|
""" |
|
CoADoc | Parse Connecticut COAs |
|
Copyright (c) 2023 Cannlytics |
|
|
|
Authors: |
|
Keegan Skeate <https://github.com/keeganskeate> |
|
Candace O'Sullivan-Sutherland <https://github.com/candy-o> |
|
Created: 12/11/2023 |
|
Updated: 12/16/2023 |
|
License: MIT License <https://github.com/cannlytics/cannlytics/blob/main/LICENSE> |
|
|
|
Description: |
|
|
|
Extract data from NE Labs COAs and merge the COA data with product |
|
data from the Connecticut Medical Marijuana Brand Registry. |
|
|
|
Data Points: |
|
|
|
β id |
|
β lab_id |
|
β product_id |
|
β product_name |
|
β product_type |
|
β brand |
|
β image_url |
|
β lab_results_url |
|
β date_reported |
|
β date_received |
|
β date_tested |
|
β total_terpenes |
|
β cannabinoids_method |
|
β total_cannabinoids |
|
β sample_weight |
|
β label_url |
|
β lab |
|
β lab_website |
|
β lab_license_number |
|
β lab_image_url |
|
β lab_address |
|
β lab_street |
|
β lab_city |
|
β lab_county |
|
β lab_state |
|
β lab_zipcode |
|
β lab_latitude |
|
β lab_longitude |
|
β lab_phone |
|
β producer |
|
β producer_address |
|
β producer_street |
|
β producer_city |
|
β producer_county |
|
β producer_state |
|
β producer_zipcode |
|
β analyses |
|
β reported_results |
|
β results |
|
|
|
|
|
""" |
|
|
|
from datetime import datetime |
|
import json |
|
import os |
|
from typing import Any, Optional |
|
|
|
|
|
from cannlytics import __version__ |
|
from cannlytics.data.data import create_hash, create_sample_id |
|
from cannlytics.utils import convert_to_numeric, snake_case |
|
from cannlytics.utils.constants import ANALYTES |
|
import pandas as pd |
|
import pdfplumber |
|
|
|
|
|
NE_LABS = { |
|
'coa_algorithm': 'ne_labs.py', |
|
'coa_algorithm_entry_point': 'parse_ne_labs_coa', |
|
'lims': 'Northeast Laboratories', |
|
'url': 'www.nelabsct.com', |
|
'lab': 'Northeast Laboratories', |
|
'lab_website': 'www.nelabsct.com', |
|
'lab_license_number': '#PH-0404', |
|
'lab_image_url': 'https://www.nelabsct.com/images/Northeast-Laboratories.svg', |
|
'lab_address': '129 Mill Street, Berlin, CT 06037', |
|
'lab_street': '129 Mill Street', |
|
'lab_city': 'Berlin', |
|
'lab_county': 'Hartford', |
|
'lab_state': 'CT', |
|
'lab_zipcode': '06037', |
|
'lab_latitude': 41.626190, |
|
'lab_longitude': -72.748250, |
|
'lab_phone': '860-828-9787', |
|
|
|
} |
|
|
|
NE_LABS_ANALYTES = [ |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Total Aerobic Microbial Count', |
|
'key': 'total_aerobic_microbial_count', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Total Yeast & Mold Count', |
|
'key': 'total_yeast_and_mold', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Bile Tolerant Gram Negative Bacteria', |
|
'key': 'gram_negative_bacteria', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Coliform', |
|
'key': 'coliform', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Enteropathogenic E.coli', |
|
'key': 'e_coli', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Salmonella species', |
|
'key': 'salmonella', |
|
'units': 'CFU/g', |
|
}, |
|
] |
|
|
|
|
|
ALTA_SCI = { |
|
'coa_algorithm': 'altasci.py', |
|
'coa_algorithm_entry_point': 'parse_altasci_coa', |
|
'lims': 'AltaSci Laboratories', |
|
'url': 'www.altascilabs.com', |
|
'lab': 'AltaSci Laboratories', |
|
'lab_website': 'www.altascilabs.com', |
|
'lab_license_number': 'CTM0000002', |
|
'lab_image_url': '', |
|
'lab_address': '1 Hartford Square, New Britain, CT 06052', |
|
'lab_street': '1 Hartford Square', |
|
'lab_city': 'New Britain', |
|
'lab_county': 'Hartford', |
|
'lab_state': 'CT', |
|
'lab_zipcode': '06052', |
|
'lab_latitude': 41.665670, |
|
