content
stringlengths
219
31.2k
complexity
stringclasses
5 values
file_name
stringlengths
6
9
complexity_ranked
float64
0.1
0.9
import java.io.*; import java.util.*; public class Main { static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); static long oo = 1000000000000L; static int[][] memo; public static void main(String[] args) throws IOException { int n = in.nextInt(); int[] a = in.nextIntArray(n); if(n % 2 == 0) { for(int i = 0; i < n; ++i) { if(a[i] >= 0) a[i] = -a[i] - 1; } } else { int maxi = -1, max = -1; for(int i = 0; i < n; ++i) { int x = a[i] >= 0 ? -a[i] - 1 : a[i]; x = -x; if(x > max) { max = x; maxi = i; } } if(max == 1) { a[0] = 0; } else { for(int i = 0; i < n; ++i) { if(i == maxi) { if(a[i] < 0) a[i] = -a[i] - 1; } else { if(a[i] >= 0) a[i] = -a[i] - 1; } } } } for(int x : a) System.out.print(x + " "); out.close(); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static boolean nextPermutation(int[] a) { for(int i = a.length - 2; i >= 0; --i) { if(a[i] < a[i+1]) { for(int j = a.length - 1; ; --j) { if(a[i] < a[j]) { int t = a[i]; a[i] = a[j]; a[j] = t; for(i++, j = a.length - 1; i < j; ++i, --j) { t = a[i]; a[i] = a[j]; a[j] = t; } return true; } } } } return false; } static void shuffle(int[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); int t = a[si]; a[si] = a[i]; a[i] = t; } } static void shuffle(long[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); long t = a[si]; a[si] = a[i]; a[i] = t; } } static int lower_bound(int[] a, int n, int k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int lower_bound(long[] a, int n, long k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { super(); this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return this.first != o.first ? this.first - o.first : this.second - o.second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Pair other = (Pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } } class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } }
n
1003.java
0.5
import java.util.Scanner; public class NickAndArray { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int array[]=new int[n]; int max=Integer.MAX_VALUE; int index=0; for(int i=0;i<n;i++) { int k=sc.nextInt(); array[i]=k; if(array[i]>=0) { array[i]=-array[i]-1; } if(array[i]<max) { max=array[i]; index=i; } } if(n%2!=0) { array[index]=-array[index]-1; } for(int i=0;i<n;i++) { System.out.print(array[i]+" " ); } } }
n
1004.java
0.5
import java.util.*; public class Main { static int n=5; static int[] arr=new int[5]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int arr[]=new int[n]; for (int i=0;i<n;i++) { arr[i]=sc.nextInt(); } for (int i=0;i<n;i++) { if (arr[i]>=0) { arr[i]=-arr[i]-1; } } if (n%2!=0) { int min=0; for (int i=1;i<n;i++) { if (arr[i]<arr[min]) min=i; } arr[min]=-arr[min]-1; } for (int x:arr) { System.out.print(x + " "); } } }
n
1005.java
0.5
import java.util.*; public class MyClass { public static void main(String args[]) { Scanner sc= new Scanner(System.in); int n=sc.nextInt(); int [] a= new int[n]; int k=0; int m=0; for (int i=0;i<n;i++){ a[i]=sc.nextInt(); if (a[i]>=0){ a[i]=-a[i]-1; } if (a[i]<m){ m=a[i]; k=i; } } if (n%2==1){ a[k]=-a[k]-1; } for (int i=0;i<n;i++){ System.out.print(a[i]+" "); } } }
n
1006.java
0.5
import java.util.*; import java.io.*; import java.math.*; public class round569d2c { public static void main(String args[]) { FastScanner in = new FastScanner(System.in); int n = in.nextInt(); int q = in.nextInt(); ArrayDeque<Integer> deq = new ArrayDeque<>(); for (int i = 0; i < n; i++) { deq.addLast(in.nextInt()); } long[] queries = new long[q]; for (int i = 0; i < q; i++) { queries[i] = in.nextLong(); } int[] origAs = new int[n-1]; int[] origBs = new int[n-1]; for (int i = 0; i < n-1; i++) { int a = deq.pollFirst(); int b = deq.pollFirst(); origAs[i] = a; origBs[i] = b; if (a > b) { deq.addFirst(a); deq.addLast(b); } else { deq.addFirst(b); deq.addLast(a); } } int[] repeatAs = new int[n-1]; int[] repeatBs = new int[n-1]; for (int i = 0; i < n-1; i++) { int a = deq.pollFirst(); int b = deq.pollFirst(); repeatAs[i] = a; repeatBs[i] = b; if (a > b) { deq.addFirst(a); deq.addLast(b); } else { deq.addFirst(b); deq.addLast(a); } } StringBuilder sb = new StringBuilder(); for (int i = 0; i < q; i++) { long query = queries[i] - 1; if (query < n-1) { sb.append(origAs[(int)query] + " " + origBs[(int)query] + "\n"); } else { query %= (n-1); sb.append(repeatAs[(int)query] + " " + repeatBs[(int)query] + "\n"); } } System.out.println(sb); } // ====================================================================================== // =============================== Reference Code ======================================= // ====================================================================================== static int greatestDivisor(int n) { int limit = (int) Math.sqrt(n); int max = 1; for (int i = 2; i <= limit; i++) { if (n % i == 0) { max = Integer.max(max, i); max = Integer.max(max, n / i); } } return max; } // Method to return all primes smaller than or equal to // n using Sieve of Eratosthenes static boolean[] sieveOfEratosthenes(int n) { // Create a boolean array "prime[0..n]" and initialize // all entries it as true. A value in prime[i] will // finally be false if i is Not a prime, else true. boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; prime[0] = false; prime[1] = false; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } return prime; } // Binary search for number greater than or equal to target // returns -1 if number not found private static int bin_gteq(int[] a, int key) { int low = 0; int high = a.length; int max_limit = high; while (low < high) { int mid = low + (high - low) / 2; if (a[mid] < key) { low = mid + 1; } else high = mid; } return high == max_limit ? -1 : high; } public static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static class Tuple<X, Y> { public final X x; public final Y y; public Tuple(X x, Y y) { this.x = x; this.y = y; } public String toString() { return "(" + x + "," + y + ")"; } } static class Tuple3<X, Y, Z> { public final X x; public final Y y; public final Z z; public Tuple3(X x, Y y, Z z) { this.x = x; this.y = y; this.z = z; } public String toString() { return "(" + x + "," + y + "," + z + ")"; } } static Tuple3<Integer, Integer, Integer> gcdExtended(int a, int b, int x, int y) { // Base Case if (a == 0) { x = 0; y = 1; return new Tuple3(0, 1, b); } int x1 = 1, y1 = 1; // To store results of recursive call Tuple3<Integer, Integer, Integer> tuple = gcdExtended(b % a, a, x1, y1); int gcd = tuple.z; x1 = tuple.x; y1 = tuple.y; // Update x and y using results of recursive // call x = y1 - (b / a) * x1; y = x1; return new Tuple3(x, y, gcd); } // Returns modulo inverse of a // with respect to m using extended // Euclid Algorithm. Refer below post for details: // https://www.geeksforgeeks.org/multiplicative-inverse-under-modulo-m/ static int inv(int a, int m) { int m0 = m, t, q; int x0 = 0, x1 = 1; if (m == 1) return 0; // Apply extended Euclid Algorithm while (a > 1) { // q is quotient q = a / m; t = m; // m is remainder now, process // same as euclid's algo m = a % m; a = t; t = x0; x0 = x1 - q * x0; x1 = t; } // Make x1 positive if (x1 < 0) x1 += m0; return x1; } // k is size of num[] and rem[]. // Returns the smallest number // x such that: // x % num[0] = rem[0], // x % num[1] = rem[1], // .................. // x % num[k-2] = rem[k-1] // Assumption: Numbers in num[] are pairwise // coprime (gcd for every pair is 1) static int findMinX(int num[], int rem[], int k) { // Compute product of all numbers int prod = 1; for (int i = 0; i < k; i++) prod *= num[i]; // Initialize result int result = 0; // Apply above formula for (int i = 0; i < k; i++) { int pp = prod / num[i]; result += rem[i] * inv(pp, num[i]) * pp; } return result % prod; } /** * Source: Matt Fontaine */ static class FastScanner { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int chars; public FastScanner(InputStream stream) { this.stream = stream; } int read() { if (chars == -1) throw new InputMismatchException(); if (curChar >= chars) { curChar = 0; try { chars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (chars <= 0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } boolean isEndline(int c) { return c == '\n' || c == '\r' || c == -1; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String next() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isEndline(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndline(c)); return res.toString(); } } }
n
1007.java
0.5
