Dataset Viewer
Auto-converted to Parquet
unique_id
stringlengths
36
36
formatted_question
stringlengths
59
502
correct_answer
int64
1
17.3k
topic
float64
option_1
stringlengths
1
54
option_2
stringlengths
1
53
option_3
stringlengths
1
55
option_4
stringlengths
1
54
question_type
stringclasses
2 values
e0d7c5a9-1325-4f0a-997d-fe2f4c1315b6
Let $a_1, a_2, a_3, \ldots$ be a G.P. of increasing terms. If $a_1 a_5 = 28$ and $a_2 + a_4 = 29$, then $a_6$ is equal to:
4
null
628
812
526
784
MCQ
08d4f2e5-79ce-4622-add6-d93266ac5637
Let $x = x(y)$ be the solution of the differential equation $y^2 \, dx + (x - \frac{1}{y}) \, dy = 0$. If $x(1) = 1$, then $x \left( \frac{1}{3} \right)$ is:
3
null
$\frac{1}{3} + e$
$3 + e$
$3 - e$
$\frac{3}{2} + e$
MCQ
204278cb-f634-49b7-aab5-39caf9d1b0c0
Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is $\frac{m}{n}$, where $\gcd(m, n) = 1$, then $m + n$ is equal to:
2
null
4
14
13
11
MCQ
e988b658-42ea-4ae7-bbdf-be615cbcb52c
The product of all solutions of the equation $e^{5 \log x^2 + 3} = x^8, x > 0$, is:
1
null
e^{8/5}
e^{6/5}
e^{2}
e
MCQ
f0f1ad4e-2071-4dce-8938-4c1fadada37b
Let the triangle PQR be the image of the triangle with vertices $(1, 3), (3, 1)$ and $(2, 4)$ in the line $x + 2y = 2$. If the centroid of $\triangle PQR$ is the point $(\alpha, \beta)$, then $15(\alpha - \beta)$ is equal to:
4
null
19
24
21
22
MCQ
664b04f0-da33-499a-a662-520d29573c7c
Let for $f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$, $I_1 = \int_{0}^{\pi/4} f(x) \, dx$ and $I_2 = \int_{0}^{\pi/4} x f(x) \, dx$. Then $7I_1 + 12I_2$ is equal to:
2
null
2
1
$2\pi$
$\pi$
MCQ
89bc55ee-62e6-4c46-b1ff-ec9357df79a0
Let the parabola $y = x^2 + px - 3$, meet the coordinate axes at the points P, Q and R. If the circle C with centre at $(\alpha, \beta)$ passes through the points P, Q and R, then the area of $\triangle PQR$ is:
3
null
7
4
3
5
MCQ
d747393b-66be-4c6a-a129-fad2f2e01985
Let \(L_1 : \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}\) and \(L_2 : \frac{x-3}{2} = \frac{y-4}{3} = \frac{z-5}{4}\) be two lines. Then which of the following points lies on the line of the shortest distance between \(L_1\) and \(L_2\)?
1
null
\( \left( \frac{14}{5}, -3, \frac{22}{3} \right) \)
\( \left( -\frac{5}{3}, -7, 1 \right) \)
\( \left( 2, 3, \frac{1}{2} \right) \)
\( \left( \frac{5}{3}, -1, \frac{1}{2} \right) \)
MCQ
c485593e-f8a4-4b04-9036-b4b0f7085acc
Let $f(x)$ be a real differentiable function such that $f(0) = 1$ and $f(x + y) = f(x)f(y) + f'(x)f(y)$ for all $x, y \in \mathbb{R}$. Then $\sum_{n=1}^{100} \log_2 f(n)$ is equal to:
1
null
2525
5220
2384
2406
MCQ
1ef41510-bd7f-4907-ad8b-7d4fcc50395d
From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is:
1
null
1365
2730
6825
1260
MCQ
aeb18745-57be-4719-b72d-ec3323bc24ed
Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of \(16 \left( \sec^{-1} x \right)^2 + \left( \cosec^{-1} x \right)^2 \) is:
2
null
\(24\pi^2\)
\(22\pi^2\)
\(31\pi^2\)
\(18\pi^2\)
MCQ
d0973693-11dc-4dc4-b641-a23af7fd1fe1
Let \(f : \mathbb{R} \rightarrow \mathbb{R}\) be a twice differentiable function such that \(f(x + y) = f(x)f(y)\) for all \(x, y \in \mathbb{R}\). If \(f'(0) = 4a\) and \(f\) satisfies \(f''(x) - 3af'(x) - f(x) = 0, a > 0\), then the area of the region \(R = \{(x, y) \mid 0 \leq y \leq f(ax), 0 \leq x \leq 2\}\) is:
1
null
\(e^2 - 1\)
\(e^2 + 1\)
\(e^4 + 1\)
\(e^4 - 1\)
MCQ
f9fe4e71-6076-4ad0-88d5-6faae33fb0fe
The area of the region, inside the circle \( (x - 2\sqrt{3})^2 + y^2 = 12 \) and outside the parabola \( y^2 = 2\sqrt{3}x \) is:
2
null
\(3\pi + 8\)
\(6\pi - 16\)
\(3\pi - 8\)
\(6\pi - 8\)
MCQ
4a6f25fe-1f9c-446b-a0a2-d20848ea8c84
Let the foci of a hyperbola be \((1, 14)\) and \((1, -12)\). If it passes through the point \((1, 6)\), then the length of its latus-rectum is:
4
null
\(\frac{24}{5}\)
