cannabis_results / algorithms /get_results_ak.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Get Cannabis Results | Alaska
Copyright (c) 2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 7/10/2024
Updated: 7/10/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Data Source:
- Public records request
"""
# Standard imports:
from collections import defaultdict
import glob
import os
import json
# External imports:
from cannlytics.data.coas.coas import CoADoc
from cannlytics.utils.utils import snake_case
import pandas as pd
def process_file(parser, file_path, sample_id='PackageId'):
"""Process each file and transform the data."""
chunks = pd.read_csv(file_path, chunksize=100000, low_memory=False)
samples = {}
for chunk in chunks:
for _, row in chunk.iterrows():
sample_id_value = row[sample_id]
if sample_id_value not in samples:
sample = {sample_columns[key]: row[key] for key in sample_columns if key in row}
sample['results'] = []
samples[sample_id_value] = sample
result = {result_columns[key]: row[key] for key in result_columns if key in row}
name = result['name']
result['key'] = parser.analytes.get(snake_case(name), snake_case(name))
samples[sample_id_value]['results'].append(result)
return samples
def aggregate_and_save_to_csv(json_dir, output_csv):
"""Aggregate and save JSON files to CSV."""
json_files = glob.glob(os.path.join(json_dir, '*.json'))
all_samples = []
for json_file in json_files:
with open(json_file, 'r') as f:
samples = json.load(f)
all_samples.extend(samples.values())
df = pd.DataFrame(all_samples)
df.to_csv(output_csv, index=False)
return df
# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
print('Curating AK results')
data_dir = r'D:\data\public-records\Alaska\AK Lab Result Data 2016-2024\AK Lab Result Data 2016-2024'
output_dir = r'D:\data\alaska\results\datasets'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Walk the data directory and find all `.csv`'s with TestResult.
test_datafiles = []
for root, dirs, files in os.walk(data_dir):
for file in files:
if 'TestResult' in file:
test_datafile = os.path.join(root, file)
test_datafiles.append(test_datafile)
# Get package datafiles.
package_datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if 'Package' in x and '.csv' in x]
# Each sample has the following fields:
sample_columns = {
'PackageId': 'package_id',
'PackageLabel': 'package_label',
'LabTestResultId': 'sample_id',
'TestingFacilityId': 'lab_id',
'LabFacilityLicenseNumber': 'lab_license_number',
'LabFacilityName': 'lab',
'SourcePackageId': 'source_package_id',
'SourcePackageLabel': 'source_package_label',
'ProductName': 'product_name',
'ProductCategoryName': 'product_type',
'TestPerformedDate': 'date_tested',
'OverallPassed': 'status',
'IsRevoked': 'revoked',
# 'RevokedDate': 'date_revoked',
}
package_columns = {
'Id': 'id',
'FacilityId': 'facility_id',
'TagId': 'tag_id',
'Label': 'label',
'SourceHarvestNames': 'source_harvest_names',
'SourcePackageLabels': 'source_package_labels',
'SourceProcessingJobNumbers': 'source_processing_job_numbers',
'SourceProcessingJobNames': 'source_processing_job_names',
'MultiHarvest': 'multi_harvest',
'MultiPackage': 'multi_package',
'MultiProcessingJob': 'multi_processing_job',
'Quantity': 'quantity',
'UnitOfMeasureName': 'unit_of_measure_name',
'UnitOfMeasureAbbreviation': 'unit_of_measure_abbreviation',
'UnitOfMeasureQuantityType': 'unit_of_measure_quantity_type',
'ItemFromFacilityId': 'item_from_facility_id',
'ItemFromFacilityLicenseNumber': 'item_from_facility_license_number',
'ItemFromFacilityName': 'item_from_facility_name',
'ItemFromFacilityType': 'item_from_facility_type',
'ItemFromFacilityIsActive': 'item_from_facility_is_active',
'PackagedDate': 'packaged_date',
'PackagedByFacilityId': 'packaged_by_facility_id',
'PackagedByFacilityLicenseNumber': 'packaged_by_facility_license_number',
'PackagedByFacilityName': 'packaged_by_facility_name',
'PackagedByFacilityType': 'packaged_by_facility_type',
