|
""" |
|
Analyze Results from MI PRR |
|
Copyright (c) 2023 Cannlytics |
|
|
|
Authors: Keegan Skeate <https://github.com/keeganskeate> |
|
Created: 10/23/2023 |
|
Updated: 7/11/2024 |
|
License: MIT License <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE> |
|
|
|
Data Sources: |
|
|
|
- Public records request |
|
|
|
""" |
|
|
|
from datetime import datetime |
|
import os |
|
import matplotlib.pyplot as plt |
|
from matplotlib.ticker import StrMethodFormatter |
|
from matplotlib import cm |
|
import numpy as np |
|
import pandas as pd |
|
import re |
|
import seaborn as sns |
|
from scipy import stats |
|
|
|
|
|
|
|
plt.style.use('fivethirtyeight') |
|
plt.rcParams.update({ |
|
'figure.figsize': (12, 8), |
|
'font.family': 'Times New Roman', |
|
'font.size': 24, |
|
}) |
|
|
|
|
|
def save_figure(filename, dpi=300, bbox_inches='tight'): |
|
"""Save a figure to the figures directory.""" |
|
plt.savefig(f'figures/{filename}', bbox_inches=bbox_inches, dpi=dpi) |
|
|
|
|
|
|
|
|
|
|
|
data_dir = r'D:\data\public-records\Michigan' |
|
datafile = os.path.join(data_dir, 'Michigan_Metrc_Flower_Potency_Final_2.17.23.xlsx') |
|
mi_results = pd.read_excel(datafile) |
|
|
|
|
|
|
|
|
|
|
|
mi_results = mi_results.rename(columns={ |
|
'ProductName': 'product_name', |
|
'ProductCategory': 'product_type', |
|
'TestType': 'test_type', |
|
'Quantity': 'total_thc', |
|
'Licensee': 'lab', |
|
'TestPerformedDate': 'date_tested', |
|
'Comment': 'notes', |
|
'Med AU': 'medical', |
|
}) |
|
|
|
|
|
state = 'MI' |
|
mi_results['lab_state'] = state |
|
mi_results['producer_state'] = state |
|
|
|
|
|
mi_results['date'] = pd.to_datetime(mi_results['date_tested'], format='mixed') |
|
mi_results['week'] = mi_results['date'].dt.to_period('W').astype(str) |
|
mi_results['month'] = mi_results['date'].dt.to_period('M').astype(str) |
|
mi_results = mi_results.sort_values('date') |
|
|
|
|
|
outfile = 'D://data/michigan/mi-results-latest.xlsx' |
|
outfile_csv = 'D://data/michigan/mi-results-latest.csv' |
|
outfile_json = 'D://data/michigan/mi-results-latest.jsonl' |
|
mi_results.to_excel(outfile, index=False) |
|
mi_results.to_csv(outfile_csv, index=False) |
|
mi_results.to_json(outfile_json, orient='records', lines=True) |
|
print('Saved Excel:', outfile) |
|
print('Saved CSV:', outfile_csv) |
|
print('Saved JSON:', outfile_json) |
|
|
|
|
|
features = {x: 'string' for x in mi_results.columns} |
|
print('Number of features:', len(features)) |
|
print('Features:', features) |
|
|
|
|
|
|
|
|
|
|
|
sample = mi_results.loc[ |
|
(mi_results['total_thc'] > 0) & |
|
(mi_results['total_thc'] < 100) & |
|
(mi_results['product_type'] == 'Flower') |
|
] |
|
print('Number of samples:', len(sample)) |
|
|
|
|
|
test_frequency = sample['month'].value_counts().sort_index() |
|
subsample = test_frequency[2:-1] |
|
subsample.index = subsample.index.to_timestamp() |
|
plt.figure(figsize=(12, 8)) |
|
sns.lineplot( |
|
x=subsample.index, |
|
y=subsample.values, |
|
marker="o", |
|
color="mediumblue" |
|
) |
|
plt.title('Monthly Number of Lab Tests in MI') |
|
plt.ylabel('Number of Tests') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.grid(True, which='both', linestyle='--', linewidth=0.5) |
|
plt.tight_layout() |
|
save_figure('mi-tests-by-month.png') |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
grouped = sample.groupby(['month', 'medical']).size().reset_index(name='counts') |
|
pivot_grouped = grouped.pivot(index='month', columns='medical', values='counts').fillna(0) |
|
pivot_grouped = pivot_grouped.apply(pd.to_numeric, errors='coerce') |
|
pivot_grouped.index = pivot_grouped.index.to_timestamp() |
|
pivot_grouped = pivot_grouped[2:-1] |
|
plt.figure(figsize=(15, 10)) |
|
for column in pivot_grouped.columns: |
|
sns.lineplot(data=pivot_grouped, x=pivot_grouped.index, y=column, marker='o', label=column) |
|
plt.title('Number of Adult Use vs Medical Tests by Month in MI') |
|
plt.ylabel('Number of Lab Tests') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.legend(title='Adult Use / Medical') |
|
plt.grid(True, which='both', linestyle='--', linewidth=0.5) |
|
plt.tight_layout() |
|
save_figure('mi-med-au-tests-by-month.png') |
|
plt.show() |
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) & |
|
(sample['date'] < datetime(2023, 1, 1))] |
|
med_au_distribution = subsample['medical'].value_counts() |
|
plt.figure(figsize=(5, 8)) |
|
bar_plot = sns.barplot(x=med_au_distribution.index, y=med_au_distribution.values, palette='tab10') |
|
plt.title('Adult-Use to Medical Lab Tests in MI in 2022', fontsize=21) |
|
plt.ylabel('Number of Lab Tests') |
|
plt.xlabel('') |
|
for index, value in enumerate(med_au_distribution.values): |
|
bar_plot.text(index, value + 0.1, str(value), color='black', ha='center') |
|
plt.tight_layout() |
|
save_figure('mi-med-au-frequency.png') |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
labs = sample['lab'].unique() |
|
print('Number of labs:', len(labs)) |
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2021, 1, 1)) & |
|
(sample['date'] < datetime(2022, 1, 1))] |
|
lab_results = subsample.groupby('lab') |
|
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False) |
|
sns.barplot(x=tests_by_lab.index, y=tests_by_lab.values, palette='tab20') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.title('Lab Tests in MI in 2022') |
|
plt.ylabel('Number of Lab Tests') |
|
plt.xlabel('') |
|
plt.tight_layout() |
|
save_figure('mi-tests-by-lab.png') |
|
plt.show() |
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2021, 1, 1)) & |
|
(sample['date'] < datetime(2022, 1, 1))] |
|
lab_results = subsample.groupby('lab') |
|
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False) |
|
market_share = tests_by_lab.div(tests_by_lab.sum()).mul(100).round(2) |
|
sns.barplot(x=market_share.index, y=market_share.values, palette='tab20') |
|
plt.title('Lab Market Share in MI in 2021') |
|
plt.ylabel('Market Share (%)') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.tight_layout() |
|
save_figure('mi-market-share-by-lab-2021.png') |
|
plt.show() |
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) & |
|
(sample['date'] < datetime(2023, 1, 1))] |
|
lab_results = subsample.groupby('lab') |
|
tests_by_lab = lab_results['total_thc'].count().sort_values(ascending=False) |
|
market_share = tests_by_lab.div(tests_by_lab.sum()).mul(100).round(2) |
|
sns.barplot(x=market_share.index, y=market_share.values, palette='tab20') |
|
plt.title('Lab Market Share in MI in 2022') |
|