\(\frac{25}{9}\)
\(\frac{144}{5}\)
\(\frac{288}{5}\)
MCQ
3ccbdac9-3078-4d90-bf32-dd8d28c405cb
If \(\sum_{r=1}^{n} T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}\), then \(\lim_{n \to \infty} \sum_{r=1}^{n} \left( \frac{1}{T_r} \right)\) is equal to:
2
null
0
\frac{4}{3}
1
\frac{1}{2}
MCQ
0686a602-5a84-4d9b-ae94-09884e6a8e30
A coin is tossed three times. Let \(X\) denote the number of times a tail follows a head. If \(\mu\) and \(\sigma^2\) denote the mean and variance of \(X\), then the value of \(64(\mu + \sigma^2)\) is:
4
null
\(51\)
\(64\)
\(32\)
\(48\)
MCQ
f3ef4b6f-0c2d-40db-9345-812517d65036
The number of non-empty equivalence relations on the set \(\{1, 2, 3\}\) is:
2
null
\(6\)
\(5\)
\(7\)
\(4\)
MCQ
888ff468-a611-426c-8353-8c514f90010a
A circle \(C\) of radius 2 lies in the second quadrant and touches both the coordinate axes. Let \(r\) be the radius of a circle that has centre at the point \((2, 5)\) and intersects the circle \(C\) at exactly two points. If the set of all possible values of \(r\) is the interval \((\alpha, \beta)\), then \(3\beta - 2\alpha\) is equal to:
2
null
\(10\)
\(15\)
\(12\)
\(14\)
MCQ
d3222c23-1187-43fd-8d44-339a5847e490
Let \(A = \{1, 2, 3, \ldots, 10\}\) and \(B = \left\{ \frac{m}{n} : m, n \in A, m < n \text{ and } \gcd(m, n) = 1 \right\}\). Then \(n(B)\) is equal to:
2
null
\(36\)
\(31\)
\(37\)
\(29\)
MCQ
0f735c17-069f-47a0-b141-6d20b9dc2aa5
Let $z_1, z_2$ and $z_3$ be three complex numbers on the circle $|z| = 1$ with $\arg(z_1) = \frac{\pi}{4}, \arg(z_2) = 0$ and $\arg(z_3) = \frac{\pi}{4}$. If $|z_1 \bar{z}_2 + z_2 \bar{z}_3 + z_3 \bar{z}_1|^2 = \alpha + \beta \sqrt{3}, \alpha, \beta \in \mathbb{Z}$, then the value of $\alpha^2 + \beta^2$ is:
2
null
24
29
41
31
MCQ
719ddc1e-7de1-4df5-81b0-e414c42d9dde
Let $\vec{c}$ be the projection vector of $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$, on the vector $\vec{a} = 2\hat{i} + 2\hat{j} + 2\hat{k}$. If $|\vec{a} + \vec{c}| = 7$, then the area of the parallelogram formed by the vectors $\vec{b}$ and $\vec{c}$ is ________.
16
null
null
null
null
null
Numerical
ec9be866-f5d0-4250-8a11-f61a959bc365
Let $ f(x) = \int_x^5 (t^2 - 9t + 20)\,dt, \quad 1 \leq x \leq 5. $ If the range of $ f $ is $[ \alpha, \beta]$, then $ 4(\alpha + \beta) $ equals:
4
null
253
154
125
157
MCQ
35e5cab3-72da-45e2-8679-11c34e004f13
Let \( \vec{a} \) be a unit vector perpendicular to the vectors \( \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} \) and \( \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} \), and makes an angle of \( \cos^{-1}\left(-\frac{1}{2}\right) \) with the vector \( \hat{i} + \hat{j} + \hat{k} \). If \( \vec{a} \) makes an angle of \( \frac{\pi}{3} \) with the vector \( \hat{i} + \alpha\hat{j} + \hat{k} \), then the value of \( \alpha \) is:
2
null
\( \sqrt{6} \)
\( -\sqrt{6} \)
\( -\sqrt{3} \)
\( \sqrt{3} \)
MCQ
368b2e82-01b2-485e-9cde-e017dcb43030
If for the solution curve $ y = f(x) $ of the differential equation $ \frac{dy}{dx} + (\tan x)y = \frac{2 + \sec x}{(1 + 2\sec x)^2} $, $ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) $, then $ f\left(\frac{\pi}{4}\right) $ is equal to:
4
null
$\frac{\sqrt{3} - 1}{10(4+\sqrt{3})}$
$\frac{\sqrt{3} - 1}{2\sqrt{3} - 2}$
$\frac{\sqrt{3} - 1}{10(4+\sqrt{3})}$
$\frac{5 - \sqrt{3}}{14}$
MCQ
034ed0dc-97f8-4959-a406-a0402b39512c
Let \( P \) be the foot of the perpendicular from the point \( (1, 2, 2) \) on the line \( L : \frac{x-1}{1} = \frac{y+1}{2} = \frac{z-2}{2} \). Let the line \( \vec{r} = (-\hat{i} + \hat{j} - 2\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}), \lambda \in \mathbb{R} \), intersect the line \( L \) at \( Q \). Then \( 2(PQ)^2 \) is equal to:
4
null
25
19
29
27
MCQ
c6fa73d4-22f1-4c73-9a85-06f42c3d90b0
