cannabis_results / algorithms /get_results_or.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Get Results Oregon
Copyright (c) 2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 5/25/2024
Updated: 5/30/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Description:
Curate Oregon lab result data obtained through public records requests.
Data Sources:
- Public records request by Jamie Toth.
"""
# Standard imports:
from datetime import datetime
import os
# External imports:
from cannlytics.data import save_with_copyright
from cannlytics.utils import snake_case
from cannlytics.utils.constants import ANALYTES
import pandas as pd
# Define standard columns.
columns = {
'LabId': 'lab_id',
'SampleCreatedByLicenseId': 'producer_id',
'SampleId': 'sample_id',
'MonthOfTest': 'month',
'YearOfTest': 'year',
'ProductType': 'product_type',
'TestName': 'test_name',
'Result': 'result',
'PassFail': 'status',
}
# Define the data types for each column.
dtype_spec = {
'LabId': str,
'SampleCreatedByLicenseId': str,
'SampleId': str,
'MonthOfTest': str,
'YearOfTest': str,
'ProductType': str,
'TestName': str,
'Result': float,
'PassFail': str,
}
def read_and_standardize_csv(file_path, columns, dtype_spec):
"""Read a CSV file and standardize the column names."""
try:
df = pd.read_csv(file_path, dtype=dtype_spec, low_memory=False)
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def collect_data(datafile, columns, dtype_spec):
"""Collect data from the specified CSV file."""
df = read_and_standardize_csv(datafile, columns, dtype_spec)
df['month'] = df['year'].astype(str) + '-' + df['month'].astype(str)
df['date_tested'] = pd.to_datetime(df['month'], format='%Y-%m', errors='coerce')
return df
def pivot_data(data):
"""Pivot the data to get results for each sample."""
results = data.pivot_table(
index=['sample_id', 'producer_id', 'lab_id', 'product_type', 'date_tested'],
columns='test_name',
values='result',
aggfunc='first'
).reset_index()
results['month'] = results['date_tested'].dt.to_period('M')
results['year'] = results['date_tested'].dt.year
return results
def augment_calculations(
df,
cannabinoids=None,
terpenes=None,
delta_9_thc='delta_9_thc',
thca='thca',
cbd='cbd',
cbda='cbda',
):
"""Augment the DataFrame with additional calculated fields."""
# Calculate total cannabinoids.
if cannabinoids is not None:
df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2)
# Calculate total terpenes.
if terpenes is not None:
df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2)
# Calculate the total THC to total CBD ratio.
df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2)
df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2)
df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2)
# Calculate the total cannabinoids to total terpenes ratio.
if cannabinoids is not None and terpenes is not None:
df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2)
# Return the augmented data.
return df
def standardize_analyte_names(df, analyte_mapping):
"""Standardize analyte names."""
df.columns = [col.split('(')[0].strip() for col in df.columns]
df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns]
return df
def combine_similar_columns(df, similar_columns):
"""Combine similar columns with different spellings or capitalization."""
for target_col, col_variants in similar_columns.items():
if target_col not in df.columns:
df[target_col] = pd.NA
for col in col_variants:
if col in df.columns:
df[target_col] = df[target_col].combine_first(df[col])
df.drop(columns=[col], inplace=True)
return df
def convert_mg_g_to_percentage(df):
"""Convert mg/g values to percentage for specified columns."""
mg_g_columns = [col for col in df.columns if '(mg/g)' in col]
for col in mg_g_columns:
df[col] = df[col] / 10
df.rename(columns={col: col.replace('(mg/g)', '').strip()}, inplace=True)
return df
def get_results_or(data_dir: str, output_dir: str) -> pd.DataFrame:
"""Get results for Oregon."""
# Read Oregon lab results.
data = collect_data(data_dir, columns, dtype_spec)
print('Number of Oregon tests:', len(data))
# Pivot the data to get results for each sample.
results = pivot_data(data)
print('Number of Oregon test samples:', len(results))
# Divide any value in a column with mg/g by 10 to get a percentage.
results = convert_mg_g_to_percentage(results)
print('Converted mg/g values to percentages.')