import java.io.*; import java.util.*; public class Main { static InputReader in = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); static long oo = 1000000000000L; public static void main(String[] args) throws IOException { int n = in.nextInt(); int q = in.nextInt(); ArrayDeque<Integer> dq = new ArrayDeque<>(); int max = -1; for(int i = 0; i < n; ++i) { int x = in.nextInt(); dq.add(x); max = Math.max(max, x); } ArrayList<Pair> ans = new ArrayList<>(); while(dq.peekFirst() != max) { int a = dq.pollFirst(); int b = dq.pollFirst(); ans.add(new Pair(a, b)); if(a > b) { dq.addFirst(a); dq.addLast(b); } else { dq.addFirst(b); dq.addLast(a); } } ArrayList<Integer> a = new ArrayList<>(); dq.pollFirst(); for(int x : dq) a.add(x); while(q --> 0) { long m = in.nextLong() - 1; if(m < ans.size()) { System.out.println(ans.get((int)m).first + " " + ans.get((int)m).second); } else { int idx = (int)((m - ans.size()) % a.size()); System.out.println(max + " " + a.get(idx)); } } out.close(); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static boolean nextPermutation(int[] a) { for(int i = a.length - 2; i >= 0; --i) { if(a[i] < a[i+1]) { for(int j = a.length - 1; ; --j) { if(a[i] < a[j]) { int t = a[i]; a[i] = a[j]; a[j] = t; for(i++, j = a.length - 1; i < j; ++i, --j) { t = a[i]; a[i] = a[j]; a[j] = t; } return true; } } } } return false; } static void shuffle(int[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); int t = a[si]; a[si] = a[i]; a[i] = t; } } static void shuffle(long[] a) { Random r = new Random(); for(int i = a.length - 1; i > 0; --i) { int si = r.nextInt(i); long t = a[si]; a[si] = a[i]; a[i] = t; } } static int lower_bound(int[] a, int n, int k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int lower_bound(long[] a, int n, long k) { int s = 0; int e = n; int m; while (e - s > 0) { m = (s + e) / 2; if (a[m] < k) s = m + 1; else e = m; } return e; } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { super(); this.first = first; this.second = second; } @Override public int compareTo(Pair o) { return this.first != o.first ? this.first - o.first : this.second - o.second; } @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + first; result = prime * result + second; return result; } @Override public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; Pair other = (Pair) obj; if (first != other.first) return false; if (second != other.second) return false; return true; } } } class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } }
n
1008.java
0.5
import java.util.*; public class Kello { public static void main(String args[]) { Scanner sc =new Scanner(System.in); int n,q,m,max,inp,k,i; long in_q; n=sc.nextInt(); q=sc.nextInt(); int a[]=new int[n-1]; int b[]=new int[n-1]; int c[]=new int[n-1]; max=sc.nextInt(); for(i=0;i<n-1;i++) { inp=sc.nextInt(); a[i]=max; b[i]=inp; if(inp>max) { c[i]=max; max=inp; } else c[i]=inp; } // display(a,b); for(i=0;i<q;i++) { in_q=sc.nextLong(); if(in_q<n) System.out.println(a[(int)in_q-1]+" "+b[(int)in_q-1]); else { k=(int)(in_q %(n-1))-1; if(k==-1) k=n-2; System.out.println(max+" "+c[k]); } } } public static void display(int a[],int b[]) { int i; for(i=0;i<a.length;i++) System.out.println(a[i]+" "+b[i]); } }
n
1009.java
0.5
// Java program to find the Minimum length Unsorted Subarray, // sorting which makes the complete array sorted class Main { static void printUnsorted( int arr[], int n) { int s = 0 , e = n- 1 , i, max, min; // step 1(a) of above algo for (s = 0 ; s < n- 1 ; s++) { if (arr[s] > arr[s+ 1 ]) break ; } if (s == n- 1 ) { System.out.println( "The complete array is sorted" ); return ; } // step 1(b) of above algo for (e = n - 1 ; e > 0 ; e--) { if (arr[e] < arr[e- 1 ]) break ; } // step 2(a) of above algo max = arr[s]; min = arr[s]; for (i = s + 1 ; i <= e; i++) { if (arr[i] > max) max = arr[i]; if (arr[i] < min) min = arr[i]; } // step 2(b) of above algo for ( i = 0 ; i < s; i++) { if (arr[i] > min) { s = i; break ; } } // step 2(c) of above algo for ( i = n - 1 ; i >= e+ 1 ; i--) { if (arr[i] < max) { e = i; break ; } } // step 3 of above algo System.out.println( " The unsorted subarray which" + " makes the given array sorted lies" + " between the indices " +s+ " and " +e); return ; } public static void main(String args[]) { int arr[] = { 10 , 12 , 20 , 30 , 25 , 40 , 32 , 31 , 35 , 50 , 60 }; int arr_size = arr.length; printUnsorted(arr, arr_size); } }
n
101.java
0.5