Let \( A = [a_{ij}] \) be a matrix of order \( 3 \times 3 \), with \( a_{ij} = (\sqrt{2})^{i+j} \). If the sum of all the elements in the third row of \( A^2 \) is \( \alpha + \beta\sqrt{2} \), \( \alpha, \beta \in \mathbb{Z} \), then \( \alpha + \beta \) is equal to:
2
null
280
224
210
168
MCQ
ef21afd8-084b-4d2b-bdaa-3802ac96f2b5
If the set of all \( a \in \mathbb{R} \), for which the equation \( 2x^2 + (a - 5)x + 15 = 3a \) has no real root, is the interval \((\alpha, \beta)\), and \( X = \{x \in \mathbb{Z} : \alpha < x < \beta\} \), then \( \sum_{x \in X} x^2 \) is equal to:
4
null
2109
2129
2119
2139
MCQ
871bdfa7-de89-4ac4-a10f-ae86f6d7ca3e
Let \( A = [a_{ij}] \) be a \( 2 \times 2 \) matrix such that \( a_{ij} \in \{0, 1\} \) for all \( i \) and \( j \). Let the random variable \( X \) denote the possible values of the determinant of the matrix \( A \). Then, the variance of \( X \) is:
3
null
\(\frac{9}{16}\)
\(\frac{3}{16}\)
\(\frac{1}{2}\)
\(\frac{1}{4}\)
MCQ
dd382693-5904-47f1-adae-2d25135a2a52
Let the function \( f(x) = (x^2 + 1) \left|x^2 - ax + 2 \right| + \cos |x| \) be not differentiable at the two points \( x = \alpha = 2 \) and \( x = \beta \). Then the distance of the point \((\alpha, \beta)\) from the line \(12x + 5y + 10 = 0\) is equal to:
3
null
5
4
3
2
MCQ
5eb60c4b-a5ad-4f28-9aa2-d26655ee2b96
Let the area enclosed between the curves \( |y| = 1 - x^2 \) and \( x^2 + y^2 = 1 \) be \( \alpha \). If \( 9\alpha = \beta \pi + \gamma \), \( \beta, \gamma \) are integers, then the value of \(|\beta - \gamma|\) equals.
2
null
27
33
15
18
MCQ
be10c500-adb2-4a82-b9a7-c768ae0f1c50
The remainder, when \( 7^{10^3} \) is divided by 23, is equal to:
4
null
6
17
9
14
MCQ
b45bc7e2-fdf6-47e8-b2b9-962e11c3f8f4
If \( \alpha x + \beta y = 109 \) is the equation of the chord of the ellipse \( \frac{x^2}{\alpha} + \frac{y^2}{\beta} = 1 \), whose mid point is \( \left( \frac{1}{2}, \frac{1}{4} \right) \), then \( \alpha + \beta \) is equal to:
1
null
58
46
37
72
MCQ
dcddf043-98de-4a82-8127-0f309a5b5588
If the domain of the function \( \log_5 (18x - x^2 - 77) \) is \( (\alpha, \beta) \) and the domain of the function \( \log(x-1) \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) \) is \( (\gamma, \delta) \), then \( \alpha^2 + \beta^2 + \gamma^2 \) is equal to:
3
null
195
179
186
174
MCQ
67f0e924-1075-4881-be6e-0567d5b1cb9c
Let a circle \( C \) pass through the points \( (4, 2) \) and \( (0, 2) \), and its centre lie on \( 3x + 2y + 2 = 0 \). Then the length of the chord, of the circle \( C \), whose mid-point is \( (1, 2) \), is:
3
null
\( \sqrt{3} \)
\( 2\sqrt{2} \)
\( 2\sqrt{3} \)
\( 4\sqrt{2} \)
MCQ
a622af54-b6f8-49d7-a20d-cb4055c187a8
Let a straight line \( L \) pass through the point \( P(2, -1, 3) \) and be perpendicular to the lines \( \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{-2} \) and \( \frac{x-3}{1} = \frac{y-2}{-1} = \frac{z+2}{4} \). If the line \( L \) intersects the \( yz \)-plane at the point \( Q \), then the distance between the points \( P \) and \( Q \) is:
4
null
\( \sqrt{10} \)
\( 2\sqrt{3} \)
2
3
MCQ
bf95aebc-42f7-48ac-8f31-59073d69fc4e
Bag 1 contains 4 white balls and 5 black balls, and Bag 2 contains \( n \) white balls and 3 black balls. One ball is drawn randomly from Bag 1 and transferred to Bag 2. A ball is then drawn randomly from Bag 2. If the probability, that the ball drawn is white, is \( \frac{29}{45} \), then \( n \) is equal to:
1
null
6
3
5
4
MCQ
f2175a59-df34-4c91-9c7d-d9880d79d3a5
Let $\alpha, \beta (\alpha \neq \beta)$ be the values of $m$, for which the equations $x + y + z = 1, x + 2y + 4z = m$ and $x + 4y + 10z = m^2$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10} (n^\alpha + n^\beta)$ is equal to:
4
null
3080
560
3410
440
MCQ
c74e8625-9c18-429e-9232-354a6a6c0d5e
