Datasets:
metadata
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence_orig
dtype: string
- name: sentence_norm
dtype: string
splits:
- name: train
num_bytes: 822408859.068
num_examples: 3846
download_size: 755846406
dataset_size: 822408859.068
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
language:
- mn
task_categories:
- text-to-speech
tags:
- mongolian
- speech
- dataset
- text-to-speech
- audio
- tts
- biblical
pretty_name: mbspeech_mn
MBSpeech MN: Mongolian Biblical Speech Dataset
MBSpeech MN is a Mongolian text-to-speech (TTS) dataset derived from biblical texts. It consists of aligned audio recordings and corresponding sentences in Mongolian. The dataset is suitable for training TTS models and other speech processing applications.
Dataset Summary
Language: Mongolian (mn)
Task: Text-to-Speech (TTS)
License: MIT
Size:
Download size: ~721 MB
Dataset size: ~822 MB
Examples: 3,846
Dataset Structure
Features
Name Type Description audio Audio Audio data sampled at 16 kHz sentence string Transcription in Mongolian
Splits
Split Examples Size train 3,846 ~822 MB
Usage
To convert the dataset into an LJSpeech–style format for TTS model training:
import os
import csv
import soundfile as sf
from datasets import load_dataset
# Dataset and output configuration
DATASET_NAME = "btsee/mbspeech_mn"
OUTPUT_DIR = "dataset"
WAV_DIR = os.path.join(OUTPUT_DIR, "wavs")
os.makedirs(WAV_DIR, exist_ok=True)
# Load dataset
ds = load_dataset(DATASET_NAME, split="train")
# Export audio files and metadata
with open(os.path.join(OUTPUT_DIR, "metadata.csv"), "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f, delimiter="|")
for idx, item in enumerate(ds):
array = item["audio"]["array"]
sr = item["audio"]["sampling_rate"]
text = item["sentence"]
fname = f"{idx:05d}"
path = os.path.join(WAV_DIR, f"{fname}.wav")
sf.write(path, array, sr, subtype="PCM_16")
writer.writerow([fname, text])