Dataset Viewer
Duplicate
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      JSON parse error: Column() changed from object to string in row 0
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
                  df = pandas_read_json(f)
                       ^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
                  return pd.read_json(path_or_buf, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
                  return json_reader.read()
                         ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
                  obj = self._get_object_parser(self.data)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
                  obj = FrameParser(json, **kwargs).parse()
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
                  self._parse()
                File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1391, in _parse
                  self.obj = DataFrame(
                             ^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/frame.py", line 778, in __init__
                  mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
                  return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
                  index = _extract_index(arrays)
                          ^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
                  raise ValueError("All arrays must be of the same length")
              ValueError: All arrays must be of the same length
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
                  raise e
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

πŸ”¬ Distributed Muon: Field Notes & Reproducibility Artifacts

Code, Performance Traces, and Analysis Logs

This repository contains the raw engineering artifacts for the deep-dive investigation: "Reproducing and Validating Distributed Muon".

It serves as the proof of work for the performance claims regarding the Muon optimizer's communication efficiency and computational overhead in a distributed setting (Data Parallel + Tensor Parallel).

πŸ“„ Read the Full Report: Reproducing and Validating Distributed Muon 🐒✨: A Practical Verification of Communication Efficiency Claims πŸ› οΈ Get the Tutorial Code: bird-of-paradise/muon-distributed


πŸ“‚ Repository Structure

  • traces/: Raw Chrome Trace (.json) files generated by PyTorch Profiler. You can load these into chrome://tracing or ui.perfetto.dev to visualize the exact CPU/GPU execution timeline.
    • comparison/: Side-by-side traces of AdamW vs. Muon (Hybrid DP=2/TP=2).
    • distributed_muon/: Scaling traces for DP=4, TP=4, and Hybrid configurations.
  • analysis_scripts/: The exact Python scripts used to generate the traces and parse the performance metrics.
  • figures/: High-resolution charts and trace visualizations used in the report.
  • report/: A PDF archive of the full technical investigation.

πŸ” Key Findings (Verified in Traces)

The traces in this repository provide empirical evidence for the following:

  1. Communication Efficiency: Muon (Hybrid DP2/TP2) demonstrates 0.57x the communication overhead of AdamW on a bandwidth-constrained cluster (PCIe Gen4 x4).
    • Evidence: Compare traces/comparison/adamw_fullstep_rank0.json vs muon_fullstep_dp2_tp2_rank0.json.
  2. Optimizer Latency: The Muon step accounts for ~1.1% of total training time, validating the paper's "negligible overhead" claim.
  3. Hybrid Scaling: The DP=2, TP=2 configuration outperforms pure DP or pure TP on 4 GPUs, balancing memory bandwidth with communication overhead.

πŸ› οΈ How to Reproduce

To run these benchmarks yourself on a 4-GPU cluster:

  1. Clone this repository.
  2. Install dependencies: torch.
  3. Run the benchmark script:
# This will generate new JSON traces in your local directory
python analysis_scripts/muon_vs_adam.py
  1. Run the performance analysis on included trace files
python analysis_scripts/performance_comparison.py

πŸ™ Acknowledgments


πŸ“– Citation If you use these traces or analysis in your work, please cite:

@misc{wei2025muoneproducibility, author = {Wei, Jen}, title = {Distributed Muon: Performance Artifacts and Benchmarks}, year = {2025}, publisher = {Hugging Face}, journal = {Hugging Face Datasets}, howpublished = {\url{https://huggingface.co/datasets/bird-of-paradise/muon-distributed-reproducibility}} }

Downloads last month
9