Let $S = N \cup \{0\}$. Define a relation $R$ from $S$ to $R$ by $R = \{ (x, y) : \log_e y = x \log_e \left( \frac{2}{3} \right), x \in S, y \in R \}$ Then, the sum of all the elements in the range of $R$ is equal to:
4
null
\frac{10}{9}
\frac{5}{2}
\frac{\sqrt{3}}{2}
\frac{1}{3}
MCQ
83fc3287-ea27-433e-9432-41a5ccc19e93
If $\sin x + \sin^2 x = 1, x \in \left(0, \frac{\pi}{2}\right)$, then $(\cos^{12} x + x \tan^{12} x) + 3 (\cos^{10} x + \tan^{10} x + \cos^8 x + \tan^8 x) + (\cos^6 x + \tan^6 x)$ is equal to:
4
null
4
$\frac{4}{3}$
3
2
MCQ
d0af9cd1-adf9-44e6-b6d2-687330d7feaf
For a $3 \\times 3$ matrix $M$, let trace ($M$) denote the sum of all the diagonal elements of $M$. Let $A$ be a $3 \\times 3$ matrix such that $|A| = \\frac{1}{2}$ and trace ($A$) = 3. If $B = \\text{adj(adj}(2A))$, then the value of $|B| + \\text{trace (B)}$ equals:
4
null
56
132
174
280
MCQ
543e2004-2c62-40f4-be96-639a9ead7604
In a group of 3 girls and 4 boys, there are two boys $B_1$ and $B_2$. The number of ways, in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but $B_1$ and $B_2$ are not adjacent to each other, is:
2
null
96
144
120
72
MCQ
f2b30fa8-86b8-4027-91a1-dc1625cab997
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5, x > 1$. If $u$ and $v$ satisfy the equations $\alpha u + \beta v = 18$ and $\gamma u + \delta v = 20$, then $u + v$ equals:
1
null
5
4
3
8
MCQ
64133d32-f5f1-47e1-97c0-7f990cae9160
Let a line pass through two distinct points $P(-2, -1, 3)$ and $Q$, and be parallel to the vector $3\hat{i} + 2\hat{j} + 2\hat{k}$. If the distance of the point $Q$ from the point $R(1, 3, 3)$ is 5, then the area of the triangle $\Delta PQR$ is equal to:
2
null
148
136
144
140
MCQ
1213b036-8cd7-477e-9318-558044637164
If $A$ and $B$ are two events such that $P(A cap B) = 0.1$, and $P(A mid B)$ and $P(B mid A)$ are the roots of the equation $12x^2 - 7x + 1 = 0$, then the value of $\frac{P(A cup B)}{P(A cap B)}$ is:
4
null
$\frac{4}{3}
$\frac{7}{4}
$\frac{5}{3}
$\frac{3}{4}
MCQ
b346e320-6ede-4419-8068-12e151527048
If $\int e^x \left( \frac{x^2 - 1}{\sqrt{1-x^2}} + \frac{x^2 - 1}{\sqrt{1-x^2}} \right) dx = g(x) + C$, where $C$ is the constant of integration, then $g \left( \frac{1}{2} \right)$ equals:
2
null
\frac{\pi}{4} \sqrt{\frac{e}{3}}
\frac{\pi}{6} \sqrt{\frac{e}{3}}
\frac{\pi}{4} \sqrt{\frac{e}{3}}
\frac{\pi}{6} \sqrt{\frac{e}{3}}
MCQ
8b63e5f8-b075-4142-a8de-2419cd1f1a99
The area of the region enclosed by the curves $y = x^2 - 4x + 4$ and $y^2 = 16 - 8x$ is:
1
null
$\frac{8}{3}$
$\frac{4}{3}$
$8$
$\frac{3}{2}$
MCQ
353189b4-26ef-42bc-8232-2c2905826d29
Let $f(x) = \\int_0^x t^2 \\frac{t^2 - 8t + 16}{t^2} dt, x \\in \\mathbb{R}$. Then the numbers of local maximum and local minimum points of $f$, respectively, are:
1
null
2 and 3
2 and 1
3 and 2
1 and 3
MCQ
6050b2c9-2f29-428b-b1a2-645018469c78
Let $P(4, 4\sqrt{3})$ be a point on the parabola $y^2 = 4ax$ and $PQ$ be a focal chord of the parabola. If $M$ and $N$ are the foot of perpendiculars drawn from $P$ and $Q$ respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to:
4
null
$36(2 + \sqrt{3})a^2$
$36(2 - \sqrt{3})a^2$
$18(2 + \sqrt{3})a^2$
$18(2 - \sqrt{3})a^2$
MCQ
69f6b4c7-326e-4b13-8b97-e761e52bfd89
Let $ \mathbf{a} $ and $ \mathbf{b} $ be two unit vectors such that the angle between them is $ \frac{\pi}{3} $. If $ \lambda \mathbf{a} + 2\mathbf{b} $ and $ 3\mathbf{a} - \lambda \mathbf{b} $ are perpendicular to each other, then the number of values of $ \lambda $ in $[-1, 3]$ is:
3
null
2
1
0
3
MCQ
f663e627-ddd3-4c39-b7b9-111eee8e8269
If \( \lim_{x \to \infty} \left( \left( \frac{x}{1-x} \right) \left( \frac{1-x}{x+2} \right) \right)^x = \alpha \), then the value of \( \log_e \alpha \) equals:
4
null
\( e^{-1} \)
\( e^2 \)
\( e^4 \)
\( e^6 \)
MCQ
437d1d0a-9050-4f22-aae3-8dc8b2421add
Let \( A = \{1, 2, 3, 4\} \) and \( B = \{1, 4, 9, 16\} \). Then the number of many-one functions \( f : A \to B \) such that \( 1 \in f(A) \) is equal to:
