda } // at ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/TensorIterator.h> #include <ATen/native/BinaryOps.h> #include <c10/util/BFloat16-math.h> // NOTE: HIP on Windows requires that the enclosing function // of a __device__ lambda not have internal linkage. namespace at::native { void nextafter_kernel_hip(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND(kBFloat16, iter.common_dtype(), "nextafter_hip", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { return std::nextafter(a, b); }); }); } void heaviside_kernel_hip(TensorIteratorBase& iter) { AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBool, kBFloat16, iter.dtype(), "heaviside_hip", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { return a == 0 ? b : static_cast<scalar_t>(a > 0); }); }); } REGISTER_DISPATCH(nextafter_stub, &nextafter_kernel_hip); REGISTER_DISPATCH(heaviside_stub, &heaviside_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/TensorIterator.h> #include <ATen/native/BinaryOps.h> #include <c10/util/BFloat16-math.h> // NOTE: CUDA on Windows requires that the enclosing function // of a __device__ lambda not have internal linkage. namespace at::native { void nextafter_kernel_cuda(TensorIteratorBase& iter) { AT_DISPATCH_FLOATING_TYPES_AND(kBFloat16, iter.common_dtype(), "nextafter_cuda", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { return std::nextafter(a, b); }); }); } void heaviside_kernel_cuda(TensorIteratorBase& iter) { AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBool, kBFloat16, iter.dtype(), "heaviside_cuda", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t { return a == 0 ? b : static_cast<scalar_t>(a > 0); }); }); } REGISTER_DISPATCH(nextafter_stub, &nextafter_kernel_cuda); REGISTER_DISPATCH(heaviside_stub, &heaviside_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char acosh_name[] = "acosh_impl"; #endif void acosh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if(at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto acosh_string = jiterator_stringify( template <typename T> T acosh_impl(T a) { return std::acosh(a); } ); AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "acosh_name", [&]() { jitted_gpu_kernel< /*name=*/ acosh_name, /*return_dtype=*/ scalar_t, /*common_dtype=*/ scalar_t, /*arity=*/ 1>(iter, acosh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "acosh_name", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::acosh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "acosh_hip", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { return ::acosh(a); }); }); } } REGISTER_DISPATCH(acosh_stub, &acosh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char acosh_name[] = "acosh_impl"; #endif void acosh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if(at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto acosh_string = jiterator_stringify( template <typename T> T acosh_impl(T a) { return std::acosh(a); } ); AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "acosh_name", [&]() { jitted_gpu_kernel< /*name=*/ acosh_name, /*return_dtype=*/ scalar_t, /*common_dtype=*/ scalar_t, /*arity=*/ 1>(iter, acosh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "acosh_name", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::acosh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "acosh_cuda", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { return ::acosh(a); }); }); } } REGISTER_DISPATCH(acosh_stub, &acosh_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char acos_name[] = "acos_impl"; #endif void acos_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto acos_string = jiterator_stringify( template <typename T> T acos_impl(T a) { return std::acos(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "acos_name", [&]() { jitted_gpu_kernel< /*name=*/acos_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, acos_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "acos_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::acos(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "acos_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::acos(a); }); }); } } REGISTER_DISPATCH(acos_stub, &acos_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char acos_name[] = "acos_impl"; #endif void acos_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto acos_string = jiterator_stringify( template <typename T> T acos_impl(T a) { return std::acos(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "acos_name", [&]() { jitted_gpu_kernel< /*name=*/acos_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, acos_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "acos_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::acos(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "acos_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::acos(a); }); }); } } REGISTER_DISPATCH(acos_stub, &acos_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char asinh_name[] = "asinh_impl"; #endif void asinh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto asinh_string = jiterator_stringify( template <typename T> T asinh_impl(T a) { return std::asinh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asinh_name", [&]() { jitted_gpu_kernel< /*name=*/asinh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, asinh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asinh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::asinh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "asinh_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::asinh(a); }); }); } } REGISTER_DISPATCH(asinh_stub, &asinh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char asinh_name[] = "asinh_impl"; #endif void asinh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto asinh_string = jiterator_stringify( template <typename T> T asinh_impl(T a) { return std::asinh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asinh_name", [&]() { jitted_gpu_kernel< /*name=*/asinh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, asinh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asinh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::asinh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "asinh_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::asinh(a); }); }); } } REGISTER_DISPATCH(asinh_stub, &asinh_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char asin_name[] = "asin_impl"; #endif void asin_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto asin_string = jiterator_stringify( template <typename T> T asin_impl(T a) { return std::asin(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asin_name", [&]() { jitted_gpu_kernel< /*name=*/asin_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, asin_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asin_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::asin(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, common_dtype, "asin_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::asin(a); }); }); } } REGISTER_DISPATCH(asin_stub, &asin_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char asin_name[] = "asin_impl"; #endif void asin_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto asin_string = jiterator_stringify( template <typename T> T asin_impl(T a) { return