'lab_longitude': -72.811370, |
|
'lab_phone': '(860) 224-6668', |
|
} |
|
|
|
ALTA_SCI_ANALYTES = [ |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Total Aerobic Microbial Count', |
|
'key': 'total_aerobic_microbial_count', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Total Yeast and Mold Count', |
|
'key': 'total_yeast_and_mold', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Gram-negative Bacteria', |
|
'key': 'gram_negative_bacteria', |
|
'units': 'CFU/g', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'E. coli (pathogenic strains)', |
|
'key': 'e_coli', |
|
'units': 'Detected in 1 gram', |
|
}, |
|
{ |
|
'analysis': 'microbes', |
|
'name': 'Salmonella', |
|
'key': 'salmonella', |
|
'units': 'Detected in 1 gram', |
|
}, |
|
{ |
|
'analysis': 'mycotoxins', |
|
'name': 'Aflatoxin B1', |
|
'key': 'aflatoxin_b1', |
|
'units': 'ug/Kg', |
|
}, |
|
{ |
|
'analysis': 'mycotoxins', |
|
'name': 'Aflatoxin B2', |
|
'key': 'aflatoxin_b2', |
|
'units': 'ug/Kg', |
|
}, |
|
{ |
|
'analysis': 'mycotoxins', |
|
'name': 'Aflatoxin G1', |
|
'key': 'aflatoxin_g1', |
|
'units': 'ug/Kg', |
|
}, |
|
{ |
|
'analysis': 'mycotoxins', |
|
'name': 'Aflatoxin G2', |
|
'key': 'aflatoxin_g2', |
|
'units': 'ug/Kg', |
|
}, |
|
{ |
|
'analysis': 'mycotoxins', |
|
'name': 'Ochratoxin A', |
|
'key': 'ochratoxin_a', |
|
'units': 'ug/Kg', |
|
}, |
|
{ |
|
'analysis': 'heavy_metals', |
|
'name': 'Arsenic', |
|
'key': 'arsenic', |
|
'units': 'ug/g', |
|
}, |
|
{ |
|
'analysis': 'heavy_metals', |
|
'name': 'Cadmium', |
|
'key': 'cadmium', |
|
'units': 'ug/g', |
|
}, |
|
{ |
|
'analysis': 'heavy_metals', |
|
'name': 'Mercury', |
|
'key': 'mercury', |
|
'units': 'ug/g', |
|
}, |
|
{ |
|
'analysis': 'heavy_metals', |
|
'name': 'Lead', |
|
'key': 'lead', |
|
'units': 'ug/g', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Ξ9-Tetrahydrocannabinol Acid (Ξ9-THC-A)', |
|
'key': 'thca', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Tetrahydrocannabinol (THC)', |
|
'key': 'delta_9_thc', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabidiol Acid (CBD-A)', |
|
'key': 'cbda', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabidiol (CBD)', |
|
'key': 'cbd', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabigerol Acid (CBG-A)', |
|
'key': 'cbga', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabigerol (CBG)', |
|
'key': 'cbg', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabinol (CBN)', |
|
'key': 'cbn', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'cannabinoids', |
|
'name': 'Cannabichromene (CBC)', |
|
'key': 'cbc', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Ξ±-Pinene', |
|
'key': 'alpha_pinene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Ξ²-Pinene', |
|
'key': 'beta_pinene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Ξ²-Myrcene', |
|
'key': 'beta_myrcene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Limonene', |
|
'key': 'd_limonene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Ocimene', |
|
'key': 'ocimene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Linalool', |
|
'key': 'linalool', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Ξ²-Caryophyllene', |
|
'key': 'beta_caryophyllene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'terpenes', |
|
'name': 'Humulene', |
|
'key': 'humulene', |
|
'units': 'percent', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Avermectin (abamectin)', |
|
'key': 'avermectin', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Acequinocyl', |
|
'key': 'acequinocyl', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Bifenazate', |
|