1
null
151
139
163
127
MCQ
f4001f0f-9413-4ab1-a8f0-30257539b847
Suppose that the number of terms in an A.P. is \( 2k, k \in N \). If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then \( k \) is equal to:
2
null
6
5
8
4
MCQ
271e1d93-bac3-4328-89f9-785cd030d496
The perpendicular distance, of the line \( \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+3}{2} \) from the point \( P(2, -10, 1) \), is:
4
null
\( 4\sqrt{3} \)
\( 5\sqrt{2} \)
\( 4\sqrt{3} \)
\( 3\sqrt{5} \)
MCQ
feab3b23-dde2-40ee-b7d3-26b1a5a545a3
The system of linear equations: \[ \begin{align*} x + y + 2z &= 6 \\ -2x + 3y + az &= a + 1 \\ 7a + 3b &= 0 \end{align*} \] If the system of linear equations: \( 2x + 3y + az = a + 1 \) where \( a, b \in \mathbb{R} \), has infinitely many solutions, then \( 7a + 3b \) is equal to:
1
null
16
12
22
9
MCQ
08e5060e-dc0a-454f-b789-9af233997119
If \( x = f(y) \) is the solution of the differential equation \( (1 + y^2) + \left( x - 2e^{\tan^{-1} y} \right) \frac{dy}{dx} = 0 \), \( y \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \) with \( f(0) = 1 \), then \( f \left( \frac{1}{\sqrt{3}} \right) \) is equal to:
4
null
\( e^{\pi/12} \)
\( e^{\pi/4} \)
\( e^{\pi/3} \)
\( e^{\pi/6} \)
MCQ
0a58d51f-1bc6-488d-8536-9c62d69bbd89
Let $ \alpha_\theta $ and $ \beta_\theta $ be the distinct roots of $ 2x^2 + (\cos \theta)x - 1 = 0, \theta \in (0, 2\pi) $. If $ m $ and $ M $ are the minimum and the maximum values of $ \alpha^4_\theta + \beta^4_\theta $, then $ 16(M + m) $ equals:
2
null
24
25
17
27
MCQ
7061bd67-c3b7-4aca-9919-70c9af344083
Let the curve \( z(1 + i) + \bar{z}(1 - i) = 4 \), \( z \in \mathbb{C} \), divide the region \( |z - 3| \leq 1 \) into two parts of areas \( \alpha \) and \( \beta \). Then \( |\alpha - \beta| \) equals:
1
null
\( 1 + \frac{\pi}{2} \)
\( 1 + \frac{\pi}{3} \)
\( 1 + \frac{\pi}{6} \)
\( 1 + \frac{\pi}{4} \)
MCQ
4108dd5f-fa57-4844-b135-30ab0af558d1
Let $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b $ and $ H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 $. Let the distance between the foci of $ E $ and the foci of $ H $ be $ 2\sqrt{3} $. If $ a - A = 2 $, and the ratio of the eccentricities of $ E $ and $ H $ is $ \frac{1}{3} $, then the sum of the lengths of their latus rectums is equal to:
3
null
10
9
8
7
MCQ
33da9282-3bcc-4fd5-a591-c018b712af39
If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to
1
null
-1080
-1020
-1200
-120
MCQ
4b9c830a-1db7-457c-851b-edd3a124ed9b
One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another die has one face marked 1, two faces marked 2, two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5, when both the dice are thrown together, is
2
null
\frac{3}{16}
\frac{1}{4}
\frac{3}{8}
\frac{5}{8}
MCQ
d005ece7-0f50-42ba-ba3d-103b927db487
Let the position vectors of the vertices $A, B$ and $C$ of a tetrahedron $ABCD$ be $\mathbf{i} + 2\mathbf{j} + \mathbf{k}, \mathbf{i} + 3\mathbf{j} + 2\hat{k}$ and $2\mathbf{i} + \mathbf{j} - \mathbf{k}$ respectively. The altitude from the vertex $D$ to the opposite face $ABC$ meets the median line segment through $A$ of the triangle $ABC$ at the point $E$. If the length of $AD$ is $\frac{\sqrt{11}}{3}$ and the volume of the tetrahedron is $\frac{\sqrt{805}}{6}$, then the position vector of $E$ is
4
null
$\frac{1}{3}(7\mathbf{i} + 4\mathbf{j} + 3\mathbf{k})$
$\frac{1}{3}(\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})$
$\frac{1}{3}(12\mathbf{i} + 12\mathbf{j} + \mathbf{k})$
$\frac{1}{3}(7\mathbf{i} + 12\mathbf{j} + \mathbf{k})$
MCQ
a67dad96-e96b-4ce7-85be-94ffe8b32a82
If $A, B,$ and $(\text{adj} (A^{-1}) + \text{adj} (B^{-1}))$ are non-singular matrices of same order, then the inverse of $A (\text{adj} (A^{-1}) + \text{adj} (B^{-1}))^{-1} B$, is equal to
4
null