'PackagedByFacilityIsActive': 'packaged_by_facility_is_active',
'LabTestingStateName': 'lab_testing_state_name',
'LabTestingStateDate': 'lab_testing_state_date',
'IsProductionBatch': 'is_production_batch',
'IsTradeSample': 'is_trade_sample',
'IsProcessValidationTestingSample': 'is_process_validation_testing_sample',
'IsProficiencyTestingSample': 'is_proficiency_testing_sample',
'ProductRequiresRemediation': 'product_requires_remediation',
'ContainsRemediatedProduct': 'contains_remediated_product',
'ReceivedFromManifestNumber': 'received_from_manifest_number',
'ReceivedFromFacilityId': 'received_from_facility_id',
'ReceivedFromFacilityLicenseNumber': 'received_from_facility_license_number',
'ReceivedFromFacilityName': 'received_from_facility_name',
'ReceivedFromFacilityType': 'received_from_facility_type',
'ReceivedFromFacilityActive': 'received_from_facility_active',
'ReceivedDateTime': 'received_date_time',
'IsArchived': 'is_archived',
'IsFinished': 'is_finished',
'FinishedDate': 'finished_date',
'LabTestResultId': 'sample_id',
'TestingFacilityId': 'lab_id',
'TestingFacilityName': 'lab',
'TestingFacilityLicenseNumber': 'lab_license_number',
'TestingFacilityType': 'lab_facility_type',
'TestingFacilityIsActive': 'lab_facility_is_active',
'OverallPassed': 'status',
'TestPerformedDate': 'date_tested',
'ProductId': 'product_id',
'ProductName': 'product_name',
'ProductCategoryName': 'product_category_name',
'ProductCategoryType': 'product_category_type',
'ProductCategoryTypeName': 'product_category_type_name',
'QuantityType': 'quantity_type',
'QuantityTypeName': 'quantity_type_name',
'ItemUnitOfMeasureName': 'item_unit_of_measure_name',
'ItemUnitOfMeasureAbbreviation': 'item_unit_of_measure_abbreviation',
'UnitQuantity': 'unit_quantity',
'UnitQuantityUnitOfMeasureName': 'unit_quantity_unit_of_measure_name',
'StrainId': 'strain_id',
'StrainName': 'strain_name',
}
result_columns = {
# 'LabTestResultDocumentFileId': 'coa_id',
# 'ResultReleased': 'released',
# 'ResultReleaseDateTime': 'date_released',
# 'LabTestDetailId': 'result_id',
# 'LabTestTypeId': 'test_id',
'TestTypeName': 'name',
'TestPassed': 'status',
'TestResultLevel': 'value',
# 'TestComment': 'comment',
# 'TestInformationalOnly': 'r_and_d',
# 'LabTestDetailIsRevoked': 'result_revoked',
# 'LabTestDetailRevokedDate': 'date_result_revoked'
}
# Process each file and periodically save the results by year
parser = CoADoc()
all_samples_by_year = defaultdict(dict)
file_counter = 0
for file in test_datafiles:
print(f'Processing file: {file}')
samples = process_file(parser, file)
# FIXME: JSON encode all results.
# Merge samples into the all_samples_by_year dictionary
for sample_id, sample in samples.items():
year = sample['date_tested'][:4]
if sample_id in all_samples_by_year[year]:
all_samples_by_year[year][sample_id]['results'].extend(sample['results'])
else:
all_samples_by_year[year][sample_id] = sample
# Periodically save the results to avoid memory issues
file_counter += 1
if file_counter % 5 == 0:
for year, samples in all_samples_by_year.items():
output_file = os.path.join(output_dir, f'ak-lab-results-{year}-{file_counter}.json')
with open(output_file, 'w') as f:
json.dump(samples, f, indent=4)
all_samples_by_year.clear()
# Save any remaining samples
if all_samples_by_year:
for year, samples in all_samples_by_year.items():
output_file = os.path.join(output_dir, f'ak-lab-results-{year}-final.json')
with open(output_file, 'w') as f:
json.dump(samples, f, indent=4)
# TODO: Combine JSON by year.
# FIXME: Aggregate all samples and save them to a .csv
# output_dir = r'D:\data\alaska\results\datasets'
# output_csv = r'D:\data\alaska\results\datasets\ak-lab-results-latest.csv'
# results = aggregate_and_save_to_csv(output_dir, output_csv)
# TODO: Augment package data?
# # TODO: Augment license data.
# datafile = os.path.join(data_dir, 'AK Facility.csv')
# license_data = pd.read_csv(datafile)