Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
davanstrien HF Staff commited on
Commit
6c7f5fb
·
verified ·
1 Parent(s): f3d04b6

switch to parquet version of dataset (#3)

Browse files

- switch to parquet version of dataset (3d8a429d40855a8b01668dad34bdcc4ec0220281)

Files changed (1) hide show
  1. loc_beyond_words.py +0 -136
loc_beyond_words.py DELETED
@@ -1,136 +0,0 @@
1
- # Copyright 2022 Daniel van Strien
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- """Beyond Words"""
15
-
16
- import collections
17
- import json
18
- import os
19
- from typing import Any, Dict, List
20
- import datasets
21
- from pathlib import Path
22
-
23
- _CITATION = "TODO"
24
-
25
-
26
- _DESCRIPTION = "TODO"
27
-
28
-
29
- _HOMEPAGE = "TODO"
30
-
31
-
32
- _LICENSE = "Public Domain Mark 1.0"
33
-
34
-
35
- class BeyondWords(datasets.GeneratorBasedBuilder):
36
- """Beyond Words Dataset"""
37
-
38
- def _info(self):
39
- features = datasets.Features(
40
- {
41
- "image_id": datasets.Value("int64"),
42
- "image": datasets.Image(),
43
- "width": datasets.Value("int32"),
44
- "height": datasets.Value("int32"),
45
- }
46
- )
47
-
48
- object_dict = {
49
- "bw_id": datasets.Value("string"),
50
- "category_id": datasets.ClassLabel(
51
- names=[
52
- "Photograph",
53
- "Illustration",
54
- "Map",
55
- "Comics/Cartoon",
56
- "Editorial Cartoon",
57
- "Headline",
58
- "Advertisement",
59
- ]
60
- ),
61
- "image_id": datasets.Value("string"),
62
- "id": datasets.Value("int64"),
63
- "area": datasets.Value("int64"),
64
- "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
65
- "iscrowd": datasets.Value(
66
- "bool"
67
- ), # always False for stuff segmentation task
68
- }
69
- features["objects"] = [object_dict]
70
-
71
- return datasets.DatasetInfo(
72
- description=_DESCRIPTION,
73
- features=features,
74
- homepage=_HOMEPAGE,
75
- license=_LICENSE,
76
- citation=_CITATION,
77
- )
78
-
79
- def _split_generators(self, dl_manager):
80
- images = dl_manager.download_and_extract("data/images.zip")
81
- training = dl_manager.download("data/train_80_percent.json")
82
- validation = dl_manager.download("data/val_20_percent.json")
83
- return [
84
- datasets.SplitGenerator(
85
- name=datasets.Split.TRAIN,
86
- gen_kwargs={
87
- "annotations_file": Path(training),
88
- "image_dir": Path(images),
89
- },
90
- ),
91
- datasets.SplitGenerator(
92
- name=datasets.Split.VALIDATION,
93
- gen_kwargs={
94
- "annotations_file": Path(validation),
95
- "image_dir": Path(images),
96
- },
97
- ),
98
- ]
99
-
100
- def _get_image_id_to_annotations_mapping(
101
- self, annotations: List[Dict]
102
- ) -> Dict[int, List[Dict[Any, Any]]]:
103
- """
104
- A helper function to build a mapping from image ids to annotations.
105
- """
106
- image_id_to_annotations = collections.defaultdict(list)
107
- for annotation in annotations:
108
- image_id_to_annotations[annotation["image_id"]].append(annotation)
109
- return image_id_to_annotations
110
-
111
- def _generate_examples(self, annotations_file, image_dir):
112
- def _image_info_to_example(image_info, image_dir):
113
- image = image_info["file_name"]
114
- return {
115
- "image_id": image_info["id"],
116
- "image": os.path.join(image_dir, "images", image),
117
- "width": image_info["width"],
118
- "height": image_info["height"],
119
- }
120
-
121
- with open(annotations_file, encoding="utf8") as f:
122
- annotation_data = json.load(f)
123
- images = annotation_data["images"]
124
- annotations = annotation_data["annotations"]
125
- image_id_to_annotations = self._get_image_id_to_annotations_mapping(
126
- annotations
127
- )
128
- for idx, image_info in enumerate(images):
129
- example = _image_info_to_example(image_info, image_dir)
130
-
131
- annotations = image_id_to_annotations[image_info["id"]]
132
- objects = []
133
- for annotation in annotations:
134
- objects.append(annotation)
135
- example["objects"] = objects
136
- yield (idx, example)