plt.ylabel('Market Share (%)') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.tight_layout() |
|
save_figure('mi-market-share-by-lab-2022.png') |
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) & |
|
(sample['date'] < datetime(2023, 1, 1))] |
|
|
|
|
|
mean_value = subsample['total_thc'].mean() |
|
quantile_1 = subsample['total_thc'].quantile(0.01) |
|
quantile_25 = subsample['total_thc'].quantile(0.25) |
|
quantile_75 = subsample['total_thc'].quantile(0.75) |
|
quantile_99 = subsample['total_thc'].quantile(0.99) |
|
plt.figure(figsize=(12, 7)) |
|
sns.histplot(subsample['total_thc'], bins=100, color='lightblue', kde=True) |
|
plt.axvline(quantile_1, color='blue', linestyle='dashed', linewidth=2, label=f'1st percentile: {quantile_1:.2f}%') |
|
plt.axvline(quantile_25, color='green', linestyle='dashed', linewidth=2, label=f'25th percentile: {quantile_25:.2f}%') |
|
plt.axvline(mean_value, color='red', linestyle='dashed', linewidth=2, label=f'Mean: {mean_value:.2f}%') |
|
plt.axvline(quantile_75, color='darkgreen', linestyle='dashed', linewidth=2, label=f'75th percentile: {quantile_75:.2f}%') |
|
plt.axvline(quantile_99, color='blue', linestyle='dashed', linewidth=2, label=f'99th percentile: {quantile_99:.2f}%') |
|
plt.title('Total THC in MI Cannabis Flower in 2022', pad=15) |
|
plt.xlabel('Total THC (%)') |
|
plt.ylabel('Number of Tests') |
|
plt.legend() |
|
plt.tight_layout() |
|
save_figure('mi-total-thc-distribution.png') |
|
plt.show() |
|
|
|
|
|
plt.figure(figsize=(12, 7)) |
|
sns.histplot( |
|
data=subsample, |
|
x='total_thc', |
|
hue='medical', |
|
bins=100, |
|
kde=True, |
|
palette={'Med': 'blue', 'AU': 'green'}, |
|
stat='density', |
|
) |
|
median_med = subsample[subsample['medical'] == 'Med']['total_thc'].median() |
|
median_au = subsample[subsample['medical'] == 'AU']['total_thc'].median() |
|
plt.axvline(median_med, color='blue', linestyle='--', linewidth=1.5, label=f'Medical Median: {median_med:.2f}%') |
|
plt.axvline(median_au, color='green', linestyle='--', linewidth=1.5, label=f'Adult-Use Median: {median_au:.2f}%') |
|
plt.title('Total THC for Medical and Adult-Use in MI in 2022', pad=15) |
|
plt.xlabel('Total THC (%)') |
|
plt.ylabel('Frequency (%)') |
|
plt.legend(loc='upper right', bbox_to_anchor=(1.3, 1)) |
|
plt.tight_layout() |
|
save_figure('mi-med-au-total-thc-distribution.png') |
|
plt.show() |
|
|
|
|
|
med_thc = subsample[subsample['medical'] == 'Med']['total_thc'] |
|
au_thc = subsample[subsample['medical'] == 'AU']['total_thc'] |
|
t_stat, p_val = stats.ttest_ind(med_thc, au_thc, equal_var=True) |
|
print(f'T-statistic: {t_stat}') |
|
print(f'P-value: {p_val}') |
|
alpha = 0.05 |
|
if p_val < alpha: |
|
print('The difference between medical and adult-use THC is statistically significant.') |
|
else: |
|
print('The difference between medical and adult-use THC is not statistically significant.') |
|
|
|
|
|
|
|
|
|
|
|
average_thc_by_licensee = subsample.groupby('lab')['total_thc'].mean() |
|
average_thc_by_licensee = average_thc_by_licensee.sort_values(ascending=False) |
|
plt.figure(figsize=(25, 8)) |
|
bar_plot = sns.barplot(x=average_thc_by_licensee.index, y=average_thc_by_licensee.values, palette='tab20') |
|
plt.title('Average Total THC by Lab in MI in 2022', pad=15) |