std::asin(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asin_name", [&]() { jitted_gpu_kernel< /*name=*/asin_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, asin_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "asin_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::asin(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( kHalf, kBFloat16, common_dtype, "asin_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::asin(a); }); }); } } REGISTER_DISPATCH(asin_stub, &asin_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char atanh_name[] = "atanh_impl"; #endif void atanh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto atanh_string = jiterator_stringify( template <typename T> T atanh_impl(T a) { return std::atanh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "atanh_name", [&]() { jitted_gpu_kernel< /*name=*/atanh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, atanh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "atanh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::atanh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "atanh_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::atanh(a); }); }); } } REGISTER_DISPATCH(atanh_stub, &atanh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char atanh_name[] = "atanh_impl"; #endif void atanh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto atanh_string = jiterator_stringify( template <typename T> T atanh_impl(T a) { return std::atanh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "atanh_name", [&]() { jitted_gpu_kernel< /*name=*/atanh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, atanh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "atanh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::atanh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "atanh_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::atanh(a); }); }); } } REGISTER_DISPATCH(atanh_stub, &atanh_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char atan_name[] = "atan_impl"; #endif void atan_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto atan_string = jiterator_stringify( template <typename T> T atan_impl(T a) { return std::atan(a); } ); AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "atan_name", [&]() { jitted_gpu_kernel< /*name=*/ atan_name, /*return_dtype=*/ scalar_t, /*common_dtype=*/ scalar_t, /*arity=*/ 1>(iter, atan_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "atan_name", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::atan(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "atan_hip", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { return ::atan(a); }); }); } } REGISTER_DISPATCH(atan_stub, &atan_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char atan_name[] = "atan_impl"; #endif void atan_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto atan_string = jiterator_stringify( template <typename T> T atan_impl(T a) { return std::atan(a); } ); AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "atan_name", [&]() { jitted_gpu_kernel< /*name=*/ atan_name, /*return_dtype=*/ scalar_t, /*common_dtype=*/ scalar_t, /*arity=*/ 1>(iter, atan_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND(kComplexHalf, common_dtype, "atan_name", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::atan(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "atan_cuda", [&]() { gpu_kernel(iter, []GPU_LAMBDA(scalar_t a) -> scalar_t { return ::atan(a); }); }); } } REGISTER_DISPATCH(atan_stub, &atan_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char cosh_name[] = "cosh_impl"; #endif void cosh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto cosh_string = jiterator_stringify( template <typename T> T cosh_impl(T a) { return std::cosh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cosh_name", [&]() { jitted_gpu_kernel< /*name=*/cosh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, cosh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cosh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::cosh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "cosh_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::cosh(a); }); }); } } REGISTER_DISPATCH(cosh_stub, &cosh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char cosh_name[] = "cosh_impl"; #endif void cosh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto cosh_string = jiterator_stringify( template <typename T> T cosh_impl(T a) { return std::cosh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cosh_name", [&]() { jitted_gpu_kernel< /*name=*/cosh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, cosh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cosh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::cosh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "cosh_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::cosh(a); }); }); } } REGISTER_DISPATCH(cosh_stub, &cosh_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char cos_name[] = "cos_impl"; #endif // AT_USE_JITERATOR() void cos_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto cos_string = jiterator_stringify( template <typename T> T cos_impl(T a) { return std::cos(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cos_name", [&]() { jitted_gpu_kernel< /*name=*/cos_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, cos_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cos_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::cos(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "cos_hip", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::cos(a); }); }); } } REGISTER_DISPATCH(cos_stub, &cos_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char cos_name[] = "cos_impl"; #endif // AT_USE_JITERATOR() void cos_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto cos_string = jiterator_stringify( template <typename T> T cos_impl(T a) { return std::cos(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cos_name", [&]() { jitted_gpu_kernel< /*name=*/cos_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, cos_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "cos_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::cos(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "cos_cuda", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::cos(a); }); }); } } REGISTER_DISPATCH(cos_stub, &cos_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char sinh_name[] = "sinh_impl"; #endif void sinh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto sinh_string = jiterator_stringify( template <typename T> T sinh_impl(T a) { return std::sinh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sinh_name", [&]() { jitted_gpu_kernel< /*name=*/sinh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, sinh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sinh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::sinh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "sinh_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::sinh(a); }); }); } } REGISTER_DISPATCH(sinh_stub, &sinh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char sinh_name[] = "sinh_impl"; #endif void sinh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto sinh_string = jiterator_stringify( template <typename T> T sinh_impl(T a) { return std::sinh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sinh_name", [&]() { jitted_gpu_kernel< /*name=*/sinh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, sinh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sinh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::sinh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "sinh_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::sinh(a); }); }); } } REGISTER_DISPATCH(sinh_stub, &sinh_kernel_cuda); } // namespace at::native ###
