|  | import os | 
					
						
						|  | import h5py | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import h5py | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FsiDataReader(): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | location, | 
					
						
						|  | mu=None, | 
					
						
						|  | in_lets_x1=None, | 
					
						
						|  | in_lets_x2=None,): | 
					
						
						|  | self.location = location | 
					
						
						|  | self._x1 = ['-4.0', '-2.0', '0.0', '2.0', '4.0', '6.0'] | 
					
						
						|  | self._x2 = ['-4.0', '-2.0', '0', '2.0', '4.0', '6.0'] | 
					
						
						|  | self._mu = ['0.1', '0.01', '0.5', '5', '1.0', '10.0'] | 
					
						
						|  |  | 
					
						
						|  | self.varable_idices = [0, 1, 3, 4, 5] | 
					
						
						|  |  | 
					
						
						|  | if mu is not None: | 
					
						
						|  |  | 
					
						
						|  | assert set(mu).issubset(set(self._mu)) | 
					
						
						|  | self._mu = mu | 
					
						
						|  | if in_lets_x1 is not None: | 
					
						
						|  |  | 
					
						
						|  | assert set(in_lets_x1).issubset(set(self._x1)) | 
					
						
						|  | self._x1 = in_lets_x1 | 
					
						
						|  | if in_lets_x2 is not None: | 
					
						
						|  |  | 
					
						
						|  | assert set(in_lets_x2).issubset(set(self._x2)) | 
					
						
						|  | self._x2 = in_lets_x2 | 
					
						
						|  |  | 
					
						
						|  | mesh_h = h5py.File(os.path.join(location, 'mesh.h5'), 'r') | 
					
						
						|  | mesh = mesh_h['mesh/coordinates'][:] | 
					
						
						|  | self.input_mesh = torch.from_numpy(mesh).type(torch.float) | 
					
						
						|  |  | 
					
						
						|  | def _readh5(self, h5f, dtype=torch.float32): | 
					
						
						|  | a_dset_keys = list(h5f['VisualisationVector'].keys()) | 
					
						
						|  | size = len(a_dset_keys) | 
					
						
						|  | readings = [None for i in range(size)] | 
					
						
						|  | for dset in a_dset_keys: | 
					
						
						|  | ds_data = (h5f['VisualisationVector'][dset]) | 
					
						
						|  | if ds_data.dtype == 'float64': | 
					
						
						|  | csvfmt = '%.18e' | 
					
						
						|  | elif ds_data.dtype == 'int64': | 
					
						
						|  | csvfmt = '%.10d' | 
					
						
						|  | else: | 
					
						
						|  | csvfmt = '%s' | 
					
						
						|  | readings[int(dset)] = torch.tensor(np.array(ds_data), dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | readings_tensor = torch.stack(readings, dim=0) | 
					
						
						|  | print(f"Loaded tensor Size: {readings_tensor.shape}") | 
					
						
						|  | return readings_tensor | 
					
						
						|  |  | 
					
						
						|  | def get_data(self, mu, x1, x2): | 
					
						
						|  | if mu not in self._mu: | 
					
						
						|  | raise ValueError(f"Value of mu must be one of {self._mu}") | 
					
						
						|  | if x1 not in self._x1 or x2 not in self._x2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Value of is must be one of {self._ivals3} and {self._ivals12} ") | 
					
						
						|  | path = os.path.join( | 
					
						
						|  | self.location, | 
					
						
						|  | 'mu='+str(mu), | 
					
						
						|  | 'x1='+str(x1), | 
					
						
						|  | 'x2='+str(x2), | 
					
						
						|  | 'Visualization') | 
					
						
						|  |  | 
					
						
						|  | filename = os.path.join(path, 'displacement.h5') | 
					
						
						|  | h5f = h5py.File(filename, 'r') | 
					
						
						|  | displacements_tensor = self._readh5(h5f) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | filename = os.path.join(path, 'pressure.h5') | 
					
						
						|  | h5f = h5py.File(filename, 'r') | 
					
						
						|  | pressure_tensor = self._readh5(h5f) | 
					
						
						|  |  | 
					
						
						|  | filename = os.path.join(path, 'velocity.h5') | 
					
						
						|  | h5f = h5py.File(filename, 'r') | 
					
						
						|  | velocity_tensor = self._readh5(h5f) | 
					
						
						|  |  | 
					
						
						|  | combined = torch.cat([velocity_tensor, pressure_tensor, displacements_tensor], dim=-1)[..., self.varable_idices] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return combined | 
					
						
						|  |  | 
					
						
						|  | def get_data_txt(self, mu, x1, x2): | 
					
						
						|  | if mu not in self._mu: | 
					
						
						|  | raise ValueError(f"Value of mu must be one of {self._mu}") | 
					
						
						|  | if x1 not in self._x1 or x2 not in self._x2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Value of is must be one of {self._ivals3} and {self._ivals12} ") | 
					
						
						|  | path = os.path.join( | 
					
						
						|  | self.params.super_res_data_location, | 
					
						
						|  | 'mu='+str(mu), | 
					
						
						|  | 'x1='+str(x1), | 
					
						
						|  | 'x2='+str(x2), | 
					
						
						|  | '1') | 
					
						
						|  |  | 
					
						
						|  | dis_x = torch.tensor(np.loadtxt(os.path.join(path, 'dis_x.txt'))) | 
					
						
						|  | dis_y = torch.tensor(np.loadtxt(os.path.join(path, 'dis_y.txt'))) | 
					
						
						|  | pressure = torch.tensor(np.loadtxt(os.path.join(path, 'pres.txt'))) | 
					
						
						|  | velocity_x = torch.tensor(np.loadtxt(os.path.join(path, 'vel_x.txt'))) | 
					
						
						|  | velocity_y = torch.tensor(np.loadtxt(os.path.join(path, 'vel_y.txt'))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dis_x = dis_x.view(-1, 876,1) | 
					
						
						|  | dis_y = dis_y.view(-1, 876,1) | 
					
						
						|  | pressure = pressure.view(-1, 876,1) | 
					
						
						|  | velocity_x = velocity_x.view(-1, 876,1) | 
					
						
						|  | velocity_y = velocity_y.view(-1, 876,1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | combined = torch.cat([velocity_x, velocity_y, pressure, dis_x, dis_y], dim=-1)[..., ] | 
					
						
						|  | return combined | 
					
						
						|  |  | 
					
						
						|  | def get_loader(self, batch_size, shuffle=True): | 
					
						
						|  | data = [] | 
					
						
						|  | for mu in self._mu: | 
					
						
						|  | for x1 in self._x1: | 
					
						
						|  | for x2 in self._x2: | 
					
						
						|  | try: | 
					
						
						|  | if mu == 0.5: | 
					
						
						|  | data.append(self.get_data_txt(mu, x1, x2)) | 
					
						
						|  | else: | 
					
						
						|  | data.append(self.get_data(mu, x1, x2)) | 
					
						
						|  | except FileNotFoundError as e: | 
					
						
						|  | print( | 
					
						
						|  | f"file not found for mu={mu}, x1={x1}, x2={x2}") | 
					
						
						|  | continue | 
					
						
						|  | data = torch.cat(data, dim=0) | 
					
						
						|  | print(f"Data shape: {data.shape}") | 
					
						
						|  |  | 
					
						
						|  | data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=shuffle) | 
					
						
						|  |  | 
					
						
						|  | return data_loader | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |