Search is not available for this dataset
image
imagewidth (px)
512
512
audio
audioduration (s)
10
10
label
class label
10 classes
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport
0airport

ADVANCE

ADVANCE

Audiovisual Aerial Scene Recognition Dataset (ADVANCE) is a comprehensive resource designed for audiovisual aerial scene recognition tasks. It consists of 5,075 pairs of geotagged audio recordings and high-resolution 512x512 RGB images extracted from FreeSound and Google Earth. These images are then labeled into 13 scene categories using OpenStreetMap.

Description

The Audiovisual Aerial Scene Recognition Dataset is a comprehensive resource designed for audiovisual aerial scene recognition tasks. It consists of 5,075 pairs of geotagged audio recordings and high-resolution 512x512 RGB images extracted from FreeSound and Google Earth. These images are then labeled into 13 scene categories using OpenStreetMap

The dataset serves as a valuable benchmark for research and development in audiovisual aerial scene recognition, enabling researchers to explore cross-task transfer learning techniques and geotagged data analysis.

  • Total Number of Images: 5075
  • Bands: 3 (RGB)
  • Image Resolution: 10mm
  • Image size: 512x512
  • Land Cover Classes: 13
  • Classes: airport, beach, bridge, farmland, forest, grassland, harbour, lake, orchard, residential, sparse shrub land, sports land, train station
  • Source: Sentinel-2
  • Dataset features: 5,075 pairs of geotagged audio recordings and images, three spectral bands - RGB (512x512 px), 10-second audio recordings
  • Dataset format:, images are three-channel jpgs, audio files are in wav format

Usage

To use this dataset, simply use datasets.load_dataset("blanchon/ADVANCE").

from datasets import load_dataset
ADVANCE = load_dataset("blanchon/ADVANCE")

Citation

If you use the EuroSAT dataset in your research, please consider citing the following publication:

@article{hu2020crosstask,
  title     = {Cross-Task Transfer for Geotagged Audiovisual Aerial Scene Recognition},
  author    = {Di Hu and Xuhong Li and Lichao Mou and P. Jin and Dong Chen and L. Jing and Xiaoxiang Zhu and D. Dou},
  journal   = {European Conference on Computer Vision},
  year      = {2020},
  doi       = {10.1007/978-3-030-58586-0_5},
  bibSource = {Semantic Scholar https://www.semanticscholar.org/paper/7fabb1ef96d2840834cfaf384408309bafc588d5}
}
Downloads last month
100
Papers with Code

Collection including blanchon/ADVANCE