Datasets:
switch to parquet version of dataset (#3)
Browse files- switch to parquet version of dataset (3d8a429d40855a8b01668dad34bdcc4ec0220281)
- loc_beyond_words.py +0 -136
loc_beyond_words.py
DELETED
@@ -1,136 +0,0 @@
|
|
1 |
-
# Copyright 2022 Daniel van Strien
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
"""Beyond Words"""
|
15 |
-
|
16 |
-
import collections
|
17 |
-
import json
|
18 |
-
import os
|
19 |
-
from typing import Any, Dict, List
|
20 |
-
import datasets
|
21 |
-
from pathlib import Path
|
22 |
-
|
23 |
-
_CITATION = "TODO"
|
24 |
-
|
25 |
-
|
26 |
-
_DESCRIPTION = "TODO"
|
27 |
-
|
28 |
-
|
29 |
-
_HOMEPAGE = "TODO"
|
30 |
-
|
31 |
-
|
32 |
-
_LICENSE = "Public Domain Mark 1.0"
|
33 |
-
|
34 |
-
|
35 |
-
class BeyondWords(datasets.GeneratorBasedBuilder):
|
36 |
-
"""Beyond Words Dataset"""
|
37 |
-
|
38 |
-
def _info(self):
|
39 |
-
features = datasets.Features(
|
40 |
-
{
|
41 |
-
"image_id": datasets.Value("int64"),
|
42 |
-
"image": datasets.Image(),
|
43 |
-
"width": datasets.Value("int32"),
|
44 |
-
"height": datasets.Value("int32"),
|
45 |
-
}
|
46 |
-
)
|
47 |
-
|
48 |
-
object_dict = {
|
49 |
-
"bw_id": datasets.Value("string"),
|
50 |
-
"category_id": datasets.ClassLabel(
|
51 |
-
names=[
|
52 |
-
"Photograph",
|
53 |
-
"Illustration",
|
54 |
-
"Map",
|
55 |
-
"Comics/Cartoon",
|
56 |
-
"Editorial Cartoon",
|
57 |
-
"Headline",
|
58 |
-
"Advertisement",
|
59 |
-
]
|
60 |
-
),
|
61 |
-
"image_id": datasets.Value("string"),
|
62 |
-
"id": datasets.Value("int64"),
|
63 |
-
"area": datasets.Value("int64"),
|
64 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
65 |
-
"iscrowd": datasets.Value(
|
66 |
-
"bool"
|
67 |
-
), # always False for stuff segmentation task
|
68 |
-
}
|
69 |
-
features["objects"] = [object_dict]
|
70 |
-
|
71 |
-
return datasets.DatasetInfo(
|
72 |
-
description=_DESCRIPTION,
|
73 |
-
features=features,
|
74 |
-
homepage=_HOMEPAGE,
|
75 |
-
license=_LICENSE,
|
76 |
-
citation=_CITATION,
|
77 |
-
)
|
78 |
-
|
79 |
-
def _split_generators(self, dl_manager):
|
80 |
-
images = dl_manager.download_and_extract("data/images.zip")
|
81 |
-
training = dl_manager.download("data/train_80_percent.json")
|
82 |
-
validation = dl_manager.download("data/val_20_percent.json")
|
83 |
-
return [
|
84 |
-
datasets.SplitGenerator(
|
85 |
-
name=datasets.Split.TRAIN,
|
86 |
-
gen_kwargs={
|
87 |
-
"annotations_file": Path(training),
|
88 |
-
"image_dir": Path(images),
|
89 |
-
},
|
90 |
-
),
|
91 |
-
datasets.SplitGenerator(
|
92 |
-
name=datasets.Split.VALIDATION,
|
93 |
-
gen_kwargs={
|
94 |
-
"annotations_file": Path(validation),
|
95 |
-
"image_dir": Path(images),
|
96 |
-
},
|
97 |
-
),
|
98 |
-
]
|
99 |
-
|
100 |
-
def _get_image_id_to_annotations_mapping(
|
101 |
-
self, annotations: List[Dict]
|
102 |
-
) -> Dict[int, List[Dict[Any, Any]]]:
|
103 |
-
"""
|
104 |
-
A helper function to build a mapping from image ids to annotations.
|
105 |
-
"""
|
106 |
-
image_id_to_annotations = collections.defaultdict(list)
|
107 |
-
for annotation in annotations:
|
108 |
-
image_id_to_annotations[annotation["image_id"]].append(annotation)
|
109 |
-
return image_id_to_annotations
|
110 |
-
|
111 |
-
def _generate_examples(self, annotations_file, image_dir):
|
112 |
-
def _image_info_to_example(image_info, image_dir):
|
113 |
-
image = image_info["file_name"]
|
114 |
-
return {
|
115 |
-
"image_id": image_info["id"],
|
116 |
-
"image": os.path.join(image_dir, "images", image),
|
117 |
-
"width": image_info["width"],
|
118 |
-
"height": image_info["height"],
|
119 |
-
}
|
120 |
-
|
121 |
-
with open(annotations_file, encoding="utf8") as f:
|
122 |
-
annotation_data = json.load(f)
|
123 |
-
images = annotation_data["images"]
|
124 |
-
annotations = annotation_data["annotations"]
|
125 |
-
image_id_to_annotations = self._get_image_id_to_annotations_mapping(
|
126 |
-
annotations
|
127 |
-
)
|
128 |
-
for idx, image_info in enumerate(images):
|
129 |
-
example = _image_info_to_example(image_info, image_dir)
|
130 |
-
|
131 |
-
annotations = image_id_to_annotations[image_info["id"]]
|
132 |
-
objects = []
|
133 |
-
for annotation in annotations:
|
134 |
-
objects.append(annotation)
|
135 |
-
example["objects"] = objects
|
136 |
-
yield (idx, example)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|