#pragma once #include <assert.h> #if defined(__HIP_ARCH__) || defined(__HIP_DEVICE_COMPILE__) #include <hip/hip_runtime.h> #endif namespace at { namespace hip { namespace detail { template <typename Value> struct DivMod { Value div, mod; C10_HOST_DEVICE DivMod(Value div, Value mod) : div(div), mod(mod) { } }; template <typename Value> struct IntDivider { IntDivider() = default; IntDivider(Value d) : divisor(d) { } C10_HOST_DEVICE inline Value div(Value n) const { return n / divisor; } C10_HOST_DEVICE inline Value mod(Value n) const { return n % divisor; } C10_HOST_DEVICE inline DivMod<Value> divmod(Value n) const { return DivMod<Value>(n / divisor, n % divisor); } Value divisor; }; template <> struct IntDivider<unsigned int> { static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int."); IntDivider() = default; IntDivider(unsigned int d) : divisor(d) { assert(divisor >= 1 && divisor <= INT32_MAX); for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break; uint64_t one = 1; uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1; m1 = magic; assert(m1 > 0 && m1 == magic); } C10_HOST_DEVICE inline unsigned int div(unsigned int n) const { #if defined(__HIP_ARCH__) || defined(__HIP_DEVICE_COMPILE__) unsigned int t = __umulhi(n, m1); return (t + n) >> shift; #else uint64_t t = ((uint64_t) n * m1) >> 32; return (t + n) >> shift; #endif } C10_HOST_DEVICE inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; } C10_HOST_DEVICE inline DivMod<unsigned int> divmod(unsigned int n) const { unsigned int q = div(n); return DivMod<unsigned int>(q, n - q * divisor); } unsigned int divisor; unsigned int m1; unsigned int shift; }; }}} ###
#pragma once #include <assert.h> #if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__) #include <cuda_runtime.h> #endif namespace at { namespace cuda { namespace detail { template <typename Value> struct DivMod { Value div, mod; C10_HOST_DEVICE DivMod(Value div, Value mod) : div(div), mod(mod) { } }; template <typename Value> struct IntDivider { IntDivider() = default; IntDivider(Value d) : divisor(d) { } C10_HOST_DEVICE inline Value div(Value n) const { return n / divisor; } C10_HOST_DEVICE inline Value mod(Value n) const { return n % divisor; } C10_HOST_DEVICE inline DivMod<Value> divmod(Value n) const { return DivMod<Value>(n / divisor, n % divisor); } Value divisor; }; template <> struct IntDivider<unsigned int> { static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int."); IntDivider() = default; IntDivider(unsigned int d) : divisor(d) { assert(divisor >= 1 && divisor <= INT32_MAX); for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break; uint64_t one = 1; uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1; m1 = magic; assert(m1 > 0 && m1 == magic); } C10_HOST_DEVICE inline unsigned int div(unsigned int n) const { #if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__) unsigned int t = __umulhi(n, m1); return (t + n) >> shift; #else uint64_t t = ((uint64_t) n * m1) >> 32; return (t + n) >> shift; #endif } C10_HOST_DEVICE inline unsigned int mod(unsigned int n) const { return n - div(n) * divisor; } C10_HOST_DEVICE inline DivMod<unsigned int> divmod(unsigned int n) const { unsigned int q = div(n); return DivMod<unsigned int>(q, n - q * divisor); } unsigned int divisor; unsigned int m1; unsigned int shift; }; }}} ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char sin_name[] = "sin_impl"; #endif void sin_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto sin_string = jiterator_stringify( template <typename T> T sin_impl(T a) { return std::sin(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sin_name", [&]() { jitted_gpu_kernel< /*name=*/sin_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, sin_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sin_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::sin(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "sin_hip", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::sin(a); }); }); } } REGISTER_DISPATCH(sin_stub, &sin_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char sin_name[] = "sin_impl"; #endif void sin_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { #if AT_USE_JITERATOR() static const auto sin_string = jiterator_stringify( template <typename T> T sin_impl(T a) { return std::sin(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sin_name", [&]() { jitted_gpu_kernel< /*name=*/sin_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, sin_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "sin_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::sin(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "sin_cuda", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::sin(a); }); }); } } REGISTER_DISPATCH(sin_stub, &sin_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char tanh_name[] = "tanh_impl"; #endif void tanh_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto tanh_string = jiterator_stringify( template <typename T> T tanh_impl(T a) { return std::tanh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tanh_name", [&]() { jitted_gpu_kernel< /*name=*/tanh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, tanh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tanh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::tanh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "tanh_hip", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::tanh(a); }); }); } } REGISTER_DISPATCH(tanh_stub, &tanh_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char tanh_name[] = "tanh_impl"; #endif void tanh_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto tanh_string = jiterator_stringify( template <typename T> T tanh_impl(T a) { return std::tanh(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tanh_name", [&]() { jitted_gpu_kernel< /*name=*/tanh_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, tanh_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tanh_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::tanh(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "tanh_cuda", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::tanh(a); }); }); } } REGISTER_DISPATCH(tanh_stub, &tanh_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/hip\Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_HIP char tan_name[] = "tan_impl"; #endif void tan_kernel_hip(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto tan_string = jiterator_stringify( template <typename T> T tan_impl(T a) { return std::tan(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tan_name", [&]() { jitted_gpu_kernel< /*name=*/tan_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, tan_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tan_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::tan(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "tan_hip", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::tan(a); }); }); } } REGISTER_DISPATCH(tan_stub, &tan_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/AccumulateType.h> #include <ATen/Dispatch.h> #include <ATen/OpMathType.h> #include <ATen/native/DispatchStub.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/UnaryOps.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/cuda/Math.cuh> #include <limits> namespace at::native { #if 0 && AT_USE_JITERATOR() CONSTEXPR_EXCEPT_WIN_CUDA char tan_name[] = "tan_impl"; #endif void tan_kernel_cuda(TensorIteratorBase& iter) { auto common_dtype = iter.common_dtype(); if (at::isComplexType(common_dtype)) { // Disabled due to accuracy issues #if 0 && AT_USE_JITERATOR() static const auto tan_string = jiterator_stringify( template <typename T> T tan_impl(T a) { return std::tan(a); }); AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tan_name", [&]() { jitted_gpu_kernel< /*name=*/tan_name, /*return_dtype=*/scalar_t, /*common_dtype=*/scalar_t, /*arity=*/1>(iter, tan_string); }); #else AT_DISPATCH_COMPLEX_TYPES_AND( kComplexHalf, common_dtype, "tan_name", [&]() { gpu_kernel(iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { using opmath_t = at::opmath_type<scalar_t>; return ::tan(static_cast<opmath_t>(a)); }); }); #endif } else { AT_DISPATCH_FLOATING_TYPES_AND2( ScalarType::Half, ScalarType::BFloat16, common_dtype, "tan_cuda", [&]() { gpu_kernel( iter, [] GPU_LAMBDA(scalar_t a) -> scalar_t { return ::tan(a); }); }); } } REGISTER_DISPATCH(tan_stub, &tan_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include <ATen/core/Tensor.h> namespace at { namespace native { namespace internal { template <typename scalar_t> std::tuple<Tensor, Tensor, Tensor> unique_hip_template( const Tensor& self, const bool consecutive, const bool return_inverse, const bool return_counts); } // namespace internal } // namespace at } // namespace native ###
#include <ATen/core/Tensor.h> namespace at { namespace native { namespace internal { template <typename scalar_t> std::tuple<Tensor, Tensor, Tensor> unique_cuda_template( const Tensor& self, const bool consecutive, const bool return_inverse, const bool return_counts); } // namespace internal } // namespace at } // namespace native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/native/sparse/ValidateCompressedIndicesCommon.h> #include <ATen/native/hip\Loops.cuh> namespace at::native { namespace { template <typename func_t> struct HIPKernelLauncher { static void launch(TensorIteratorBase& iter, const func_t& f) { gpu_kernel(iter, f); } }; } void _validate_compressed_sparse_indices_hip( const bool is_crow, const Tensor& cidx, const Tensor& idx, const int64_t cdim, const int64_t dim, const int64_t nnz) { validate_compressed_sparse_indices_kernel<HIPKernelLauncher>( is_crow, cidx, idx, cdim, dim, nnz); } } // namespace at::native ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/native/sparse/ValidateCompressedIndicesCommon.h> #include <ATen/native/cuda/Loops.cuh> namespace at::native { namespace { template <typename func_t> struct CUDAKernelLauncher { static void launch(TensorIteratorBase& iter, const func_t& f) { gpu_kernel(iter, f); } }; } void _validate_compressed_sparse_indices_cuda( const bool is_crow, const Tensor& cidx, const Tensor& idx, const int64_t cdim, const int64_t dim, const int64_t nnz) { validate_compressed_sparse_indices_kernel<CUDAKernelLauncher>( is_crow, cidx, idx, cdim, dim, nnz); } } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/hip\JitLoops.cuh> #include <ATen/native/hip\Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/hip\Math.cuh> #include <ATen/native/hip\jit_utils.h> namespace at::native { namespace { /* * This function is derived from the implementation of the zeta function in the Cephes Math Library. * See note [3-Clause BSD License for the Cephes Math Library]. */ // See note [Jiterator] CONSTEXPR_EXCEPT_WIN_HIP char zeta_name[] = "zeta"; void zeta_kernel_hip(TensorIteratorBase& iter) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "zeta_hip", [&]() { opmath_jitted_gpu_kernel_with_scalars</*name=*/zeta_name, /*return_dtype=*/ scalar_t, /*f_inputs_dtype=*/ scalar_t>(iter, zeta_string); }); #else AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "zeta_hip", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t x, scalar_t q) -> scalar_t { return zeta<scalar_t, /*is_hip=*/true>(x, q); }); }); #endif //jiterator } } // namespace (anonymous) REGISTER_DISPATCH(zeta_stub, &zeta_kernel_hip); } // namespace at::native ###
#define TORCH_ASSERT_NO_OPERATORS #include <ATen/Dispatch.h> #include <ATen/native/cuda/JitLoops.cuh> #include <ATen/native/cuda/Loops.cuh> #include <ATen/native/BinaryOps.h> #include <ATen/native/Math.h> #include <ATen/native/cuda/Math.cuh> #include <ATen/native/cuda/jit_utils.h> namespace at::native { namespace { /* * This function is derived from the implementation of the zeta function in the Cephes Math Library. * See note [3-Clause BSD License for the Cephes Math Library]. */ // See note [Jiterator] CONSTEXPR_EXCEPT_WIN_CUDA char zeta_name[] = "zeta"; void zeta_kernel_cuda(TensorIteratorBase& iter) { #if AT_USE_JITERATOR() AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "zeta_cuda", [&]() { opmath_jitted_gpu_kernel_with_scalars</*name=*/zeta_name, /*return_dtype=*/ scalar_t, /*f_inputs_dtype=*/ scalar_t>(iter, zeta_string); }); #else AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "zeta_cuda", [&]() { gpu_kernel_with_scalars(iter, []GPU_LAMBDA(scalar_t x, scalar_t q) -> scalar_t { return zeta<scalar_t, /*is_cuda=*/true>(x, q); }); }); #endif //jiterator } } // namespace (anonymous) REGISTER_DISPATCH(zeta_stub, &zeta_kernel_cuda); } // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! #include <ATen/ATen.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/hip\Loops.cuh> namespace at { namespace native { Tensor& relu_quantized_hip_(Tensor& self) { const auto zero_point = self.q_zero_point(); AT_DISPATCH_QINT_TYPES( self.scalar_type(), "qrelu_hip", [&]() { auto iter = TensorIterator::unary_op(self, self); gpu_kernel(iter, [zero_point] GPU_LAMBDA(scalar_t value) -> scalar_t { return scalar_t(std::max<underlying_t>(value.val_, zero_point)); }); }); return self; } } // namespace at::native } // namespace at ###
#include <ATen/ATen.h> #include <ATen/native/TensorIterator.h> #include <ATen/native/cuda/Loops.cuh> namespace at { namespace native { Tensor& relu_quantized_cuda_(Tensor& self) { const auto zero_point = self.q_zero_point(); AT_DISPATCH_QINT_TYPES( self.scalar_type(), "qrelu_cuda", [&]() { auto iter = TensorIterator::unary_op(self, self); gpu_kernel(iter, [zero_point] GPU_LAMBDA(scalar_t value) -> scalar_t { return scalar_t(std::max<underlying_t>(value.val_, zero_point)); }); }); return self; } } // namespace at::native } // namespace at ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/TensorIterator.h> #include <ATen/native/hip\Loops.cuh> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #include <ATen/NativeFunctions.h> #else #include <ATen/ops/empty.h> #include <ATen/ops/int_repr_native.h> #endif namespace at { namespace native { Tensor int_repr_quantized_hip(const Tensor& self) { Tensor dst; AT_DISPATCH_QINT_TYPES(self.scalar_type(), "int_repr_quantized_hip", [&]() { dst = at::empty( self.sizes(), self.options().dtype(UNDERLYING_TYPE), self.suggest_memory_format()); auto iter = TensorIteratorConfig() .check_all_same_dtype(false) .add_output(dst) .add_input(self) .build(); gpu_kernel(iter, [] GPU_LAMBDA(scalar_t value) -> underlying_t { return value.val_; }); }); return dst; } } // namespace native } // namespace at ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/TensorIterator.h> #include <ATen/native/cuda/Loops.cuh> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #include <ATen/NativeFunctions.h> #else #include <ATen/ops/empty.h> #include <ATen/ops/int_repr_native.h> #endif namespace at { namespace native { Tensor int_repr_quantized_cuda(const Tensor& self) { Tensor dst; AT_DISPATCH_QINT_TYPES(self.scalar_type(), "int_repr_quantized_cuda", [&]() { dst = at::empty( self.sizes(), self.options().dtype(UNDERLYING_TYPE), self.suggest_memory_format()); auto iter = TensorIteratorConfig() .check_all_same_dtype(false) .add_output(dst) .add_input(self) .build(); gpu_kernel(iter, [] GPU_LAMBDA(scalar_t value) -> underlying_t { return value.val_; }); }); return dst; } } // namespace native } // namespace at ###