'key': 'bifenazate', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Bifenthrin (synthetic pyrethroid)', |
|
'key': 'bifenthrin', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Cyfluthrin (synthetic pyrethroid)', |
|
'key': 'cyfluthrin', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Etoxazole', |
|
'key': 'etoxazole', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Imazalil', |
|
'key': 'imazalil', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Imidacloprid', |
|
'key': 'imidacloprid', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Myclobutanil', |
|
'key': 'myclobutanil', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Paclobutrazol', |
|
'key': 'paclobutrazol', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Pyrethrins (synthetic)', |
|
'key': 'pyrethrins', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Spinosad', |
|
'key': 'spinosad', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Spiromesifen', |
|
'key': 'spiromesifen', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Spirotetramat', |
|
'key': 'spirotetramat', |
|
'units': 'ppb', |
|
}, |
|
{ |
|
'analysis': 'pesticides', |
|
'name': 'Trifloxystrobin', |
|
'key': 'trifloxystrobin', |
|
'units': 'ppb', |
|
}, |
|
|
|
] |
|
|
|
def parse_ne_labs_historic_coa( |
|
parser, |
|
doc: Any, |
|
public_key: Optional[str] = 'product_id', |
|
verbose: Optional[bool] = False, |
|
**kwargs, |
|
) -> dict: |
|
"""Parse a historic Northeast Labs COA PDF. |
|
Args: |
|
doc (str or PDF): A PDF file path or pdfplumber PDF. |
|
Returns: |
|
(dict): The sample data. |
|
""" |
|
|
|
obs = {} |
|
|
|
|
|
if isinstance(doc, str): |
|
report = pdfplumber.open(doc) |
|
else: |
|
report = doc |
|
obs['coa_pdf'] = report.stream.name.replace('\\', '/').split('/')[-1] |
|
|
|
|
|
page = report.pages[0] |
|
|
|
|
|
tables = page.extract_tables() |
|
values = tables[0][0][0].split('\n') |
|
parts = values[-1].replace('β’', '').strip().split(', ') |
|
obs['producer'] = values[0] |
|
obs['producer_street'] = parts[0] |
|
obs['producer_city'] = parts[1].replace(' CT', '') |
|
obs['producer_state'] = 'CT' |
|
|
|
|
|
obs['product_id'] = tables[0][-1][0].split(':')[-1].strip() |
|
|
|
|
|
lines = page.extract_text().split('\n') |
|
for line in lines: |
|
if 'Report#' in line: |
|
obs['lab_id'] = line.split(': ')[-1] |
|
elif 'Report Date' in line: |
|
obs['date_tested'] = line.split(': ')[-1] |
|
break |
|
|
|
|
|
analyses, results = [], [] |
|
|
|
|
|
for line in lines: |
|
for analyte in NE_LABS_ANALYTES: |
|
if analyte['name'] in line: |
|
if 'microbes' not in analyses: |
|
analyses.append('microbes') |
|
result = {} |
|
value = line.split(analyte['name'])[-1].strip() |
|
if 'PASS' in value: |
|
result['status'] = 'Pass' |
|
value = value.replace(' PASS', '') |
|
elif 'FAIL' in value: |
|
result['status'] = 'Fail' |
|
value = value.replace(' FAIL', '') |
|
value = value.replace('per gram', '') |
|
value = value.replace('Not Detected', 'ND') |
|
values = value.split(' ', maxsplit=1) |
|
result['value'] = values[0] |
|
result['limit'] = values[-1] |
|
results.append({**analyte, **result}) |
|
|
|
|
|
crop = page.crop((0, page.height * 0.25, page.width, page.height * 0.75)) |
|
tables = crop.extract_tables({ |
|
'vertical_strategy': 'text', |
|
'horizontal_strategy': 'text', |
|
}) |
|
clean_tables = [] |
|
for table in tables: |
|
clean_table = [] |
|
for row in table: |
|
clean_table.append([cell for cell in row if cell]) |
|
if clean_table: |
|
clean_tables.append(clean_table) |
|
|
|
|
|
analysis = None |
|
for row in clean_tables[0]: |
|
try: |
|
table_name = row[0] |
|
except IndexError: |
|
continue |
|
|
|
|
|
if 'Heavy Metals' in table_name: |
|
analysis = 'heavy_metals' |
|
analyses.append(analysis) |
|
continue |
|
elif 'Mycotoxins' in table_name: |
|
analysis = 'mycotoxins' |
|
analyses.append(analysis) |
|
continue |
|
elif 'Pesticides' in table_name: |
|
analysis = 'pesticides' |
|
analyses.append(analysis) |
|
continue |
|
|
|
|
|
analyte = row[0] |
|
key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) |
|
if analysis == 'heavy_metals': |
|
results.append({ |
|
'analysis': analysis, |
|
'key': key, |
|
'name': key, |
|
'value': row[2], |
|
'limit': row[-1], |
|
'status': row[-2], |
|
'units': row[3], |
|
}) |
|
elif analysis == 'mycotoxins': |
|
results.append({ |
|
'analysis': analysis, |
|
'key': key, |
|
'name': analyte, |
|
'value': row[1], |
|
'limit': row[-1], |
|
'status': row[-2], |
|
'units': row[2], |
|
}) |
|
elif analysis == 'pesticides': |
|
results.append({ |
|
'analysis': analysis, |
|
'key': key, |
|
'name': analyte, |
|
'value': None, |
|
'limit': None, |
|
'status': row[-1], |
|
'units': None, |
|
}) |
|
|
|
|
|
tables = report.pages[1].extract_tables() |
|
for table in tables: |
|
table_name = table[0][0] |
|
|
|
|
|
if 'TERPENES' in table_name: |
|
rows = table[1][0].split('\n') |
|
for row in rows: |
|
values = row.replace(' %', '').split(' ') |
|
if 'TOTAL' in values[0]: |
|
obs['total_terpenes'] = convert_to_numeric(values[-1]) |
|
continue |
|
analyte = values[0] |
|
key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) |
|
results.append({ |
|
'analysis': 'terpenes', |
|
'key': key, |
|
'name': analyte, |
|
'value': convert_to_numeric(values[-1]), |
|
'units': 'percent', |
|
}) |
|
|
|
|
|
elif 'CANNABINOIDS' in table_name: |
|
rows = table[1][0].split('\n') |
|
for row in rows: |
|
values = row.replace(' % weight', '').split(' ') |
|
if 'TOTAL' in values[0]: |
|
obs['total_cannabinoids'] = convert_to_numeric(values[-1]) |
|
continue |
|
analyte = values[0] |
|
key = ANALYTES.get(snake_case(analyte), snake_case(analyte)) |
|
results.append({ |
|
'analysis': 'cannabinoids', |
|
'key': key, |
|
'name': analyte, |
|
'value': convert_to_numeric(values[-1]), |
|
'units': 'percent', |
|
}) |
|
|
|
|
|
|
|
text = report.pages[1].extract_text() |
|
if 'Residual Alcohol' in text: |
|
value = text.split('Residual Alcohol')[-1].split('\n')[0] |
|
value = value.replace('%', '').strip() |
|
results.append({ |
|
'analysis': 'residual_solvents', |
|
'key': 'residual_alcohol', |
|
'name': 'Residual Alcohol', |
|
'value': convert_to_numeric(value), |
|
'units': 'percent', |
|
}) |
|
if 'Moisture' in text: |
|
value = text.split('Moisture')[-1].split('\n')[0] |
|
value = value.replace('%', '').strip() |
|
obs['moisture_content'] = convert_to_numeric(value) |
|
|
|
|
|
last_page = report.pages[-1] |
|
last_page_text = last_page.extract_text() |
|
reviewer_text = last_page_text.split('Approved By:')[-1].split('Date:')[0] |
|
reviewer_text = reviewer_text.replace('\n', '') |
|
values = reviewer_text.split('QA / QC') |
|
obs['reviewed_by'] = values[0] + 'QA / QC' |
|
obs['released_by'] = values[-1] |
|
obs['date_reviewed'] = last_page_text.split('Approved By:')[-1].split('Date:')[-1].split('\n')[0] |
|
|
|
|
|
report.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
obs = {**NE_LABS, **obs} |
|
obs['analyses'] = json.dumps(list(set(analyses))) |
|
obs['coa_algorithm_entry_point'] = 'parse_ne_labs_historic_coa' |
|
obs['coa_algorithm_version'] = __version__ |
|
obs['coa_parsed_at'] = datetime.now().isoformat() |
|
obs['results'] = json.dumps(results) |
|
obs['results_hash'] = create_hash(results) |
|
obs['sample_id'] = create_sample_id( |
|
private_key=json.dumps(results), |
|
public_key=obs[public_key], |
|
salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), |
|
) |
|
obs['sample_hash'] = create_hash(obs) |
|
return obs |
|
|
|
|
|
def parse_ne_labs_coa( |
|
parser, |
|
doc: Any, |
|
public_key: Optional[str] = 'product_id', |
|
verbose: Optional[bool] = False, |
|
**kwargs, |
|
) -> dict: |
|
"""Parse a Northeast Labs COA PDF. |
|
Args: |
|
doc (str or PDF): A PDF file path or pdfplumber PDF. |
|
Returns: |
|
(dict): The sample data. |
|
""" |
|
|
|
obs = {} |
|
|
|
|
|
if isinstance(doc, str): |
|
report = pdfplumber.open(doc) |
|
else: |
|
report = doc |
|
obs['coa_pdf'] = report.stream.name.replace('\\', '/').split('/')[-1] |
|
|
|
|
|
page = report.pages[0] |
|
midpoint = page.width * 0.45 |
|
left_half = (0, 0, midpoint, page.height) |
|
left_half_page = page.crop(left_half) |
|
left_text = left_half_page.extract_text() |
|
lines = left_text.split('\n') |
|
parts = lines[2].split(' ') |
|
obs['producer'] = lines[0] |
|
obs['producer_street'] = lines[1] |
|
obs['producer_city'] = ' '.join(parts[0:-2]).rstrip(',') |
|
obs['producer_state'] = parts[-2] |
|
obs['producer_zipcode'] = parts[-1] |
|
obs['producer_address'] = ', '.join([obs['producer_street'], obs['producer_city'], obs['producer_state'] + ' ' + obs['producer_zipcode']]) |
|
|
|
|
|
right_half = (midpoint, 0, page.width, page.height) |
|
right_half_page = page.crop(right_half) |
|
right_text = right_half_page.extract_text() |
|
lines = right_text.split('\nResults')[0].split('\n') |
|
for line in lines: |
|
if 'Date Received' in line: |
|
obs['date_received'] = line.split(': ')[-1] |
|
if 'Report Date' in line: |
|
obs['date_tested'] = line.split(': ')[-1] |
|
if 'Report ID' in line: |
|
obs['lab_id'] = line.split(': ')[-1] |
|
|
|
|
|
top_half = page.crop((0, 0, page.width, page.height * 0.5)) |
|
top_lines = top_half.extract_text().split('\n') |
|
for line in top_lines: |
|
if 'Product ID' in line: |
|
obs['product_id'] = line.split(': ')[-1] |
|
break |
|
|
|
|
|
tables = [] |
|
for page in report.pages: |
|
tables.extend(page.extract_tables()) |
|
|
|
|
|
clean_tables = [] |
|
for table in tables: |
|
clean_table = [] |
|
for row in table: |
|
clean_table.append([cell for cell in row if cell]) |
|
clean_tables.append(clean_table) |
|
|
|
|
|
analyses, results = [], [] |
|
for table in clean_tables: |
|
table_name = table[0][0] |
|
|
|
|
|
if table_name == 'C': |
|
table_name = 'Cannabinoids\nby HPLC' |
|
|
|
|
|
if table_name.startswith('Microbiology'): |
|
analyses.append('microbes') |
|
for cells in table[1:]: |
|
if 'Pass/Fail' in cells[0]: |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'microbes', |
|
'key': key, |
|
'name': cells[0], |
|
'value': cells[1], |
|
'limit': cells[2], |
|
'method': cells[3], |
|
'units': 'Β΅g/kg', |
|
}) |
|
|
|
|
|
elif table_name.startswith('Cannabinoids') and 'cannabinoids' not in analyses: |
|
analyses.append('cannabinoids') |
|
if '\nby ' in table_name: |
|
obs['cannabinoids_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if not cells or 'dry weight' in cells[0]: |
|
continue |
|
if 'Total Cannabinoids' in cells[0]: |
|
if len(cells) == 1: |
|
obs['total_cannabinoids'] = convert_to_numeric(cells[0].split(':')[-1].strip()) |
|
else: |
|
obs['total_cannabinoids'] = convert_to_numeric(cells[1].replace(' %', '')) |
|
continue |
|
if 'Total' in cells[0] and 'THC' in cells[0]: |
|
values = cells[0].split('\n') |
|
value = values[0].split(':')[-1].replace(' %', '').strip() |
|
obs['total_thc'] = convert_to_numeric(value) |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'cannabinoids', |
|
'key': key, |
|
'name': cells[0], |
