Update Dataset test

#1
README.md DELETED
@@ -1,166 +0,0 @@
1
- ---
2
- license: mit
3
- task_categories:
4
- - image-classification
5
- - keypoint-detection
6
- tags:
7
- - martial-arts
8
- - bjj
9
- - brazilian-jiu-jitsu
10
- - pose-detection
11
- - sports-analysis
12
- - submissions
13
- - grappling
14
- - computer-vision
15
- language:
16
- - en
17
- size_categories:
18
- - n<1K
19
- version: 0.0.1
20
- ---
21
-
22
- # BJJ Positions & Submissions Dataset
23
-
24
- ## Dataset Description
25
-
26
- This dataset contains pose keypoint annotations **and compressed video clips** for Brazilian Jiu-Jitsu (BJJ) combat positions and submissions. It includes 2D keypoint coordinates for up to 2 athletes per image, labeled with specific BJJ positions and submission attempts, as well as short video segments for each position/submission. The videos are optimized for use in video transformer models such as ViViT.
27
-
28
- ### Dataset Summary
29
-
30
- - **Total samples**: 1
31
- - **Position classes**: 1 unique BJJ positions
32
- - **Keypoint format**: MS-COCO (17 keypoints per person)
33
- - **Video format**: MP4, H.264, 360p/480p, 15 FPS, compressed for ML
34
- - **Data format**: [x, y, confidence] for each keypoint, plus associated video
35
- - **Last updated**: 2025-07-21
36
- - **Version**: 0.0.1
37
-
38
- ### Supported Tasks
39
-
40
- - BJJ position classification
41
- - Submission detection
42
- - Multi-person pose estimation
43
- - Combat sports analysis
44
- - **Video action recognition (ViViT, etc.)**
45
- - Action recognition in grappling
46
-
47
- ## Recent Updates
48
-
49
- ### Version 1.2.0 (2025-07-21)
50
- - Added 1 total samples
51
- - Improved data structure for better compatibility
52
- - Enhanced position annotations
53
-
54
- ### Position Distribution
55
-
56
- - `closed_guard1`: 1 samples
57
-
58
-
59
- ## Dataset Structure
60
-
61
- ### Data Fields
62
-
63
- - `id`: Unique sample identifier
64
- - `image_name`: Name of the source image
65
- - `position`: BJJ position/submission label
66
- - `frame_number`: Frame number from source video
67
- - `pose1_keypoints`: 17 keypoints for athlete 1 [[x, y, confidence], ...]
68
- - `pose1_num_keypoints`: Number of visible keypoints for athlete 1
69
- - `pose2_keypoints`: 17 keypoints for athlete 2 [[x, y, confidence], ...]
70
- - `pose2_num_keypoints`: Number of visible keypoints for athlete 2
71
- - `num_people`: Number of people detected (1 or 2)
72
- - `total_keypoints`: Total visible keypoints across both athletes
73
- - `date_added`: Date when sample was added to dataset
74
- - **`video_path`**: Relative path to the associated compressed video clip (MP4, suitable for ViViT and other video models)
75
-
76
- ### Keypoint Format
77
-
78
- Uses MS-COCO 17-keypoint format:
79
- 0. nose, 1. left_eye, 2. right_eye, 3. left_ear, 4. right_ear
80
- 5. left_shoulder, 6. right_shoulder, 7. left_elbow, 8. right_elbow
81
- 9. left_wrist, 10. right_wrist, 11. left_hip, 12. right_hip
82
- 13. left_knee, 14. right_knee, 15. left_ankle, 16. right_ankle
83
-
84
- Each keypoint: [x, y, confidence] where confidence 0.0-1.0
85
-
86
- ### Video Format
87
-
88
- - **Format**: MP4 (H.264), 360p or 480p, 15 FPS, compressed for efficient ML training
89
- - **Usage**: Each sample links to a short video clip showing the position/submission, suitable for direct use in video transformer models (e.g., ViViT)
90
-
91
- ## Usage
92
-
93
- ```python
94
- from datasets import load_dataset
95
-
96
- # Load the dataset
97
- dataset = load_dataset("carlosj934/BJJ_Positions_Submissions")
98
-
99
- # Access samples
100
- sample = dataset['train'][0]
101
- print(f"Position: {sample['position']}")
102
- print(f"Number of people: {sample['num_people']}")
103
- print(f"Athlete 1 keypoints: {len(sample['pose1_keypoints'])}")
104
- print(f"Video path: {sample['video_path']}")
105
-
106
- # Example: Load video for ViViT preprocessing
107
- import cv2
108
- cap = cv2.VideoCapture(sample['video_path'])
109
- frames = []
110
- while True:
111
- ret, frame = cap.read()
112
- if not ret:
113
- break
114
- frames.append(frame)
115
- cap.release()
116
- print(f"Loaded {len(frames)} frames for ViViT input.")
117
-
118
- # Filter by specific positions
119
- guard_samples = dataset['train'].filter(lambda x: 'guard' in x['position'])
120
- print(f"Guard positions: {len(guard_samples)} samples")
121
- ```
122
-
123
- ## Data Collection Progress
124
-
125
- The dataset is continuously updated with new BJJ position and submission samples, including both pose annotations and video clips. Each position is being captured from multiple angles and with different athletes to improve model generalization and support robust video-based learning.
126
-
127
- ### Collection Goals
128
-
129
- - **Target**: 50+ samples per position (900+ total)
130
- - **Current**: 1 total samples
131
- - **Coverage**: 1/18+ positions represented
132
- - **Focus**: High-quality pose annotations and video clips for training robust BJJ classifiers and video models (ViViT, etc.)
133
-
134
- ## Applications
135
-
136
- This dataset can be used for:
137
-
138
- - **Position Classification**: Automatically identify BJJ positions in videos
139
- - **Technique Analysis**: Analyze athlete positioning and technique execution
140
- - **Training Feedback**: Provide real-time feedback on position quality
141
- - **Competition Analysis**: Automatically score and analyze BJJ matches
142
- - **Educational Tools**: Interactive learning applications for BJJ students
143
- - **Video Action Recognition**: Train ViViT and other video transformer models for grappling action recognition
144
-
145
- ## Citation
146
-
147
- If you use this dataset in your research, please cite:
148
-
149
- ```bibtex
150
- @dataset{bjj_positions_submissions_2025,
151
- title={BJJ Positions and Submissions Dataset},
152
- author={Carlos J},
153
- year={2025},
154
- version={0.0.1},
155
- publisher={Hugging Face},
156
- url={https://huggingface.co/datasets/carlosj934/BJJ_Positions_Submissions}
157
- }
158
- ```
159
-
160
- ## License
161
-
162
- MIT License - See LICENSE file for details.
163
-
164
- ## Contact
165
-
166
- For questions or contributions, please reach out through the Hugging Face dataset page.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bjj_dataset/closed_guard/ClosedGuard1_compressed.mp4 DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:91b57a38c276560c7dc8f5c4dbfebfb080fadb69574e86d76fe69a7ee3d98b3d
3
- size 258226