import java.io.*; import java.math.BigInteger; import java.util.ArrayDeque; import java.util.Deque; import java.util.InputMismatchException; import java.util.StringTokenizer; public class C { static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } BigInteger nextBigInteger() { try { return new BigInteger(nextLine()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } } public static void main(String[] args) { FastReader fr = new FastReader(); FastWriter fw = new FastWriter(); int n = fr.nextInt(); int q = fr.nextInt(); int[] aa = new int[n - 1]; int[] ab = new int[n - 1]; Deque<Integer> dq = new ArrayDeque<>(); for (int i = 0; i < n; i++) dq.addLast(fr.nextInt()); for (int i = 0; i < n - 1; i++) { int a = dq.removeFirst(); int b = dq.removeFirst(); aa[i] = a; ab[i] = b; int mi = Math.min(a, b); int ma = Math.max(a, b); dq.addFirst(ma); dq.addLast(mi); } int fm = dq.removeFirst(); int[] arr = new int[n - 1]; for (int i = 0; i < arr.length; i++) arr[i] = dq.removeFirst(); while (q-- > 0) { long m = fr.nextLong() - 1; if (m < n - 1) { System.out.println(aa[(int) m] + " " + ab[(int) m]); } else { m = m % (n - 1); System.out.println(fm + " " + arr[(int) m]); } } } }
n
1010.java
0.5
import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } }
n
1011.java
0.5
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class C { void solve(){ int n = readInt(); int q = readInt(); int max = 0; int[] a = new int[n]; Deque<Integer> deque = new ArrayDeque<>(); for(int i = 0;i<n;i++){ a[i] = readInt(); deque.addLast(a[i]); max = Math.max(max, a[i]); } List<String> ans = new ArrayList<>(); while(deque.peekFirst() != max){ int one = deque.pollFirst(); int two = deque.pollFirst(); ans.add(one + " " + two); deque.addFirst(one > two ? one : two); deque.addLast(one > two ? two : one); if(one == max) break; } for(int i = 0;i<n;i++){ a[i] = deque.pollFirst(); } for(int i = 0;i<q;i++){ long x = readLong(); if(x <= ans.size()){ out.println(ans.get((int)x - 1)); continue; } x -= ans.size(); int y =(int) (x%(n - 1) - 1%(n - 1) + (n - 1)) % (n - 1) + 1; out.println(max + " " + a[y]); } } public static void main(String[] args) { new C().run(); } void run(){ init(); solve(); out.close(); } BufferedReader in; PrintWriter out; StringTokenizer tok = new StringTokenizer(""); void init(){ in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } String readLine(){ try{ return in.readLine(); }catch(Exception ex){ throw new RuntimeException(ex); } } String readString(){ while(!tok.hasMoreTokens()){ String nextLine = readLine(); if(nextLine == null) return null; tok = new StringTokenizer(nextLine); } return tok.nextToken(); } int readInt(){ return Integer.parseInt(readString()); } long readLong(){ return Long.parseLong(readString()); } double readDouble(){ return Double.parseDouble(readString()); } }
n
1012.java
0.5
import java.io.*; import java.util.*; import java.lang.*; import java.awt.*; import java.awt.geom.*; import java.math.*; import java.text.*; import java.math.BigInteger.*; import java.util.Arrays; public class CF111111 { BufferedReader in; StringTokenizer as; int nums[],nums2[]; int[] nums1[]; boolean con = true; ArrayList < Integer > ar = new ArrayList < Integer >(); ArrayList < Integer > fi = new ArrayList < Integer >(); Map<Integer,Integer > map = new HashMap<Integer, Integer>(); public static void main (String[] args) { new CF111111 (); } public int GCD(int a, int b) { if (b==0) return a; return GCD(b,a%b); } public int LIS(int arr[]) { int n = arr.length; int sun[] = new int [n]; int cur = 0; for(int x = 0;x<n;x++) { int temp = Arrays.binarySearch(sun,0,cur,arr[x]); if(temp < 0) temp = -temp -1; sun[temp] = arr[x]; if(temp == cur) cur++; } return cur; } public CF111111 () { try { in = new BufferedReader (new InputStreamReader (System.in)); int a = nextInt(); for(int xx1 = 0;xx1<a;xx1++) { int b = nextInt(); nums = new int [b]; for(int x = 0;x<b;x++) { nums[x] = nextInt(); } int max = 0; int max2 = -1; for(int x = 0;x<b;x++) { if(nums[x] >= max) { max2 = max; max = nums[x]; } else if(nums[x] >= max2) max2 = nums[x]; } System.out.println(Math.min(max2, b-1)-1); } } catch(IOException e) { } } String next () throws IOException { while (as == null || !as.hasMoreTokens ()) { as = new StringTokenizer (in.readLine ().trim ()); } return as.nextToken (); } long nextLong () throws IOException { return Long.parseLong (next ()); } int nextInt () throws IOException { return Integer.parseInt (next ()); } double nextDouble () throws IOException { return Double.parseDouble (next ()); } String nextLine () throws IOException { return in.readLine ().trim (); } }
