|
""" |
|
Get Cannabis Results | Alaska |
|
Copyright (c) 2024 Cannlytics |
|
|
|
Authors: |
|
Keegan Skeate <https://github.com/keeganskeate> |
|
Created: 7/10/2024 |
|
Updated: 7/10/2024 |
|
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE> |
|
|
|
Data Source: |
|
|
|
- Public records request |
|
|
|
""" |
|
|
|
from collections import defaultdict |
|
import glob |
|
import os |
|
import json |
|
|
|
|
|
from cannlytics.data.coas.coas import CoADoc |
|
from cannlytics.utils.utils import snake_case |
|
import pandas as pd |
|
|
|
def process_file(parser, file_path, sample_id='PackageId'): |
|
"""Process each file and transform the data.""" |
|
chunks = pd.read_csv(file_path, chunksize=100000, low_memory=False) |
|
samples = {} |
|
for chunk in chunks: |
|
for _, row in chunk.iterrows(): |
|
sample_id_value = row[sample_id] |
|
if sample_id_value not in samples: |
|
sample = {sample_columns[key]: row[key] for key in sample_columns if key in row} |
|
sample['results'] = [] |
|
samples[sample_id_value] = sample |
|
result = {result_columns[key]: row[key] for key in result_columns if key in row} |
|
name = result['name'] |
|
result['key'] = parser.analytes.get(snake_case(name), snake_case(name)) |
|
samples[sample_id_value]['results'].append(result) |
|
return samples |
|
|
|
def aggregate_and_save_to_csv(json_dir, output_csv): |
|
"""Aggregate and save JSON files to CSV.""" |
|
json_files = glob.glob(os.path.join(json_dir, '*.json')) |
|
all_samples = [] |
|
for json_file in json_files: |
|
with open(json_file, 'r') as f: |
|
samples = json.load(f) |
|
all_samples.extend(samples.values()) |
|
df = pd.DataFrame(all_samples) |
|
df.to_csv(output_csv, index=False) |
|
return df |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
print('Curating AK results') |
|
data_dir = r'D:\data\public-records\Alaska\AK Lab Result Data 2016-2024\AK Lab Result Data 2016-2024' |
|
output_dir = r'D:\data\alaska\results\datasets' |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
|
|
|
|
test_datafiles = [] |
|
for root, dirs, files in os.walk(data_dir): |
|
for file in files: |
|
if 'TestResult' in file: |
|
test_datafile = os.path.join(root, file) |
|
test_datafiles.append(test_datafile) |
|
|
|
|
|
package_datafiles = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if 'Package' in x and '.csv' in x] |
|
|
|
|
|
sample_columns = { |
|
'PackageId': 'package_id', |
|
'PackageLabel': 'package_label', |
|
'LabTestResultId': 'sample_id', |
|
'TestingFacilityId': 'lab_id', |
|
'LabFacilityLicenseNumber': 'lab_license_number', |
|
'LabFacilityName': 'lab', |
|
'SourcePackageId': 'source_package_id', |
|
'SourcePackageLabel': 'source_package_label', |
|
'ProductName': 'product_name', |
|
'ProductCategoryName': 'product_type', |
|
'TestPerformedDate': 'date_tested', |
|
'OverallPassed': 'status', |
|
'IsRevoked': 'revoked', |
|
|
|
} |
|
package_columns = { |
|
'Id': 'id', |
|
'FacilityId': 'facility_id', |
|
'TagId': 'tag_id', |
|
'Label': 'label', |
|
'SourceHarvestNames': 'source_harvest_names', |
|
'SourcePackageLabels': 'source_package_labels', |
|
'SourceProcessingJobNumbers': 'source_processing_job_numbers', |
|
'SourceProcessingJobNames': 'source_processing_job_names', |
|
'MultiHarvest': 'multi_harvest', |
|
'MultiPackage': 'multi_package', |
|
'MultiProcessingJob': 'multi_processing_job', |
|
'Quantity': 'quantity', |
|
'UnitOfMeasureName': 'unit_of_measure_name', |
|
'UnitOfMeasureAbbreviation': 'unit_of_measure_abbreviation', |
|
'UnitOfMeasureQuantityType': 'unit_of_measure_quantity_type', |
|
'ItemFromFacilityId': 'item_from_facility_id', |
|
'ItemFromFacilityLicenseNumber': 'item_from_facility_license_number', |
|
'ItemFromFacilityName': 'item_from_facility_name', |
|
'ItemFromFacilityType': 'item_from_facility_type', |
|
'ItemFromFacilityIsActive': 'item_from_facility_is_active', |
|
'PackagedDate': 'packaged_date', |
|
'PackagedByFacilityId': 'packaged_by_facility_id', |
|
'PackagedByFacilityLicenseNumber': 'packaged_by_facility_license_number', |
|
'PackagedByFacilityName': 'packaged_by_facility_name', |
|
'PackagedByFacilityType': 'packaged_by_facility_type', |
|
'PackagedByFacilityIsActive': 'packaged_by_facility_is_active', |
|
'LabTestingStateName': 'lab_testing_state_name', |
|
'LabTestingStateDate': 'lab_testing_state_date', |
|
'IsProductionBatch': 'is_production_batch', |
|
'IsTradeSample': 'is_trade_sample', |
|
'IsProcessValidationTestingSample': 'is_process_validation_testing_sample', |
|
'IsProficiencyTestingSample': 'is_proficiency_testing_sample', |
|
'ProductRequiresRemediation': 'product_requires_remediation', |
|
'ContainsRemediatedProduct': 'contains_remediated_product', |
|
'ReceivedFromManifestNumber': 'received_from_manifest_number', |
|
'ReceivedFromFacilityId': 'received_from_facility_id', |
|
'ReceivedFromFacilityLicenseNumber': 'received_from_facility_license_number', |
|
'ReceivedFromFacilityName': 'received_from_facility_name', |
|
'ReceivedFromFacilityType': 'received_from_facility_type', |
|
'ReceivedFromFacilityActive': 'received_from_facility_active', |
|
'ReceivedDateTime': 'received_date_time', |
|
'IsArchived': 'is_archived', |
|
'IsFinished': 'is_finished', |
|
'FinishedDate': 'finished_date', |
|
'LabTestResultId': 'sample_id', |
|
'TestingFacilityId': 'lab_id', |
|
'TestingFacilityName': 'lab', |
|
'TestingFacilityLicenseNumber': 'lab_license_number', |
|
'TestingFacilityType': 'lab_facility_type', |
|
'TestingFacilityIsActive': 'lab_facility_is_active', |
|
'OverallPassed': 'status', |
|
'TestPerformedDate': 'date_tested', |
|
'ProductId': 'product_id', |
|
'ProductName': 'product_name', |
|
'ProductCategoryName': 'product_category_name', |
|
'ProductCategoryType': 'product_category_type', |
|
'ProductCategoryTypeName': 'product_category_type_name', |
|
'QuantityType': 'quantity_type', |
|
'QuantityTypeName': 'quantity_type_name', |
|
'ItemUnitOfMeasureName': 'item_unit_of_measure_name', |
|
'ItemUnitOfMeasureAbbreviation': 'item_unit_of_measure_abbreviation', |
|
'UnitQuantity': 'unit_quantity', |
|
'UnitQuantityUnitOfMeasureName': 'unit_quantity_unit_of_measure_name', |
|
'StrainId': 'strain_id', |
|
'StrainName': 'strain_name', |
|
} |
|
|
|
result_columns = { |
|
|
|
|
|
|
|
|
|
|
|
'TestTypeName': 'name', |
|
'TestPassed': 'status', |
|
'TestResultLevel': 'value', |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
parser = CoADoc() |
|
all_samples_by_year = defaultdict(dict) |
|
file_counter = 0 |
|
for file in test_datafiles: |
|
print(f'Processing file: {file}') |
|
samples = process_file(parser, file) |
|
|
|
|
|
|
|
|
|
|
|
for sample_id, sample in samples.items(): |
|
year = sample['date_tested'][:4] |
|
if sample_id in all_samples_by_year[year]: |
|
all_samples_by_year[year][sample_id]['results'].extend(sample['results']) |
|
else: |
|
all_samples_by_year[year][sample_id] = sample |
|
|
|
|
|
file_counter += 1 |
|
if file_counter % 5 == 0: |
|
for year, samples in all_samples_by_year.items(): |
|
output_file = os.path.join(output_dir, f'ak-lab-results-{year}-{file_counter}.json') |
|
with open(output_file, 'w') as f: |
|
json.dump(samples, f, indent=4) |
|
all_samples_by_year.clear() |
|
|
|
|
|
if all_samples_by_year: |
|
for year, samples in all_samples_by_year.items(): |
|
output_file = os.path.join(output_dir, f'ak-lab-results-{year}-final.json') |
|
with open(output_file, 'w') as f: |
|
json.dump(samples, f, indent=4) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|