cannabis_results / algorithms /get_results_ri.py
keeganskeate's picture
latest-2024-08-11 (#6)
d1ae506 verified
"""
Get Results Rhode Island
Copyright (c) 2024 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Created: 5/25/2024
Updated: 5/30/2024
License: CC-BY 4.0 <https://huggingface.co/datasets/cannlytics/cannabis_tests/blob/main/LICENSE>
Description:
Curate Rhode Island lab result data obtained through public records requests.
Data Sources:
- Public records request
"""
# Standard imports:
from datetime import datetime
import os
# External imports:
from cannlytics.data import save_with_copyright
from cannlytics.utils import snake_case
from cannlytics.utils.constants import ANALYTES
import numpy as np
import pandas as pd
# Define columns.
columns = {
'Id': 'sample_id',
'TestingFacilityName': 'lab',
'ItemFromFacilityLicenseNumber': 'producer_license_number',
'SourcePackageLabels': 'label',
'TestPerformedDate': 'date_tested',
'TestTypeName': 'test_type',
'TestResultLevel': 'test_result',
'OverallPassed': 'status',
}
# Define the data types for each column.
dtype_spec = {
'Id': str,
'TestingFacilityName': str,
'ItemFromFacilityLicenseNumber': str,
'SourcePackageLabels': str,
'TestPerformedDate': str,
'TestTypeName': str,
'TestResultLevel': float,
'OverallPassed': bool,
}
def collect_data(data_dir, columns, dtype_spec):
"""Collect data from a directory of CSV and Excel files."""
results = []
for root, _, files in os.walk(data_dir):
for file in files:
if 'no data' in file.lower():
continue
print('Reading:', file)
file_path = os.path.join(root, file)
if file.endswith('.csv'):
df = read_and_standardize_csv(file_path, columns, dtype_spec)
elif file.endswith('.xlsx'):
df = read_and_standardize_excel(file_path, columns)
if not df.empty:
results.append(df)
return pd.concat(results, ignore_index=True)
def read_and_standardize_csv(file_path, columns, dtype_spec):
"""Read a CSV file and standardize the column names."""
try:
df = pd.read_csv(file_path, dtype=dtype_spec, usecols=columns.keys(), encoding='latin1')
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def read_and_standardize_excel(file_path, columns):
"""Read an Excel file and standardize the column names."""
try:
df = pd.read_excel(file_path, usecols=columns.keys())
df.rename(columns=columns, inplace=True)
return df
except Exception as e:
print(f"Error reading {file_path}: {e}")
return pd.DataFrame()
def extract_test_details(data):
"""Extract test_name, units, and product_type from test_type."""
data[['test_name', 'units', 'product_type']] = data['test_type'].str.extract(r'(.+?) \((.+?)\) (.+)')
return data
def pivot_data(data):
"""Pivot the data to get results for each sample."""
results = data.pivot_table(
index=['sample_id', 'producer_license_number', 'lab', 'label', 'date_tested', 'product_type'],
columns='test_name',
values='test_result',
aggfunc='first'
).reset_index()
results['date_tested'] = pd.to_datetime(results['date_tested'], errors='coerce')
results['month'] = results['date_tested'].dt.to_period('M')
results['year'] = results['date_tested'].dt.year
return results
def augment_calculations(
df,
cannabinoids=None,
terpenes=None,
delta_9_thc='delta_9_thc',
thca='thca',
cbd='cbd',
cbda='cbda',
):
"""Augment the DataFrame with additional calculated fields."""
# Calculate total cannabinoids.
if cannabinoids is not None:
df['total_cannabinoids'] = round(df[cannabinoids].sum(axis=1), 2)
# Calculate total terpenes.
if terpenes is not None:
df['total_terpenes'] = round(df[terpenes].sum(axis=1), 2)
# Calculate the total THC to total CBD ratio.
df['total_thc'] = round(df[delta_9_thc] + 0.877 * df[thca], 2)
df['total_cbd'] = round(df[cbd] + 0.877 * df[cbda], 2)
df['thc_cbd_ratio'] = round(df['total_thc'] / df['total_cbd'], 2)
# Calculate the total cannabinoids to total terpenes ratio.
if cannabinoids is not None and terpenes is not None:
df['cannabinoids_terpenes_ratio'] = round(df['total_cannabinoids'] / df['total_terpenes'], 2)
# Return the augmented data.
return df
def standardize_analyte_names(df, analyte_mapping):
"""Standardize analyte names."""