// !!! This is a file automatically generated by hipify!!! #define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/TensorIterator.h> #include <ATen/native/hip\Loops.cuh> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #include <ATen/NativeFunctions.h> #else #include <ATen/ops/_empty_affine_quantized.h> #include <ATen/ops/_empty_per_channel_affine_quantized.h> #include <ATen/ops/_make_per_channel_quantized_tensor_native.h> #include <ATen/ops/_make_per_tensor_quantized_tensor_native.h> #include <ATen/ops/empty.h> #endif namespace at { namespace native { void assign_quantized_tensor_hip( const Tensor& self, Tensor& dst) { AT_DISPATCH_QINT_TYPES( dst.scalar_type(), "assign_quantized_tensor_hip", [&]() { auto iter = TensorIteratorConfig() .check_all_same_dtype(false) .add_output(dst) .add_input(self) .build(); gpu_kernel(iter, [] GPU_LAMBDA(underlying_t value) -> scalar_t { return scalar_t(value); }); }); } Tensor make_per_tensor_quantized_tensor_hip( const Tensor& self, double scale, int64_t zero_point) { Tensor dst = at::_empty_affine_quantized( self.sizes(), self.options().dtype(toQIntType(self.scalar_type())), scale, zero_point); assign_quantized_tensor_hip(self, dst); return dst; } Tensor make_per_channel_quantized_tensor_hip( const Tensor& self, const Tensor& scales, const Tensor& zero_points, int64_t axis) { Tensor dst = at::_empty_per_channel_affine_quantized( self.sizes(), scales, zero_points, axis, self.options().dtype(toQIntType(self.scalar_type()))); assign_quantized_tensor_hip(self, dst); return dst; } } // namespace native } // namespace at ###
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS #include <ATen/core/Tensor.h> #include <ATen/Dispatch.h> #include <ATen/TensorIterator.h> #include <ATen/native/cuda/Loops.cuh> #ifndef AT_PER_OPERATOR_HEADERS #include <ATen/Functions.h> #include <ATen/NativeFunctions.h> #else #include <ATen/ops/_empty_affine_quantized.h> #include <ATen/ops/_empty_per_channel_affine_quantized.h> #include <ATen/ops/_make_per_channel_quantized_tensor_native.h> #include <ATen/ops/_make_per_tensor_quantized_tensor_native.h> #include <ATen/ops/empty.h> #endif namespace at { namespace native { void assign_quantized_tensor_cuda( const Tensor& self, Tensor& dst) { AT_DISPATCH_QINT_TYPES( dst.scalar_type(), "assign_quantized_tensor_cuda", [&]() { auto iter = TensorIteratorConfig() .check_all_same_dtype(false) .add_output(dst) .add_input(self) .build(); gpu_kernel(iter, [] GPU_LAMBDA(underlying_t value) -> scalar_t { return scalar_t(value); }); }); } Tensor make_per_tensor_quantized_tensor_cuda( const Tensor& self, double scale, int64_t zero_point) { Tensor dst = at::_empty_affine_quantized( self.sizes(), self.options().dtype(toQIntType(self.scalar_type())), scale, zero_point); assign_quantized_tensor_cuda(self, dst); return dst; } Tensor make_per_channel_quantized_tensor_cuda( const Tensor& self, const Tensor& scales, const Tensor& zero_points, int64_t axis) { Tensor dst = at::_empty_per_channel_affine_quantized( self.sizes(), scales, zero_points, axis, self.options().dtype(toQIntType(self.scalar_type()))); assign_quantized_tensor_cuda(self, dst); return dst; } } // namespace native } // namespace at ###
// !!! This is a file automatically generated by hipify!!! #pragma once #include <ATen/hip/detail\TensorInfo.cuh> #include <c10/macros/Macros.h> namespace at { class Tensor; } namespace c10 { class Scalar; } namespace at { namespace native { void s_addmm_out_sparse_dense_hip_worker(int64_t nnz, int64_t m, int64_t n, int64_t k, Tensor& r_, const Scalar& beta, const Tensor& t, const Scalar& alpha, Tensor& indices, Tensor& values, const Tensor& dense); }} // namespace at::native ###
#pragma once #include <ATen/cuda/detail/TensorInfo.cuh> #include <c10/macros/Macros.h> namespace at { class Tensor; } namespace c10 { class Scalar; } namespace at { namespace native { void s_addmm_out_sparse_dense_cuda_worker(int64_t nnz, int64_t m, int64_t n, int64_t k, Tensor& r_, const Scalar& beta, const Tensor& t, const Scalar& alpha, Tensor& indices, Tensor& values, const Tensor& dense); }} // namespace at::native ###
// !!! This is a file automatically generated by hipify!!! // No "#pragma once" because this is a raw definition that can be copied by jit codegen. // Eager mode clients should not include this file directly, instead, // they should #include <ATen/hip\HIPGeneratorImpl.h>, which has a #pragma once. // Stores RNG state values. Passed as a kernel argument. // See Note [HIP Graph-safe RNG states]. // // The raw definition lives in its own file so jit codegen can easily copy it. namespace at { struct PhiloxHipState { PhiloxHipState() = default; // Called if graph capture is not underway PhiloxHipState(uint64_t seed, uint64_t offset) { seed_.val = seed; offset_.val = offset; } // Called if graph capture is underway PhiloxHipState(int64_t* seed, int64_t* offset_extragraph, uint32_t offset_intragraph) { seed_.ptr = seed; offset_.ptr = offset_extragraph; offset_intragraph_ = offset_intragraph; captured_ = true; } // Public members, directly accessible by at::cuda::philox::unpack. // If we made them private with getters/setters, the getters/setters // would have to be __device__, and we can't declare __device__ in ATen. union Payload { uint64_t val; int64_t* ptr; }; Payload seed_; Payload offset_; uint32_t offset_intragraph_ = 0; bool captured_ = false; }; } // namespace at ###
// No "#pragma once" because this is a raw definition that can be copied by jit codegen. // Eager mode clients should not include this file directly, instead, // they should #include <ATen/cuda/CUDAGeneratorImpl.h>, which has a #pragma once. // Stores RNG state values. Passed as a kernel argument. // See Note [CUDA Graph-safe RNG states]. // // The raw definition lives in its own file so jit codegen can easily copy it. namespace at { struct PhiloxCudaState { PhiloxCudaState() = default; // Called if graph capture is not underway PhiloxCudaState(uint64_t seed, uint64_t offset) { seed_.val = seed; offset_.val = offset; } // Called if graph capture is underway PhiloxCudaState(int64_t* seed, int64_t* offset_extragraph, uint32_t offset_intragraph) { seed_.ptr = seed; offset_.ptr = offset_extragraph; offset_intragraph_ = offset_intragraph; captured_ = true; } // Public members, directly accessible by at::cuda::philox::unpack. // If we made them private with getters/setters, the getters/setters // would have to be __device__, and we can't declare __device__ in ATen. union Payload { uint64_t val; int64_t* ptr; }; Payload seed_; Payload offset_; uint32_t offset_intragraph_ = 0; bool captured_ = false; }; } // namespace at ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_bwd_launch_template.h> void run_fmha_bwd_hdim128(FMHA_dgrad_params &params, hipStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 8, 0x100u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); })); }###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_bwd_launch_template.h> void run_fmha_bwd_hdim128(FMHA_dgrad_params &params, cudaStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 8, 0x100u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); })); } ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_bwd_launch_template.h> void run_fmha_bwd_hdim32(FMHA_dgrad_params &params, hipStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { if (params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } })); }###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_bwd_launch_template.h> void run_fmha_bwd_hdim32(FMHA_dgrad_params &params, cudaStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { if (params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } })); } ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_bwd_launch_template.h> void run_fmha_bwd_hdim64(FMHA_dgrad_params &params, hipStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { auto dprops = at::cuda::getCurrentDeviceProperties(); if (params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (params.seqlen_k >= 256) { if ((dprops->major == 8 && dprops->minor == 0) || (dprops->major == 9 && dprops->minor == 0)) { // Don't share smem for K & V, and don't keep V in registers // This speeds things up by 2-3% by avoiding register spills, but it // uses more shared memory, which is fine on A100 and H100 but not other // GPUs. For other GPUs, we keep V in registers. using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 8, 0x100u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (dprops->major == 8 && dprops->minor > 0) { using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (dprops->major == 7 && dprops->minor == 5) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } } })); }###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_bwd_launch_template.h> void run_fmha_bwd_hdim64(FMHA_dgrad_params &params, cudaStream_t stream, const bool configure) { FP16_SWITCH(params.is_bf16, ([&] { auto dprops = at::cuda::getCurrentDeviceProperties(); if (params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (params.seqlen_k >= 256) { if ((dprops->major == 8 && dprops->minor == 0) || (dprops->major == 9 && dprops->minor == 0)) { // Don't share smem for K & V, and don't keep V in registers // This speeds things up by 2-3% by avoiding register spills, but it // uses more shared memory, which is fine on A100 and H100 but not other // GPUs. For other GPUs, we keep V in registers. using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 8, 0x100u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (dprops->major == 8 && dprops->minor > 0) { using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } else if (dprops->major == 7 && dprops->minor == 5) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 8, 0x08u, elem_type>; run_fmha_bwd_loop<Kernel_traits>(params, stream, configure); } } })); } ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_fwd_launch_template.h> void run_fmha_fwd_hdim128(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); })); }###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_fwd_launch_template.h> void run_fmha_fwd_hdim128(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); })); } ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_fwd_launch_template.h> void run_fmha_fwd_hdim32(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { if (launch_params.params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } else if (launch_params.params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } })); }###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_fwd_launch_template.h> void run_fmha_fwd_hdim32(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { if (launch_params.params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } else if (launch_params.params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } })); } ###
// !!! This is a file automatically generated by hipify!!! // Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/hip/flash_attn\fmha_fwd_launch_template.h> void run_fmha_fwd_hdim64(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { if (launch_params.params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } else if (launch_params.params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } })); } ###
// Copyright (c) 2022, Tri Dao. // Splitting the different head dimensions to different files to speed up compilation. #include <ATen/native/transformers/cuda/flash_attn/fmha_fwd_launch_template.h> void run_fmha_fwd_hdim64(Launch_params<FMHA_fprop_params> &launch_params) { FP16_SWITCH(launch_params.params.is_bf16, ([&] { if (launch_params.params.seqlen_k == 128) { using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } else if (launch_params.params.seqlen_k >= 256) { using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>; run_fmha_fwd_loop<Kernel_traits>(launch_params); } })); } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x128_k128_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x128_k128_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k128_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k128_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x128_k128_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 128, 128, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x128_k128_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k128_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k128_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_seqaligned_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_seqaligned_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_seqaligned_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32, true>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_seqaligned_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k32_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k32_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_seqaligned_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_seqaligned_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_seqaligned_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64, true>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_seqaligned_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#pragma once #include <ATen/CollapseDims.h> namespace at { namespace hip { namespace detail { #define MAX_TENSORINFO_DIMS 25 template <typename T, typename IndexType> struct TensorInfo { TensorInfo(); TensorInfo(T* p, int dim, IndexType sz[MAX_TENSORINFO_DIMS], IndexType st[MAX_TENSORINFO_DIMS]); void reduceDim(int dim); int collapseDims(const int excludeDim = -1); __host__ __device__ inline bool isContiguous() const { return (dims == 1 && strides[0] == 1); } T* data; IndexType sizes[MAX_TENSORINFO_DIMS]; IndexType strides[MAX_TENSORINFO_DIMS]; int dims; }; template <typename T, typename IndexType> TensorInfo<T, IndexType>::TensorInfo() { data = nullptr; dims = 0; } template <typename T, typename IndexType> TensorInfo<T, IndexType>::TensorInfo(T* p, int dim, IndexType sz[MAX_TENSORINFO_DIMS], IndexType st[MAX_TENSORINFO_DIMS]) { data = p; dims = dim; TORCH_CHECK(dims < MAX_TENSORINFO_DIMS, "HIP Tensors cannot have more than 25 dimensions"); for (int i = 0; i < dim; ++i) { sizes[i] = sz[i]; strides[i] = st[i]; } } template <typename T, typename IndexType> void TensorInfo<T, IndexType>::reduceDim(int dim) { TORCH_CHECK(dim < dims && dim >= 0, "expected dim between 0 and dims - 1"); sizes[dim] = 1; } template <typename T, typename IndexType> int TensorInfo<T, IndexType>::collapseDims(const int excludeDim) { auto result = at::collapse_dims(sizes, strides, dims, excludeDim); dims = std::get<1>(result); return std::get<0>(result); } template <typename T, typename IndexType, int Dims> struct IndexToOffset { static __host__ __device__ IndexType get( IndexType linearId, const TensorInfo<T, IndexType>& info) { IndexType offset = 0; for (int i = Dims - 1; i > 0; --i) { IndexType curDimIndex = linearId % info.sizes[i]; IndexType curDimOffset = curDimIndex * info.strides[i]; offset += curDimOffset; linearId /= info.sizes[i]; } return offset + linearId * info.strides[0]; } }; template <typename T, typename IndexType> struct IndexToOffset<T, IndexType, -1> { static inline __host__ __device__ IndexType get( IndexType linearId, const TensorInfo<T, IndexType>& info) { IndexType offset = 0; for (int i = info.dims - 1; i > 0; --i) { IndexType curDimIndex = linearId % info.sizes[i]; IndexType curDimOffset = curDimIndex * info.strides[i]; offset += curDimOffset; linearId /= info.sizes[i]; } return offset + linearId * info.strides[0]; } }; } } } ###