|
'value': convert_to_numeric(cells[1]), |
|
'units': 'percent', |
|
}) |
|
|
|
|
|
elif table_name.startswith('Terpenes'): |
|
analyses.append('terpenes') |
|
if '\nby ' in table_name: |
|
obs['terpenes_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if not cells or 'dry weight' in cells[0]: |
|
continue |
|
if 'Total Terpenes' in cells[0]: |
|
values = cells[0].split('\n') |
|
obs['total_terpenes'] = convert_to_numeric(values[0].replace(' %', '').replace('Total Terpenes: ', '')) |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
try: |
|
value = convert_to_numeric(cells[1]) |
|
except: |
|
value = 'ND' |
|
results.append({ |
|
'analysis': 'terpenes', |
|
'key': key, |
|
'name': cells[0], |
|
'value': value, |
|
'units': 'percent', |
|
}) |
|
|
|
|
|
elif table_name.startswith('Pesticides'): |
|
analyses.append('pesticides') |
|
if '\nby ' in table_name: |
|
obs['pesticides_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if 'Pass/Fail' in cells[0]: |
|
continue |
|
|
|
if len(cells) == 4: |
|
split_cells = [cells[:2], cells[2:]] |
|
for split in split_cells: |
|
key = ANALYTES.get(snake_case(split[0]), snake_case(split[0])) |
|
results.append({ |
|
'analysis': 'pesticides', |
|
'key': key, |
|
'name': split[0], |
|
'value': split[1], |
|
'limit': None, |
|
'units': None, |
|
}) |
|
else: |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'pesticides', |
|
'key': key, |
|
'name': cells[0], |
|
'value': cells[1], |
|
'limit': cells[2], |
|
'units': None, |
|
}) |
|
|
|
|
|
elif table_name.startswith('Heavy Metals'): |
|
analyses.append('heavy_metals') |
|
if '\nby ' in table_name: |
|
obs['heavy_metals_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if 'Pass/Fail' in cells[0]: |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'heavy_metals', |
|
'key': key, |
|
'name': cells[0], |
|
'value': cells[1], |
|
'limit': cells[2], |
|
'units': '', |
|
}) |
|
|
|
|
|
elif table_name.startswith('Mycotoxins'): |
|
analyses.append('mycotoxins') |
|
if '\nby ' in table_name: |
|
obs['mycotoxins_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if 'Pass/Fail' in cells[0]: |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'mycotoxins', |
|
'key': key, |
|
'name': cells[0], |
|
'value': cells[1], |
|
'limit': cells[2], |
|
'units': 'Β΅g/kg', |
|
}) |
|
|
|
|
|
elif table_name.startswith('Moisture'): |
|
for cells in table[1:]: |
|
if 'Content' in cells[0]: |
|
obs['moisture_content'] = convert_to_numeric(cells[-1]) |
|
elif 'Activity' in cells[0]: |
|
obs['water_activity'] = convert_to_numeric(cells[-1]) |
|
|
|
|
|
elif 'Residual' in table_name: |
|
analyses.append('residual_solvents') |
|
if '\nby ' in table_name: |
|
obs['residual_solvents_method'] = table_name.split('\nby ')[-1] |
|
for cells in table[1:]: |
|
if 'Pass/Fail' in cells[0]: |
|
continue |
|
if cells[0] == 'GC-MS': |
|
obs['residual_solvents_method'] = 'GC-MS' |
|
continue |
|
key = ANALYTES.get(snake_case(cells[0]), snake_case(cells[0])) |
|
results.append({ |
|
'analysis': 'residual_solvents', |
|
'key': key, |
|
'name': cells[0], |
|
'value': cells[1], |
|
'units': 'percent', |
|
}) |
|
|
|
elif table_name.startswith('Density'): |
|
obs['sample_weight'] = convert_to_numeric(table[1][-1]) |
|
|
|
|
|
last_page = report.pages[-1] |
|
last_table = last_page.extract_tables()[-1] |
|
row = last_table[1] |
|
obs['date_reviewed'] = row[0] |
|
obs['reviewed_by'] = row[1] |
|
obs['released_by'] = row[2] |
|
|
|
|
|
report.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
obs = {**NE_LABS, **obs} |
|
obs['analyses'] = json.dumps(list(set(analyses))) |
|
obs['coa_algorithm_version'] = __version__ |