|
plt.ylabel('Average Total THC (%)') |
|
plt.xlabel('Lab') |
|
plt.xticks(rotation=45, ha='right') |
|
for index, value in enumerate(average_thc_by_licensee.values): |
|
bar_plot.text(index, value + 0.2, f'{value:.0f}%', color='black', ha='center') |
|
mean = average_thc_by_licensee.mean() |
|
plt.axhline( |
|
y=mean, |
|
color='red', |
|
linestyle='--', |
|
label=f'MI Avg Total THC: {mean:.2f}%', |
|
) |
|
plt.tight_layout() |
|
save_figure('mi-total-thc-by-lab.png') |
|
plt.show() |
|
|
|
|
|
|
|
|
|
def extract_strain_name(product_name): |
|
"""Extract the strain name from the product name.""" |
|
name = str(product_name) |
|
strain_name = re.split(r' - | \| | _ | x | – | — |:|\(|\)|/', name)[0] |
|
strain_name = strain_name.split('Buds')[0].strip() |
|
strain_name = strain_name.split('Bulk')[0].strip() |
|
strain_name = strain_name.split('Flower')[0].strip() |
|
strain_name = strain_name.split('Pre-Roll')[0].strip() |
|
return strain_name |
|
|
|
|
|
|
|
sample['strain_name'] = sample['product_name'].apply(extract_strain_name) |
|
print(sample.sample(10)['strain_name']) |
|
|
|
|
|
|
|
|
|
|
|
sample = sample[sample['strain_name'].notna()] |
|
sample = sample[~sample['strain_name'].isin(['', 'Unprocessed'])] |
|
|
|
|
|
sample['strain_name'] = sample['strain_name'].replace({ |
|
'Gorilla Glue': 'Gorilla Glue #4', |
|
'GG4': 'Gorilla Glue #4' |
|
}) |
|
|
|
|
|
subsample = sample[(sample['date'] >= datetime(2022, 1, 1)) & |
|
(sample['date'] < datetime(2023, 1, 1))] |
|
|
|
|
|
strain_counts = subsample['strain_name'].value_counts() |
|
counts = strain_counts.head(20) |
|
plt.figure(figsize=(13, 13)) |
|
bar_plot = sns.barplot( |
|
y=counts.index, |
|
x=counts.values, |
|
palette='tab20', |
|
) |
|
plt.title('Number of Lab Tests for the Top 20 Strains in MI in 2022', pad=15) |
|
plt.xlabel('') |
|
plt.ylabel('') |
|
for index, value in enumerate(counts.values): |
|
bar_plot.text(value, index, str(value), color='black', ha='left', va='center') |
|
plt.tight_layout() |
|
save_figure('mi-top-strains.png') |
|
plt.show() |
|
|
|
|
|
avg_thc_per_strain = subsample.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False) |
|
overall_avg_thc = subsample['total_thc'].mean() |
|
print('Overall average THC:', round(overall_avg_thc, 2)) |
|
print('99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2)) |
|
top_20_strains = strain_counts.head(20).index |
|
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)] |
|
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains] |
|
print('Average THC for top 20 strains:', round(avg_thc_top_20_strains.mean(), 2)) |
|
plt.figure(figsize=(26, 10)) |
|
bar_plot = sns.barplot( |
|
x=avg_thc_top_20_strains.index, |
|
y=avg_thc_top_20_strains.values, |
|
palette='tab20' |
|
) |
|
plt.axhline( |
|
y=overall_avg_thc, |
|
color='red', |
|
linestyle='--', |
|
label=f'MI Avg Total THC: {overall_avg_thc:.2f}%', |
|
) |
|
plt.title('Average Total THC for the Top 20 Strains in MI in 2022', fontsize=36, pad=15) |
|
plt.ylabel('Total THC (%)') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.legend() |
|
for p in bar_plot.patches: |
|
bar_plot.annotate(format(p.get_height(), '.2f') + '%', |
|
(p.get_x() + p.get_width() / 2., p.get_height()), |
|