#pragma once #include <ATen/CollapseDims.h> namespace at { namespace cuda { namespace detail { #define MAX_TENSORINFO_DIMS 25 template <typename T, typename IndexType> struct TensorInfo { TensorInfo(); TensorInfo(T* p, int dim, IndexType sz[MAX_TENSORINFO_DIMS], IndexType st[MAX_TENSORINFO_DIMS]); void reduceDim(int dim); int collapseDims(const int excludeDim = -1); __host__ __device__ inline bool isContiguous() const { return (dims == 1 && strides[0] == 1); } T* data; IndexType sizes[MAX_TENSORINFO_DIMS]; IndexType strides[MAX_TENSORINFO_DIMS]; int dims; }; template <typename T, typename IndexType> TensorInfo<T, IndexType>::TensorInfo() { data = nullptr; dims = 0; } template <typename T, typename IndexType> TensorInfo<T, IndexType>::TensorInfo(T* p, int dim, IndexType sz[MAX_TENSORINFO_DIMS], IndexType st[MAX_TENSORINFO_DIMS]) { data = p; dims = dim; TORCH_CHECK(dims < MAX_TENSORINFO_DIMS, "CUDA Tensors cannot have more than 25 dimensions"); for (int i = 0; i < dim; ++i) { sizes[i] = sz[i]; strides[i] = st[i]; } } template <typename T, typename IndexType> void TensorInfo<T, IndexType>::reduceDim(int dim) { TORCH_CHECK(dim < dims && dim >= 0, "expected dim between 0 and dims - 1"); sizes[dim] = 1; } template <typename T, typename IndexType> int TensorInfo<T, IndexType>::collapseDims(const int excludeDim) { auto result = at::collapse_dims(sizes, strides, dims, excludeDim); dims = std::get<1>(result); return std::get<0>(result); } template <typename T, typename IndexType, int Dims> struct IndexToOffset { static __host__ __device__ IndexType get( IndexType linearId, const TensorInfo<T, IndexType>& info) { IndexType offset = 0; for (int i = Dims - 1; i > 0; --i) { IndexType curDimIndex = linearId % info.sizes[i]; IndexType curDimOffset = curDimIndex * info.strides[i]; offset += curDimOffset; linearId /= info.sizes[i]; } return offset + linearId * info.strides[0]; } }; template <typename T, typename IndexType> struct IndexToOffset<T, IndexType, -1> { static inline __host__ __device__ IndexType get( IndexType linearId, const TensorInfo<T, IndexType>& info) { IndexType offset = 0; for (int i = info.dims - 1; i > 0; --i) { IndexType curDimIndex = linearId % info.sizes[i]; IndexType curDimOffset = curDimIndex * info.strides[i]; offset += curDimOffset; linearId /= info.sizes[i]; } return offset + linearId * info.strides[0]; } }; } } } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k64_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, true, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k64_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k65536_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k65536_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k65536_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k65536_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k65536_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 128, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k65536_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k65536_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k65536_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k65536_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k65536_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k65536_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k65536_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k65536_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 128, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k65536_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_64x64_k65536_dropout_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, true, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_64x64_k65536_dropout_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k96_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k96_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::kMinBlocksPerSm) fmha_cutlassB_bf16_aligned_128x64_k96_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::bfloat16_t, true, false, true, 128, 64, 96>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_bf16_aligned_128x64_k96_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" /* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::kMinBlocksPerSm) fmha_cutlassB_f16_aligned_128x64_k96_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 800 #if __HIP_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f16_aligned_128x64_k96_sm80` is for sm80-sm100, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } ###
/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ // This file is auto-generated. See "generate_kernels.py" #include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::kMinBlocksPerSm) fmha_cutlassB_f16_aligned_128x64_k96_sm80(typename AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 800 #if __CUDA_ARCH__ < 1000 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm80, cutlass::half_t, true, false, true, 128, 64, 96>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f16_aligned_128x64_k96_sm80` is for sm80-sm100, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 128>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k128_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 32>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k32_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! // No "#pragma once" because this is a raw definition that can be copied by jit codegen. // Eager mode clients should not include this file directly, instead, // they should #include <ATen/hip\HIPGraphsUtils.cuh>, which has a #pragma once. namespace at { namespace hip { namespace philox { // In-kernel call to retrieve philox seed and offset from a PhiloxHipState instance whether // that instance was created with graph capture underway or not. // See Note [HIP Graph-safe RNG states]. // // We can't write a __device__ function in HIPGeneratorImpl.h, because it's in ATen. // Also, whatever call unpacks PhiloxHipState in consumer kernels must be inlineable. // Easiest thing that comes to mind is, define a __device__ unpack helper here, in ATen/cuda. // // The raw definition lives in its own file so jit codegen can easily copy it. __device__ __forceinline__ std::tuple<uint64_t, uint64_t> unpack(at::PhiloxHipState arg) { if (arg.captured_) { // static_cast avoids "warning: invalid narrowing conversion from "long" to "unsigned long". // *(arg.offset_.ptr) is a broadcast load of a single int64_t to the entire kernel. // For most threads' reads it will hit in cache, so it shouldn't hurt performance. return std::make_tuple(static_cast<uint64_t>(*arg.seed_.ptr), static_cast<uint64_t>(*(arg.offset_.ptr) + arg.offset_intragraph_)); } else { return std::make_tuple(arg.seed_.val, arg.offset_.val); } } } // namespace philox } // namespace hip } // namespace at ###