|
obs['coa_parsed_at'] = datetime.now().isoformat() |
|
obs['results'] = json.dumps(results) |
|
obs['results_hash'] = create_hash(results) |
|
obs['sample_id'] = create_sample_id( |
|
private_key=json.dumps(results), |
|
public_key=obs[public_key], |
|
salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), |
|
) |
|
obs['sample_hash'] = create_hash(obs) |
|
return obs |
|
|
|
|
|
def parse_altasci_coa( |
|
parser, |
|
doc: Any, |
|
public_key: Optional[str] = 'product_id', |
|
verbose: Optional[bool] = False, |
|
**kwargs, |
|
) -> dict: |
|
"""Parse a Northeast Labs COA PDF. |
|
Args: |
|
doc (str or PDF): A PDF file path or pdfplumber PDF. |
|
Returns: |
|
(dict): The sample data. |
|
""" |
|
|
|
|
|
obs = {} |
|
|
|
|
|
report = pdfplumber.open(doc) |
|
front_page = report.pages[0] |
|
front_page_text = front_page.extract_text() |
|
lines = front_page_text.split('\n') |
|
|
|
for i, line in enumerate(lines): |
|
if 'Customer Name' in line: |
|
obs['producer'] = line.split(':')[1].strip() |
|
if 'Customer Address' in line: |
|
obs['producer_street'] = line.split(':')[1].strip() |
|
city_zip = lines[i + 1].split(', CT ') |
|
obs['producer_city'] = city_zip[0].strip() |
|
obs['producer_state'] = 'CT' |
|
obs['producer_zipcode'] = city_zip[1].strip() |
|
obs['producer_address'] = ', '.join([ |
|
obs['producer_street'], |
|
obs['producer_city'], |
|
obs['producer_state'] + ' ' + obs['producer_zipcode'], |
|
]) |
|
if 'Results issued on' in line: |
|
values = line.lstrip('Results issued on: ').split(' COA No.: ') |
|
obs['date_tested'] = values[0].strip() |
|
obs['lab_id'] = values[-1].strip() |
|
|
|
|
|
tables = [] |
|
for page in report.pages: |
|
tables.extend(page.extract_tables()) |
|
|
|
|
|
clean_tables = [] |
|
for table in tables: |
|
clean_table = [] |
|
for row in table: |
|
clean_table.append([cell for cell in row if cell]) |
|
clean_tables.append(clean_table) |
|
|
|
|
|
obs['product_id'] = clean_tables[0][0][0] |
|
|
|
|
|
all_lines = [] |
|
for page in report.pages: |
|
all_lines.extend(page.extract_text().split('\n')) |
|
|
|
|
|
results = [] |
|
for line in all_lines: |
|
for analyte in ALTA_SCI_ANALYTES: |
|
if analyte['name'] in line: |
|
result = {} |
|
value = line.split(analyte['name'])[-1].strip() |
|
if 'Pass' in value: |
|
result['status'] = 'Pass' |
|
value = value.replace(' Pass', '') |
|
elif 'Fail' in value: |
|
result['status'] = 'Fail' |
|
value = value.replace(' Fail', '') |
|
if analyte['units'] in value: |
|
value = value.replace(analyte['units'], '') |
|
if analyte['analysis'] == 'cannabinoids' or analyte['analysis'] == 'terpenes': |
|
value = convert_to_numeric(value.replace('%', '')) |
|
result['value'] = value |
|
results.append({**analyte, **result}) |
|
|
|
|
|
obs['total_thc'] = sum([ |
|
x['value'] * 0.877 if x['key'].endswith('a') else x['value'] |
|
for x in results |
|
if x['analysis'] == 'cannabinoids' and 'thc' in x['key'] and isinstance(x['value'], (float, int)) |
|
]) |
|
|
|
|
|
obs['total_cannabinoids'] = sum([ |
|
x['value'] * 0.877 if x['key'].endswith('a') else x['value'] |
|
for x in results |
|
if x['analysis'] == 'cannabinoids' and isinstance(x['value'], (float, int)) |
|
]) |
|
|
|
|
|
obs['total_terpenes'] = sum([ |
|
x['value'] for x in results |
|
if x['analysis'] == 'terpenes' and isinstance(x['value'], (float, int)) |
|
]) |
|
|
|
|
|
analyses = list(set(x['analysis'] for x in results)) |
|
|
|
|
|
for page in report.pages: |
|
text = page.extract_text() |
|
if 'Results Approved by:' in text: |
|
reviewer = text.split('Results Approved by:')[-1].split('\n')[0].strip() |
|
obs['reviewed_by'] = reviewer |