n
1021.java
0.5
import java.util.*; public class Main { public static void main(String[] args) { // write your code here Scanner scan = new Scanner(System.in); int T = scan.nextInt(); for(; T > 0; T--) { int n = scan.nextInt(); int[] arr = new int[n]; for(int i = 0; i < n; i++) arr[i] = scan.nextInt(); int m1 = 1, m2 = 1; for(int i = 0; i < n; i++) { if(arr[i] >= m1) { m2 = m1; m1 = arr[i]; } else if (arr[i] >= m2) { m2 = arr[i]; } } System.out.println(Math.min(Math.min(m1, m2) - 1, n - 2)); } } }
n
1022.java
0.5
import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args)throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); StringTokenizer st; for(int z=0;z<t;z++){ st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int min=1; int max=1; for(int i=0;i<n;i++){ int k = Integer.parseInt(st.nextToken()); if(max<k){ min = max; max = k; }else if(min<k){ min = k; } } int res = Math.min(n-2,min-1); System.out.println(res); } } }
n
1023.java
0.5
import java.io.*; import java.util.*; import java.lang.*; import java.awt.*; import java.awt.geom.*; import java.math.*; import java.text.*; import java.math.BigInteger.*; import java.util.Arrays; public class CF111111 { BufferedReader in; StringTokenizer as; int nums[],nums2[]; int[] nums1[]; boolean con = true; ArrayList < Integer > ar = new ArrayList < Integer >(); ArrayList < Integer > fi = new ArrayList < Integer >(); Map<Integer,Integer > map = new HashMap<Integer, Integer>(); public static void main (String[] args) { new CF111111 (); } public int GCD(int a, int b) { if (b==0) return a; return GCD(b,a%b); } public int LIS(int arr[]) { int n = arr.length; int sun[] = new int [n]; int cur = 0; for(int x = 0;x<n;x++) { int temp = Arrays.binarySearch(sun,0,cur,arr[x]); if(temp < 0) temp = -temp -1; sun[temp] = arr[x]; if(temp == cur) cur++; } return cur; } public void no() { System.out.println("NO"); System.exit(0); } public CF111111 () { try { in = new BufferedReader (new InputStreamReader (System.in)); int a = nextInt(); nums = new int [a]; int max = -1; int index = -1; for(int x = 0;x<a;x++) { nums[x] = nextInt(); if(nums[x] > max) { max = nums[x]; index = x; } } int lindex = index-1; int rindex = index+1; int done = 1; int top = max; for(;;) { done++; // System.out.println(done + " " + lindex + " " + rindex); if(lindex < 0) { if(nums[rindex] > top) { no(); } else top = nums[rindex]; rindex++; } else if(rindex >= a) { if(nums[lindex] > top) no(); else top = nums[lindex]; lindex--; } else { if(nums[lindex] > top || nums[rindex] > top) no(); else { if(nums[lindex] > nums[rindex]) { top = nums[lindex]; lindex--; } else { top = nums[rindex]; rindex++; } } } if(done == a) { System.out.println("YES"); System.exit(0); } } } catch(IOException e) { } } String next () throws IOException { while (as == null || !as.hasMoreTokens ()) { as = new StringTokenizer (in.readLine ().trim ()); } return as.nextToken (); } long nextLong () throws IOException { return Long.parseLong (next ()); } int nextInt () throws IOException { return Integer.parseInt (next ()); } double nextDouble () throws IOException { return Double.parseDouble (next ()); } String nextLine () throws IOException { return in.readLine ().trim (); } }
n
1025.java
0.5
import java.util.Scanner; public class pillar { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int a[]=new int[200005]; for (int i=1;i<=n;i++) a[i]=sc.nextInt(); for (int i=2;i<n;i++) if (a[i-1]>a[i]&&a[i]<a[i+1]) { System.out.println("NO"); return; } System.out.println("YES"); } }
n
1026.java
0.5
import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args)throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); StringTokenizer st = new StringTokenizer(br.readLine()); int[] a = new int[n]; for(int i=0;i<n;i++) a[i] = Integer.parseInt(st.nextToken()); int ind = 0; for(int i=0;i<n;i++){ if(a[i]==n){ ind = i; break; } } boolean ok = true; for(int i=ind+1;i<n;i++) if(a[i]>a[i-1]) ok = false; for(int i=ind-1;i>=0;i--) if(a[i]>a[i+1]) ok = false; if(ok) System.out.println("YES"); else System.out.println("NO"); } }
n
1027.java
0.5