AB^{-1} + A^{-1}B
\text{adj} (B^{-1}) + \text{adj} (A^{-1})
\frac{AB^{-1}}{|A|} + \frac{BA^{-1}}{|B|}
\frac{1}{|A|}(\text{adj}(B) + \text{adj}(A))
MCQ
dfdcc2d4-1d85-4c3d-8742-880b5d5a0361
Marks obtained by all the students of class 12 are presented in a frequency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18, then the total number of students is
3
null
52
48
44
40
MCQ
b4c9d3a5-15e8-4d30-acb3-da063db14b28
Let a curve $y = f(x)$ pass through the points $(0, 5)$ and $(\log_e 2, k)$. If the curve satisfies the differential equation $2(3 + y)e^{2x} dx - (7 + e^{2x}) dy = 0$, then $k$ is equal to
3
null
4
32
8
16
MCQ
625f1ae5-596c-4639-b134-7a15eaf01b76
If the function $f(x) = \begin{cases} \frac{2}{x} \sin (k_1 x + k_2 - 1) x, & x < 0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e (\frac{2 + k_2 x}{2 + k_2 x}), & x > 0 \end{cases}$ is continuous at $x = 0$, then $k_1^2 + k_2^2$ is equal to
4
null
20
5
8
10
MCQ
163a7d1a-cecf-4f07-b8b1-44147f0dbf64
If the line $3x - 2y + 12 = 0$ intersects the parabola $4y = 3x^2$ at the points $A$ and $B$, then at the vertex of the parabola, the line segment $AB$ subtends an angle equal to
2
null
$\tan^{-1}\frac{8}{3}$
$\tan^{-1}\frac{4}{5}$
$\tan^{-1}\frac{4}{3}$
$\tan^{-1}\frac{2}{3}$
MCQ
c4a0c746-1002-404f-acaf-9bae1604d83c
Let \( P \) be the foot of the perpendicular from the point \( Q(10, -3, -1) \) on the line \( \frac{x-3}{7} = \frac{y-2}{1} = \frac{z+1}{2} \). Then the area of the right angled triangle \( PQR \), where \( R \) is the point \((3, -2, 1)\), is
4
null
9\sqrt{15}
\sqrt{30}
8\sqrt{15}
3\sqrt{30}
MCQ
496fa60a-2674-400d-86ac-c5d00bc38dfb
Let the arc $AC$ of a circle subtend a right angle at the centre $O$. If the point $B$ on the arc $AC$, divides the arc $AC$ such that $ \frac{\text{length of arc } AB}{\text{length of arc } BC} = \frac{1}{5} $, and $\overrightarrow{OC} = \alpha\overrightarrow{OA} + \beta\overrightarrow{OB} $, then $ \alpha + \sqrt{2(\sqrt{3} - 1)}\beta $ is equal to
2
null
2\sqrt{3}
2 - \sqrt{3}
5\sqrt{3}
2 + \sqrt{3}
MCQ
9ff44630-babd-4c87-9b8b-2e76dfc56d37
Let $ f(x) = \log_2 x $ and $ g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1} $. Then the domain of $ f \circ g $ is
4
null
$[0, \infty)$
$[1, \infty)$
$(0, \infty)$
$\mathbb{R}$
MCQ
6520cadb-f7b1-49f3-870d-ece5223a1e99
If the system of equations \((\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \\ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \\ x + y + z = 6\) has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to
4
null
6
10
20
12
MCQ
57278625-22b7-460b-9c6d-85e0cb9de522
The number of words, which can be formed using all the letters of the word "DAUGHTER", so that all the vowels never come together, is
1
null
36000
37000
34000
35000
MCQ
e0176c27-17ad-44e9-8200-ea8dc44a25ef
Let \( R = \{(1, 2), (2, 3), (3, 3)\} \) be a relation defined on the set \( \{1, 2, 3, 4\} \). Then the minimum number of elements, needed to be added in \( R \) so that \( R \) becomes an equivalence relation, is
2
null
10
7
8
9
MCQ
c6c9ea0d-2b4a-4d75-9b51-288c394b52ae
Let the area of a $ \triangle PQR $ with vertices $ P(5, 4), Q(-2, 4) $ and $ R(a, b) $ be 35 square units. If its orthocenter and centroid are $ O \left(2, \frac{12}{7}\right) $ and $ C(c, d) $ respectively, then $ c + 2d $ is equal to
4
null
\frac{8}{3}
\frac{7}{3}
2
3
MCQ
7dbc72dd-8dd6-4ee9-a67b-e3fef13d7cd7
The value of \( \int_{\mathbb{R}} \frac{1}{x} \left( e^{(\log_2 x)^2 + 1} - e^{(\log_2 x)^2 - 1} \right) dx \) is
3
null
2
\log_2 2
1
e^2
MCQ
9e7da6b5-4669-4472-8aaa-cd93a27cf3c1
Let $ \frac{x^2}{16} + \frac{y^2}{25} = 1 $, $ z \in C $, be the equation of a circle with center at $ C $. If the area of the triangle, whose vertices are at the points $ (0, 0) $, $ C $ and $ (\alpha, 0) $ is 11 square units, then $ \alpha^2 $ equals:
2
null
50
100