df.columns = [analyte_mapping.get(snake_case(col), snake_case(col)) for col in df.columns]
return df
def combine_similar_columns(df, similar_columns):
"""Combine similar columns with different spellings or capitalization."""
for target_col, col_variants in similar_columns.items():
if target_col not in df.columns:
df[target_col] = pd.NA
for col in col_variants:
if col in df.columns:
df[target_col] = df[target_col].combine_first(df[col])
df.drop(columns=[col], inplace=True)
return df
def get_results_ri(data_dir: str, output_dir: str) -> pd.DataFrame:
# Collect Rhode Island lab results
data = collect_data(data_dir, columns, dtype_spec)
print('Number of Rhode Island tests:', len(data))
# Extract test details
data = extract_test_details(data)
# Pivot the data to get results for each sample.
results = pivot_data(data)
print('Number of Rhode Island samples:', len(results))
# Combine similar names.
similar_columns = {
'total_yeast_and_mold': ['Total Yeast and MOld', 'Total Yeast and Mold'],
'1_2_dichloroethane': ['1,2 Dichlorethane', '1,2 Dichloroethane'],
'total_cbd': ['Total CBD'],
'total_thc': ['Total THC'],
'3_methylpentane': ['3 Methylpetane', '3 Methylpentane'],
'n_methylpyrrolidone': ['N Methylpyrrolidone', 'N methylpyrrlidone'],
'n_n_dimethylacetamide': ['N,N Dimethyacetamide', 'N,N Dimethylacetamide'],
}
results = combine_similar_columns(results, similar_columns)
# Standardize the analyte names
results = standardize_analyte_names(results, ANALYTES)
print('Standardized analyte names.')
# Augment additional calculated metrics.
cannabinoids = ['cbd', 'cbda', 'delta_9_thc', 'thca']
terpenes = [
'alpha_bisabolol', 'alpha_humulene', 'alpha_pinene',
'alpha_terpinene', 'beta_caryophyllene', 'beta_myrcene',
'beta_pinene', 'caryophyllene_oxide', 'd_limonene', 'linalool',
'nerolidol', 'other_terpenes'
]
results = augment_calculations(results)
print('Augmented fields.')
# Sort the columns.
non_numeric = [
'sample_id', 'producer_license_number', 'lab', 'label',
'date_tested', 'product_type', 'month', 'year'
]
numeric_cols = results.columns.difference(non_numeric)
numeric_cols_sorted = sorted(numeric_cols)
results = results[non_numeric + numeric_cols_sorted]
# # Save the results with copyright and sources sheets.
# date = datetime.now().strftime('%Y-%m-%d')
# if not os.path.exists(output_dir): os.makedirs(output_dir)
# outfile = f'{output_dir}/ri-results-{date}.xlsx'
# save_with_copyright(
# results,
# outfile,
# dataset_name='Rhode Island Cannabis Lab Results',
# author='Keegan Skeate',
# publisher='Cannlytics',
# sources=['Rhode Island Office Of Cannabis Regulation'],
# source_urls=['https://dbr.ri.gov/office-cannabis-regulation'],
# )
# print('Saved Rhode Island lab results:', outfile)
# Save the results.
outfile = os.path.join(output_dir, 'ri-results-latest.xlsx')
outfile_csv = os.path.join(output_dir, 'ri-results-latest.csv')
outfile_json = os.path.join(output_dir, 'ri-results-latest.jsonl')
results.to_excel(outfile, index=False)
results.to_csv(outfile_csv, index=False)
# FIXME: This causes an OverflowError
# results.to_json(outfile_json, orient='records', lines=True)
print('Saved Excel:', outfile)
print('Saved CSV:', outfile_csv)
# print('Saved JSON:', outfile_json)
# Return the results.
return results
# === Test ===
# [✓] Tested: 2024-07-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':
# Define where the data lives.
data_dir = 'D://data/public-records/Rhode Island/Rhode Island'
output_dir = 'D://data/rhode-island/results/datasets'
# Curate results.
get_results_ri(data_dir=data_dir, output_dir=output_dir)