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class CF1197B { public static void main(String[] args) { FastReader input = new FastReader(); int n = input.nextInt(); int[] arr = new int[n]; int max = 0; int maxIndex = 0; for(int i = 0;i < n;i++){ arr[i] = input.nextInt(); if(arr[i] > max){ max = arr[i]; maxIndex = i; } } int j = maxIndex - 1; int k = maxIndex + 1; while (j >= 0 && k < n){ if(arr[j] > arr[k]){ if(arr[j] < max){ max = arr[j]; j--; } else { System.out.println("NO"); return; } } else{ if(arr[k] < max){ max = arr[k]; k++; } else{ System.out.println("NO"); return; } } } if(j >= 0){ while (j >= 0){ if(arr[j] < max){ max = arr[j]; j--; } else{ System.out.println("NO"); return; } } } if(k < n){ while (k < n){ if(arr[k] < max){ max = arr[k]; k++; } else{ System.out.println("NO"); return; } } } if(j == -1 && k == n){ System.out.println("YES"); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
n
1028.java
0.5
import java.io.*; import java.util.*; public class codef { public static void main(String ar[]) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); String st[]=br.readLine().split(" "); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=Integer.parseInt(st[i]); int max=0; for(int i=0;i<n;i++) { if(i!=0 && a[i]>a[max]) max=i; } // System.out.println(a[max]); int maxi=max; int i=max-1; while(i>=0) { if(a[i]>a[max]) { System.out.println("NO"); return; } max=i; i--; } max=maxi; i=max+1; while(i<n) { if(a[i]>a[max]) { System.out.println("NO"); return; } max=i; i++; } System.out.println("YES"); } }
n
1029.java
0.5
import java.io.*; class PairSum { // Fills element in arr[] from its pair sum array pair[]. // n is size of arr[] static void constructArr( int arr[], int pair[], int n) { arr[ 0 ] = (pair[ 0 ]+pair[ 1 ]-pair[n- 1 ]) / 2 ; for ( int i= 1 ; i<n; i++) arr[i] = pair[i- 1 ]-arr[ 0 ]; } // Driver program to test above function public static void main(String[] args) { int pair[] = { 15 , 13 , 11 , 10 , 12 , 10 , 9 , 8 , 7 , 5 }; int n = 5 ; int [] arr = new int [n]; constructArr(arr, pair, n); for ( int i = 0 ; i < n; i++) System.out.print(arr[i]+ " " ); } } /* This code is contributed by Devesh Agrawal */
n
106.java
0.5
// Java program to calculate the // product of max element of first // array and min element of second array import java.util.*; import java.lang.*; class GfG { // Function to calculate the product public static int minMaxProduct( int arr1[], int arr2[], int n1, int n2) { // Initialize max of // first array int max = arr1[ 0 ]; // initialize min of // second array int min = arr2[ 0 ]; int i; for (i = 1 ; i < n1 && i < n2; ++i) { // To find the maximum // element in first array if (arr1[i] > max) max = arr1[i]; // To find the minimum element // in second array if (arr2[i] < min) min = arr2[i]; } // Process remaining elements while (i < n1) { if (arr1[i] > max) max = arr1[i]; i++; } while (i < n2) { if (arr2[i] < min) min = arr2[i]; i++; } return max * min; } // Driver Code public static void main(String argc[]) { int [] arr1= new int []{ 10 , 2 , 3 , 6 , 4 , 1 }; int [] arr2 = new int []{ 5 , 1 , 4 , 2 , 6 , 9 }; int n1 = 6 ; int n2 = 6 ; System.out.println(minMaxProduct(arr1, arr2, n1, n2)); } } // This code is contributed by Sagar Shukla
n
109.java
0.5
// Java Program to find all the common characters // in n strings import java.util.*; import java.lang.*; class GFG { static int MAX_CHAR = 26 ; public static void commonCharacters(String str[], int n) { // primary array for common characters // we assume all characters are seen before. Boolean[] prim = new Boolean[MAX_CHAR]; Arrays.fill(prim, new Boolean( true )); // for each string for ( int i = 0 ; i < n; i++) { // secondary array for common characters // Initially marked false Boolean[] sec = new Boolean[MAX_CHAR]; Arrays.fill(sec, new Boolean( false )); // for every character of ith string for ( int j = 0 ; j < str[i].length(); j++) { // if character is present in all // strings before, mark it. if (prim[str[i].charAt(j) - 'a' ]) sec[str[i].charAt(j) - 'a' ] = true ; } // copy whole secondary array into primary System.arraycopy(sec, 0 , prim, 0 , MAX_CHAR); } // displaying common characters for ( int i = 0 ; i < 26 ; i++) if (prim[i]){ System.out.print(Character.toChars(i + 97 )); System.out.print( " " ); } } // Driver code public static void main(String[] args) { String str[] = { "geeksforgeeks" , "gemkstones" , "acknowledges" , "aguelikes" }; int n = str.length; commonCharacters(str, n); } } // This code is contributed by Prasad Kshirsagar