\frac{81}{25}
\frac{121}{25}
MCQ
4a20f27f-5446-4fec-9652-f29e5d09d339
The value of \((\sin 70^\circ)(\cot 10^\circ \cot 70^\circ - 1)\) is
2
null
\( 2/3 \)
0
\( 3/2 \)
1
MCQ
77f489df-a2bc-4579-95b9-5d61d9d617a7
Let \( I(x) = \int \frac{dx}{(x-11)(x+15)} \). If \( I(37) - I(24) = \frac{1}{4} \left( \frac{1}{\beta x} - \frac{1}{c x} \right) \), \( b, c \in \mathbb{N} \), then \( 3(b + c) \) is equal to
2
null
22
39
40
26
MCQ
68c466e8-b8e2-42b5-a836-3bc4dd2e49b5
If \( \frac{\pi}{6} \leq x \leq \frac{3\pi}{4} \), then \( \cos^{-1}\left(\frac{12}{13}\cos x + \frac{5}{13}\sin x\right) \) is equal to
3
null
\( x - \tan^{-1}\frac{4}{3} \)
\( x + \tan^{-1}\frac{4}{5} \)
\( x - \tan^{-1}\frac{5}{12} \)
\( x + \tan^{-1}\frac{5}{12} \)
MCQ
bfd1c5c4-ea06-4d15-8e85-2d54fa41bafb
Let the circle \( C \) touch the line \( x - y + 1 = 0 \), have the centre on the positive \( x \)-axis, and cut off a chord of length \( \frac{4}{\sqrt{13}} \) along the line \( -3x + 2y = 1 \). Let \( H \) be the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \), whose one of the foci is the centre of \( C \) and the length of the transverse axis is the diameter of \( C \). Then \( 2a^2 + 3b^2 \) is equal to
19
null
null
null
null
null
Numerical
0c471963-04dd-4a21-987b-535f3ec17da9
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to
117
null
null
null
null
null
Numerical
a5f4fa94-d8e4-4c6e-84f1-c1cf21d2cabf
If the set of all values of \( a \), for which the equation \( 5x^3 - 15x - a = 0 \) has three distinct real roots, is the interval \((\alpha, \beta)\), then \( \beta - 2\alpha \) is equal to
30
null
null
null
null
null
Numerical
75387286-d2e3-4701-a450-6603de1e3ed9
The sum of all rational terms in the expansion of \( \left(1 + 2^{1/2} + 3^{1/2}\right)^6 \) is equal to
612
null
null
null
null
null
Numerical
e7f78510-f04f-4edc-ae36-a36fa1560105
Let $ A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\} $ and $ B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| \leq 3\} $. If $ C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\} $, then $ \sum_{(x, y) \in C} |x + y| $ is:
4
null
15
24
18
12
MCQ
99dc6eaa-8767-4188-ba6c-259aa4554208
Let \( X = \mathbb{R} \times \mathbb{R} \). Define a relation \( R \) on \( X \) as: \((a_1, b_1)R(a_2, b_2) \iff b_1 = b_2 \) Statement I : \( R \) is an equivalence relation. Statement II : For some \((a, b) \in X\), the set \( S = \{(x, y) \in X : (x, y)R(a, b)\} \) represents a line parallel to \( y = x \). In the light of the above statements, choose the correct answer from the options given below:
2
null
Both Statement I and Statement II are false
Statement I is true but Statement II is false
Both Statement I and Statement II are true
Statement I is false but Statement II is true
MCQ
9d8b65c8-f334-4258-9396-87e8b05c040f
Let $ \int x^3 \sin x \, dx = g(x) + C $, where $ C $ is the constant of integration. If $ 8 \left( g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha \pi^3 + \beta \pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z} $, then $ \alpha + \beta - \gamma $ equals:
2
null
48
55
62
47
MCQ
fd4b9955-e499-42a7-b307-dc01f26961e7
A rod of length eight units moves such that its ends \( A \) and \( B \) always lie on the lines \( x - y + 2 = 0 \) and \( y + 2 = 0 \), respectively. If the locus of the point \( P \), that divides the rod \( AB \) internally in the ratio \( 2 : 1 \) is \( 9 \left( x^2 + \alpha y^2 + \beta xy + \gamma x + 28y\right) - 76 = 0 \), then \( \alpha - \beta - \gamma \) is equal to:
3
null
22
21
23
24
MCQ
c1114f31-44a0-417b-bb0d-4021c582e91c
If the square of the shortest distance between the lines \( \frac{x^2}{m} = \frac{y^6}{n} = \frac{z^3}{3} \) and \( \frac{x^3}{m} = \frac{y^3}{n} = \frac{z^3}{3} \) is \( \frac{m}{n} \), where \( m, n \) are coprime numbers, then \( m + n \) is equal to:
2
null