# Combine similar columns.
similar_columns = {
'cbd': ['CBD (%RSD)', 'CBD (RPD)', 'Total CBD (mg/g; cannot fail)'],
'delta_8_thc': ['Delta 8 THC', 'Delta-8 THC', 'Delta-8 THC (%RSD)', 'Delta-8 THC (RPD)', 'Delta-8 THC (mg/g)'],
'delta_9_thc': ['Delta 9 THC', 'Delta-9 THC', 'THC (%RSD)', 'THC (RPD)', 'Delta-9 THC (mg/g)'],
'moisture_content': ['Moisture Content (%)', 'R&D Test: Moisture Content', 'Subcontracted Test - Moisture Content'],
'mycotoxins': ['Mycotoxins (pass/fail)', 'R&D Test: Mycotoxins', 'Subcontracted Test - Mycotoxins'],
}
results = combine_similar_columns(results, similar_columns)
print('Combined similar columns.')
# Standardize the analyte names
results = standardize_analyte_names(results, ANALYTES)
print('Standardized analyte names.')
# Drop nuisance columns.
drop = [
'heavy_metals',
'pesticides',
'potency',
'randd_test',
'randd_test_heavy_metals',
'randd_test_microbiological_contaminants',
'randd_test_moisture_content',
'randd_test_mycotoxins',
'randd_test_pesticides',
'randd_test_potency',
'randd_test_solvents',
'randd_test_water_activity',
'solvents',
'tentatively_identified_compounds',
'microbiological_contaminants',
]
results = results.drop(columns=drop, errors='ignore')
# Ensure all numeric columns are numeric.
non_numeric = [
'sample_id',
'producer_id',
'lab_id',
'product_type',
'date_tested',
'month',
'year',
]
numeric_cols = results.columns.difference(non_numeric)
for col in numeric_cols:
results[col] = pd.to_numeric(results[col], errors='coerce')
print('Converted columns to numeric.')
# Augment additional calculated metrics.
cannabinoids = ['delta_8_thc', 'delta_9_thc', 'thca', 'cbd']
results['total_cbd'] = results['cbd']
results['total_cannabinoids'] = round(results[cannabinoids].sum(), 2)
results['thc_cbd_ratio'] = round(results['total_thc'] / results['total_cbd'], 2)
print('Augmented fields.')
# Sort the columns.
numeric_cols = results.columns.difference(non_numeric)
numeric_cols_sorted = sorted(numeric_cols)
results = results[non_numeric + numeric_cols_sorted]
# # Save the results with copyright and sources sheets.
# date = datetime.now().strftime('%Y-%m-%d')
# if not os.path.exists(output_dir): os.makedirs(output_dir)
# outfile = f'{output_dir}/or-results-{date}.xlsx'
# save_with_copyright(
# results,
# outfile,
# dataset_name='Oregon Cannabis Lab Results',
# author='Jamie Toth (data acquisition), Keegan Skeate (curation)',
# publisher='Cannlytics',
# sources=['Oregon Liquor and Cannabis Commission', 'Jamie Toth'],
# source_urls=['https://www.oregon.gov/olcc/marijuana/pages/default.aspx', 'https://jamietoth.com'],
# )
# print('Saved Oregon lab results:', outfile)
# Save the results.
outfile = os.path.join(output_dir, 'or-results-latest.xlsx')
outfile_csv = os.path.join(output_dir, 'or-results-latest.csv')
outfile_json = os.path.join(output_dir, 'or-results-latest.jsonl')
results.to_excel(outfile, index=False)
results.to_csv(outfile_csv, index=False)
# FIXME: This causes an OverflowError
# results.to_json(outfile_json, orient='records', lines=True)
print('Saved Excel:', outfile)
print('Saved CSV:', outfile_csv)
# print('Saved JSON:', outfile_json)
# Return the results.
return results
# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Define where the data lives.
data_dir = "D:\data\public-records\Oregon\Oregon\Oregon data 5-7-24 (rich)\Anonymized Test Data Feb 2021 to April 2024.csv"
output_dir = 'D://data/oregon/results/datasets'
# Curate results.
get_results_or(data_dir=data_dir, output_dir=output_dir)