n
268.java
0.5
// Java implementation to find the uncommon // characters of the two strings class GFG { // size of the hash table static int MAX_CHAR = 26 ; // function to find the uncommon // characters of the two strings static void findAndPrintUncommonChars(String str1, String str2) { // mark presence of each character as 0 // in the hash table 'present[]' int present[] = new int [MAX_CHAR]; for ( int i = 0 ; i < MAX_CHAR; i++) { present[i] = 0 ; } int l1 = str1.length(); int l2 = str2.length(); // for each character of str1, mark its // presence as 1 in 'present[]' for ( int i = 0 ; i < l1; i++) { present[str1.charAt(i) - 'a' ] = 1 ; } // for each character of str2 for ( int i = 0 ; i < l2; i++) { // if a character of str2 is also present // in str1, then mark its presence as -1 if (present[str2.charAt(i) - 'a' ] == 1 || present[str2.charAt(i) - 'a' ] == - 1 ) { present[str2.charAt(i) - 'a' ] = - 1 ; } // else mark its presence as 2 else { present[str2.charAt(i) - 'a' ] = 2 ; } } // print all the uncommon characters for ( int i = 0 ; i < MAX_CHAR; i++) { if (present[i] == 1 || present[i] == 2 ) { System.out.print(( char ) (i + 'a' ) + " " ); } } } // Driver code public static void main(String[] args) { String str1 = "characters" ; String str2 = "alphabets" ; findAndPrintUncommonChars(str1, str2); } } // This code is contributed by Rajput-JI
n
269.java
0.5
// Java implementation of alternate vowel and // consonant string import java.util.*; class GFG { // 'ch' is vowel or not static boolean isVowel( char ch) { if (ch == 'a' || ch == 'e' || ch == 'i' || ch == 'o' || ch == 'u' ) return true ; return false ; } // create alternate vowel and consonant string // str1[0...l1-1] and str2[start...l2-1] static String createAltStr(String str1, String str2, int start, int l) { String finalStr = "" ; // first adding character of vowel/consonant // then adding character of consonant/vowel for ( int i = 0 , j = start; j < l; i++, j++) finalStr = (finalStr + str1.charAt(i)) + str2.charAt(j); return finalStr; } // function to find the required // alternate vowel and consonant string static String findAltStr(String str) { int nv = 0 , nc = 0 ; String vstr = "" , cstr = "" ; int l = str.length(); for ( int i = 0 ; i < l; i++) { char ch = str.charAt(i); // count vowels and updaye vowel string if (isVowel(ch)) { nv++; vstr = vstr + ch; } // count consonants and update consonant // string else { nc++; cstr = cstr + ch; } } // no such string can be formed if (Math.abs(nv - nc) >= 2 ) return "no such string" ; // remove first character of vowel string // then create alternate string with // cstr[0...nc-1] and vstr[1...nv-1] if (nv > nc) return (vstr.charAt( 0 ) + createAltStr(cstr, vstr, 1 , nv)); // remove first character of consonant string // then create alternate string with // vstr[0...nv-1] and cstr[1...nc-1] if (nc > nv) return (cstr.charAt( 0 ) + createAltStr(vstr, cstr, 1 , nc)); // if both vowel and consonant // strings are of equal length // start creating string with consonant if (cstr.charAt( 0 ) < vstr.charAt( 0 )) return createAltStr(cstr, vstr, 0 , nv); // start creating string with vowel return createAltStr(vstr, cstr, 0 , nc); } // Driver code public static void main(String args[]) { String str = "geeks" ; System.out.println(findAltStr(str)); } } // This code is contributed by // Shashank_Sharma
n
270.java
0.5
// A O(n) C++ program to count number of substrings //starting and ending with 1 class CountSubString { int countSubStr( char str[], int n) { int m = 0 ; // Count of 1's in input string // Traverse input string and count of 1's in it for ( int i = 0 ; i < n; i++) { if (str[i] == '1' ) m++; } // Return count of possible pairs among m 1's return m * (m - 1 ) / 2 ; } // Driver program to test the above function public static void main(String[] args) { CountSubString count = new CountSubString(); String string = "00100101" ; char str[] = string.toCharArray(); int n = str.length; System.out.println(count.countSubStr(str, n)); } }
n
272.java
0.5