21
9
14
6
MCQ
baf77833-80a8-4e67-be37-d8b8e6ea1c76
\( \lim_{x \to \infty} \frac{(2x^2-3x+5)(3x-1)^{\frac{2}{3}}}{(3x^2+5x+4)\sqrt{(3x+2)^3}} \) is equal to:
3
null
\( \frac{2}{3} \sqrt{e} \)
\( \frac{3e}{5} \)
\( \frac{2e}{3} \)
\( \frac{3e}{5} \)
MCQ
0e467008-3d2e-4985-a888-c4c4c61ef89a
Let the point \( A \) divide the line segment joining the points \( P(-1,-1,2) \) and \( Q(5,5,10) \) internally in the ratio \( r : 1(r > 0) \). If \( O \) is the origin and \( \overrightarrow{OQ} \cdot \overrightarrow{OA} = \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 \) = 10, then the value of \( r \) is:
4
null
\( \sqrt{7} \)
14
3
7
MCQ
1e9fd5df-4e15-472f-8b30-eb508b1cd5d0
The length of the chord of the ellipse \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \), whose mid-point is \((1, \frac{1}{2})\), is:
3
null
\( \frac{5}{3} \sqrt{15} \)
\( \frac{1}{3} \sqrt{15} \)
\( \frac{2}{3} \sqrt{15} \)
\( \sqrt{15} \)
MCQ
f72094ad-9378-463a-8afe-101e4c1feb7c
The system of equations \( x + 2y + 5z = 9 \), has no solution if: (x) \( x + 5y + \lambda z = \mu \),
3
null
\( \lambda = 15, \mu \neq 17 \)
\( \lambda \neq 17, \mu = 18 \)
\( \lambda = 17, \mu \neq 18 \)
\( \lambda = 17, \mu = 18 \)
MCQ
8767ea4d-8340-48c8-855d-b38999732170
Let the range of the function $\displaystyle f(x) = 6 + 16 \cos x \cdot \cos \left( \frac{x}{3} - x \right) \cdot \cos \left( \frac{x}{3} + x \right) \cdot \sin 3x \cdot \cos 6x, x \in \mathbb{R}$ be $[\[\alpha, \beta] ]$. Then the distance of the point $(\alpha, \beta)$ from the line $3x + 4y + 12 = 0$ is:
1
null
11
8
10
9
MCQ
1c0b8f27-c697-4c95-8608-edc4eac9c44f
Let \( x = x(y) \) be the solution of the differential equation \[ y = \left( x - y \frac{dy}{dx} \right) \sin \left( \frac{x}{y} \right), y > 0 \text{ and } x(1) = \frac{\pi}{2} \]. Then \[ \cos(x(2)) \] is equal to:
4
null
\( 1 - 2(\log_2 2)^2 \)
\( 1 - 2(\log_2 2) \)
\( 2(\log_2 2)^2 - 1 \)
\( 2(\log_2 2)^2 - 1 \)
MCQ
b99eecd0-86cd-4151-9d7a-05d422815525
A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/min and the thickness of the ice-cream layer decreases at the rate of \( \frac{1}{4} \) cm/min. The surface area (in cm²) of the chocolate ball (without the ice-cream layer) is:
2
null
196\pi
256\pi
225\pi
128\pi
MCQ
fc5d4114-d3a7-440c-ab06-28e802c7e40f
The number of complex numbers \( z \), satisfying \(|z| = 1\) and \( |\frac{z}{2} + \frac{\bar{z}}{2}| = 1\), is:
2
null
4
8
10
6
MCQ
0c203c20-5dc4-4021-aaa0-252c32704f27
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix such that \[ A \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } A \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \], then \( a_{23} \) equals:
1
null
-1
2
1
0
MCQ
2760158c-5cbb-4b11-b37f-f567861c194e
If $ I = \int_{0}^{\pi} \frac{\sin \frac{x}{2}}{\sin \frac{x}{2} \cos \frac{x}{2}} \, dx $, then $ I = \int_{0}^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx $ equals:
3
null
$\frac{x^2}{12}$
$\frac{x^2}{4}$
$\frac{x^2}{16}$
$\frac{x^2}{8}$
MCQ
c2ee8f45-0547-4c65-a11b-0105f122e588
A board has 16 squares as shown in the figure: Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
2
null
\(7/10\)
\(4/5\)
\(23/30\)
\(3/5\)
MCQ
d128d6b6-a0f1-4ff4-b83f-13c828d9b444
Let the shortest distance from \((a, 0), a > 0\) to the parabola \(y^2 = 4x\) be 4. Then the equation of the circle passing through the point \((a, 0)\) and the focus of the parabola, and having its centre on the axis of the parabola is:
2
null
\(x^2 + y^2 - 10x + 9 = 0\)
\(x^2 + y^2 - 6x + 5 = 0\)
\(x^2 + y^2 - 4x + 3 = 0\)
\(x^2 + y^2 - 8x + 7 = 0\)
MCQ
4a48d53e-0787-43ac-aa0c-e9efba9739d7
If in the expansion of \( (1 + x)^p (1 - x)^q \), the coefficients of \(x\) and \(x^2\) are 1 and -2, respectively, then \(p^2 + q^2\) is equal to:
2
null
18
13
8
20
MCQ
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
98