ha='center', va='center', |
|
xytext=(0, 9), |
|
textcoords='offset points') |
|
plt.tight_layout() |
|
save_figure('mi-avg-thc-by-top-20-strains.png') |
|
plt.show() |
|
|
|
|
|
adult_use = subsample.loc[subsample['medical'] == 'AU'] |
|
strain_counts = adult_use['strain_name'].value_counts() |
|
avg_thc_per_strain = adult_use.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False) |
|
overall_avg_thc = adult_use['total_thc'].mean() |
|
print('Adult-use average THC:', round(overall_avg_thc, 2)) |
|
print('Adult-use 99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2)) |
|
top_20_strains = strain_counts.head(20).index |
|
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)] |
|
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains] |
|
print('Average THC for top 20 adult-use strains:', round(avg_thc_top_20_strains.mean(), 2)) |
|
plt.figure(figsize=(26, 10)) |
|
bar_plot = sns.barplot( |
|
x=avg_thc_top_20_strains.index, |
|
y=avg_thc_top_20_strains.values, |
|
palette='tab20' |
|
) |
|
plt.axhline( |
|
y=overall_avg_thc, |
|
color='red', |
|
linestyle='--', |
|
label=f'MI Adult-Use Avg Total THC: {overall_avg_thc:.2f}%', |
|
) |
|
plt.title('Average Total THC for the Top 20 Adult-Use Strains in MI in 2022', fontsize=36, pad=15) |
|
plt.ylabel('Total THC (%)') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.legend() |
|
for p in bar_plot.patches: |
|
bar_plot.annotate(format(p.get_height(), '.2f') + '%', |
|
(p.get_x() + p.get_width() / 2., p.get_height()), |
|
ha='center', va='center', |
|
xytext=(0, 9), |
|
textcoords='offset points') |
|
plt.tight_layout() |
|
save_figure('mi-avg-thc-by-top-20-strains-adult-use.png') |
|
plt.show() |
|
|
|
|
|
medical = subsample.loc[subsample['medical'] == 'Med'] |
|
strain_counts = medical['strain_name'].value_counts() |
|
avg_thc_per_strain = medical.groupby('strain_name')['total_thc'].mean().sort_values(ascending=False) |
|
overall_avg_thc = medical['total_thc'].mean() |
|
print('Medical average THC:', round(overall_avg_thc, 2)) |
|
print('Medical 99th percentile THC:', round(sample['total_thc'].quantile(0.99), 2)) |
|
top_20_strains = strain_counts.head(20).index |
|
avg_thc_top_20_strains = avg_thc_per_strain[avg_thc_per_strain.index.isin(top_20_strains)] |
|
avg_thc_top_20_strains = avg_thc_top_20_strains.loc[top_20_strains] |
|
print('Average THC for top 20 medical strains:', round(avg_thc_top_20_strains.mean(), 2)) |
|
plt.figure(figsize=(26, 10)) |
|
bar_plot = sns.barplot( |
|
x=avg_thc_top_20_strains.index, |
|
y=avg_thc_top_20_strains.values, |
|
palette='tab20' |
|
) |
|
plt.axhline( |
|
y=overall_avg_thc, |
|
color='red', |
|
linestyle='--', |
|
label=f'MI Medical Avg Total THC: {overall_avg_thc:.2f}%', |
|
) |
|
plt.title('Average Total THC for the Top 20 Medical Strains in MI in 2022', fontsize=36, pad=15) |
|
plt.ylabel('Total THC (%)') |
|
plt.xlabel('') |
|
plt.xticks(rotation=45, ha='right') |
|
plt.legend() |
|
for p in bar_plot.patches: |
|
bar_plot.annotate(format(p.get_height(), '.2f') + '%', |
|
(p.get_x() + p.get_width() / 2., p.get_height()), |
|
ha='center', va='center', |
|
xytext=(0, 9), |
|
textcoords='offset points') |
|
plt.tight_layout() |
|
save_figure('mi-avg-thc-by-top-20-strains-med.png') |
|
plt.show() |
|
|