// No "#pragma once" because this is a raw definition that can be copied by jit codegen. // Eager mode clients should not include this file directly, instead, // they should #include <ATen/cuda/CUDAGraphsUtils.cuh>, which has a #pragma once. namespace at { namespace cuda { namespace philox { // In-kernel call to retrieve philox seed and offset from a PhiloxCudaState instance whether // that instance was created with graph capture underway or not. // See Note [CUDA Graph-safe RNG states]. // // We can't write a __device__ function in CUDAGeneratorImpl.h, because it's in ATen. // Also, whatever call unpacks PhiloxCudaState in consumer kernels must be inlineable. // Easiest thing that comes to mind is, define a __device__ unpack helper here, in ATen/cuda. // // The raw definition lives in its own file so jit codegen can easily copy it. __device__ __forceinline__ std::tuple<uint64_t, uint64_t> unpack(at::PhiloxCudaState arg) { if (arg.captured_) { // static_cast avoids "warning: invalid narrowing conversion from "long" to "unsigned long". // *(arg.offset_.ptr) is a broadcast load of a single int64_t to the entire kernel. // For most threads' reads it will hit in cache, so it shouldn't hurt performance. return std::make_tuple(static_cast<uint64_t>(*arg.seed_.ptr), static_cast<uint64_t>(*(arg.offset_.ptr) + arg.offset_intragraph_)); } else { return std::make_tuple(arg.seed_.val, arg.offset_.val); } } } // namespace philox } // namespace cuda } // namespace at ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, true, false, 64, 64, 64>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k64_dropout_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
#include "hip/hip_runtime.h" #include <ATen/native/transformers/hip/mem_eff_attention\kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 500 #if __HIP_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm50` is for sm50-sm70, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 700 #if __HIP_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm70` is for sm70-sm75, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __HIP_ARCH__ #if __HIP_ARCH__ >= 750 #if __HIP_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm75` is for sm75-sm80, but was built for sm%d\n", int(__HIP_ARCH__ + 0) / 10); #endif }###
#include <ATen/native/transformers/cuda/mem_eff_attention/kernel_backward.h> __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm50(typename AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 500 #if __CUDA_ARCH__ < 700 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm50, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm50` is for sm50-sm70, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm70(typename AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 700 #if __CUDA_ARCH__ < 750 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm70, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm70` is for sm70-sm75, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } __global__ void __launch_bounds__( AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::kNumThreads, AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::kMinBlocksPerSm) fmha_cutlassB_f32_notaligned_64x64_k65536_sm75(typename AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::Params p) { #ifdef __CUDA_ARCH__ #if __CUDA_ARCH__ >= 750 #if __CUDA_ARCH__ < 800 if (!p.advance_to_block()) { return; } AttentionBackwardKernel<cutlass::arch::Sm75, float, false, false, false, 64, 64, 65536>::attention_kernel(p); return; #endif #endif printf( "FATAL: kernel `fmha_cutlassB_f32_notaligned_64x64_k65536_sm75` is for sm75-sm80, but was built for sm%d\n", int(__CUDA_ARCH__ + 0) / 10); #endif } ###
// !!! This is a file automatically generated by hipify!!! #include "hip/hip_runtime.h" #include <gtest/gtest.h> #include <c10/hip/HIPException.h> int safeDeviceCount() { int count; hipError_t err = hipGetDeviceCount(&count); if (err == hipErrorInsufficientDriver || err == hipErrorNoDevice) { return 0; } return count; } #define SKIP_IF_NO_GPU() \ do { \ if (safeDeviceCount() == 0) { \ return; \ } \ } while(0) #define C10_ASSERT_NEAR(a, b, tol) assert(abs(a - b) < tol) #define C10_DEFINE_TEST(a, b) \ __global__ void HIP##a##b(); \ TEST(a##Device, b) { \ SKIP_IF_NO_GPU(); \ hipDeviceSynchronize(); \ hipLaunchKernelGGL(( HIP##a##b), dim3(1), dim3(1), 0, 0, ); \ C10_HIP_KERNEL_LAUNCH_CHECK(); \ hipDeviceSynchronize(); \ ASSERT_EQ(hipGetLastError(), hipSuccess); \ } \ __global__ void HIP##a##b() #include <c10/test/util/complex_math_test_common.h> #undef C10_DEFINE_TEST #undef C10_ASSERT_NEAR #define C10_DEFINE_TEST(a, b) TEST(a##Host, b) #define C10_ASSERT_NEAR(a, b, tol) ASSERT_NEAR(a, b, tol) #include <c10/test/util/complex_math_test_common.h> ###
#include <gtest/gtest.h> #include <c10/cuda/CUDAException.h> int safeDeviceCount() { int count; cudaError_t err = cudaGetDeviceCount(&count); if (err == cudaErrorInsufficientDriver || err == cudaErrorNoDevice) { return 0; } return count; } #define SKIP_IF_NO_GPU() \ do { \ if (safeDeviceCount() == 0) { \ return; \ } \ } while(0) #define C10_ASSERT_NEAR(a, b, tol) assert(abs(a - b) < tol) #define C10_DEFINE_TEST(a, b) \ __global__ void CUDA##a##b(); \ TEST(a##Device, b) { \ SKIP_IF_NO_GPU(); \ cudaDeviceSynchronize(); \ CUDA##a##b<<<1, 1>>>(); \ C10_CUDA_KERNEL_LAUNCH_CHECK(); \ cudaDeviceSynchronize(); \ ASSERT_EQ(cudaGetLastError(), cudaSuccess); \ } \ __global__ void CUDA##a##b() #include <c10/test/util/complex_math_test_common.h> #undef C10_DEFINE_TEST #undef C10_ASSERT_NEAR #define C10_DEFINE_TEST(a, b) TEST(a##Host, b) #define C10_ASSERT_NEAR(a, b, tol) ASSERT_NEAR(a, b, tol) #include <c10/test/util/complex_math_test_common.h> ###
// !!! This is a file automatically generated by hipify!!! #include <gtest/gtest.h> #include <ATen/ATen.h> #include <ATen/hip\HIPContext.h> #include <c10/util/Optional.h> #include <assert.h> using namespace at; // optional in cuda files TEST(OptionalTest, OptionalTestHIP) { if (!at::cuda::is_available()) return; c10::optional<int64_t> trivially_destructible; c10::optional<std::vector<int64_t>> non_trivially_destructible; ASSERT_FALSE(trivially_destructible.has_value()); ASSERT_FALSE(non_trivially_destructible.has_value()); trivially_destructible = {5}; non_trivially_destructible = std::vector<int64_t>{5, 10}; ASSERT_TRUE(trivially_destructible.has_value()); ASSERT_TRUE(non_trivially_destructible.has_value()); } ###
#include <gtest/gtest.h> #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <c10/util/Optional.h> #include <assert.h> using namespace at; // optional in cuda files TEST(OptionalTest, OptionalTestCUDA) { if (!at::cuda::is_available()) return; c10::optional<int64_t> trivially_destructible; c10::optional<std::vector<int64_t>> non_trivially_destructible; ASSERT_FALSE(trivially_destructible.has_value()); ASSERT_FALSE(non_trivially_destructible.has_value()); trivially_destructible = {5}; non_trivially_destructible = std::vector<int64_t>{5, 10}; ASSERT_TRUE(trivially_destructible.has_value()); ASSERT_TRUE(non_trivially_destructible.has_value()); } ###

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
7
Add dataset card