|
obs['released_by'] = reviewer |
|
break |
|
|
|
|
|
report.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
obs = {**ALTA_SCI, **obs} |
|
obs['analyses'] = json.dumps(list(set(analyses))) |
|
obs['coa_algorithm_version'] = __version__ |
|
obs['coa_parsed_at'] = datetime.now().isoformat() |
|
obs['results'] = json.dumps(results) |
|
obs['results_hash'] = create_hash(results) |
|
obs['sample_id'] = create_sample_id( |
|
private_key=json.dumps(results), |
|
public_key=obs[public_key], |
|
salt=obs.get('producer', obs.get('date_tested', 'cannlytics.eth')), |
|
) |
|
obs['sample_hash'] = create_hash(obs) |
|
return obs |
|
|
|
|
|
def standardize_dates(item: dict) -> dict: |
|
|
|
"""Turn dates to ISO format.""" |
|
date_columns = [x for x in item.keys() if x.startswith('date')] |
|
for date_column in date_columns: |
|
try: |
|
item[date_column] = pd.to_datetime(item[date_column]).isoformat() |
|
except: |
|
pass |
|
return item |
|
|
|
|
|
def extract_url(s): |
|
"""Extract the URL from the string representation of the list.""" |
|
try: |
|
list_rep = eval(s) |
|
return list_rep[0] if list_rep else None |
|
except: |
|
return None |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
from cannlytics.data.coas import CoADoc |
|
|
|
|
|
|
|
|
|
DATA_DIR = 'D://data/cannabis_results/data/ct' |
|
PDF_DIR = 'D://data/connecticut/results/pdfs' |
|
stats_dir = 'D://data/connecticut/results/datasets' |
|
|
|
|
|
datafile = f'{stats_dir}/ct-lab-results-latest.csv' |
|
ct_results = pd.read_csv(datafile) |
|
|
|
|
|
ct_results['image_url'] = ct_results['image_url'].apply(extract_url) |
|
ct_results['label_url'] = ct_results['images'].apply(extract_url) |
|
ct_results['lab_results_url'] = ct_results['lab_results_url'].apply(extract_url) |
|
|
|
|
|
ct_results.rename(columns={ |
|
'date_tested': 'date_reported', |
|
'producer': 'brand', |
|
'results': 'reported_results', |
|
}, inplace=True) |
|
|
|
|
|
ct_results.drop(columns=['images'], inplace=True) |
|
|
|
|
|
|
|
|
|
|
|
parser = CoADoc() |
|
missing = 0 |
|
invalid = 0 |
|
pdf_files = {} |
|
all_results = [] |
|
for index, row in ct_results.iterrows(): |
|
|
|
|
|
pdf_file = os.path.join(PDF_DIR, row['id'] + '.pdf') |
|
if not os.path.exists(pdf_file): |
|
pdf_file = os.path.join(PDF_DIR, row['lab_id'] + '.pdf') |
|
if not os.path.exists(pdf_file): |
|
missing += 1 |
|
continue |
|
|
|
|
|
pdf_files[row['id']] = pdf_file |
|
|
|
|
|
|
|
|
|
|
|
|
|
try: |
|
report = pdfplumber.open(pdf_file) |
|
front_page_text = report.pages[0].extract_text() |
|
except: |
|
print('Invalid file:', pdf_file) |
|
invalid += 1 |
|
continue |
|
|
|
|
|
report.close() |
|
if NE_LABS['url'] in front_page_text: |
|
try: |
|
coa_data = parse_ne_labs_coa(parser, pdf_file) |
|
print('Parsed NE Labs COA:', pdf_file) |
|
except: |
|
try: |
|
coa_data = parse_ne_labs_historic_coa(parser, pdf_file) |
|
print('Parsed NE Labs historic COA:', pdf_file) |
|
except: |
|
print('Failed to parse NE Labs COA:', pdf_file) |
|
continue |
|
|
|
elif ALTA_SCI['url'] in front_page_text: |
|
try: |
|
coa_data = parse_altasci_coa(parser, pdf_file) |
|
print('Parsed AltaSci Labs COA:', pdf_file) |
|
except: |
|
print('Failed to parse AltaSci Labs COA:', pdf_file) |
|
continue |
|
|
|
|
|
else: |
|
print('Unidentified lab:', pdf_file) |
|
continue |
|
|
|
|
|
all_results.append({**row.to_dict(), **coa_data}) |
|
|
|
|
|
timestamp = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') |
|
outfile = os.path.join(DATA_DIR, f'ct-coa-data-{timestamp}.xlsx') |
|
parser.save(pd.DataFrame(all_results), outfile) |
|
print('Saved CT lab results:', outfile) |
|
|