// Java program to get same frequency character // string by removal of at most one char public class GFG { static final int M = 26 ; // Utility method to get index of character ch // in lower alphabet characters static int getIdx( char ch) { return (ch - 'a' ); } // Returns true if all non-zero elements // values are same static boolean allSame( int freq[], int N) { int same = 0 ; // get first non-zero element int i; for (i = 0 ; i < N; i++) { if (freq[i] > 0 ) { same = freq[i]; break ; } } // check equality of each element with // variable same for ( int j = i + 1 ; j < N; j++) if (freq[j] > 0 && freq[j] != same) return false ; return true ; } // Returns true if we can make all character // frequencies same static boolean possibleSameCharFreqByOneRemoval(String str) { int l = str.length(); // fill frequency array int [] freq = new int [M]; for ( int i = 0 ; i < l; i++) freq[getIdx(str.charAt(i))]++; // if all frequencies are same, then return true if (allSame(freq, M)) return true ; /* Try decreasing frequency of all character by one and then check all equality of all non-zero frequencies */ for ( char c = 'a' ; c <= 'z' ; c++) { int i = getIdx(c); // Check character only if it occurs in str if (freq[i] > 0 ) { freq[i]--; if (allSame(freq, M)) return true ; freq[i]++; } } return false ; } // Driver code to test above methods public static void main(String args[]) { String str = "xyyzz" ; if (possibleSameCharFreqByOneRemoval(str)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code is contributed by Sumit Ghosh
n
273.java
0.5
// Java implementation to find the character in // first string that is present at minimum index // in second string import java.util.HashMap; public class GFG { // method to find the minimum index character static void printMinIndexChar(String str, String patt) { // map to store the first index of each character of 'str' HashMap<Character, Integer> hm = new HashMap<>(); // to store the index of character having // minimum index int minIndex = Integer.MAX_VALUE; // lengths of the two strings int m = str.length(); int n = patt.length(); // store the first index of each character of 'str' for ( int i = 0 ; i < m; i++) if (!hm.containsKey(str.charAt(i))) hm.put(str.charAt(i),i); // traverse the string 'patt' for ( int i = 0 ; i < n; i++) // if patt[i] is found in 'um', check if // it has the minimum index or not accordingly // update 'minIndex' if (hm.containsKey(patt.charAt(i)) && hm.get(patt.charAt(i)) < minIndex) minIndex = hm.get(patt.charAt(i)); // print the minimum index character if (minIndex != Integer.MAX_VALUE) System.out.println( "Minimum Index Character = " + str.charAt(minIndex)); // if no character of 'patt' is present in 'str' else System.out.println( "No character present" ); } // Driver Method public static void main(String[] args) { String str = "geeksforgeeks" ; String patt = "set" ; printMinIndexChar(str, patt); } }
n
275.java
0.5
// Java program to remove duplicates, the order of // characters is not maintained in this program public class GFG { static final int NO_OF_CHARS = 256 ; /* Returns an array of size 256 containg count of characters in the passed char array */ static int [] getCharCountArray(String str) { int count[] = new int [NO_OF_CHARS]; for ( int i = 0 ; i<str.length(); i++) count[str.charAt(i)]++; return count; } /* removeDirtyChars takes two string as arguments: First string (str) is the one from where function removes dirty characters. Second string is the string which contain all dirty characters which need to be removed from first string */ static String removeDirtyChars(String str, String mask_str) { int count[] = getCharCountArray(mask_str); int ip_ind = 0 , res_ind = 0 ; char arr[] = str.toCharArray(); while (ip_ind != arr.length) { char temp = arr[ip_ind]; if (count[temp] == 0 ) { arr[res_ind] = arr[ip_ind]; res_ind ++; } ip_ind++; } str = new String(arr); /* After above step string is ngring. Removing extra "iittg" after string*/ return str.substring( 0 , res_ind); } // Driver Method public static void main(String[] args) { String str = "geeksforgeeks" ; String mask_str = "mask" ; System.out.println(removeDirtyChars(str, mask_str)); } }
n
276.java
0.5
// Java implementation of program to find // the maximum length that can be removed import java.util.ArrayList; public class GFG { // User defined class Pair static class Pair{ char first; int second; Pair( char first, int second){ this .first = first; this .second = second; } } /* Function to find the length of longest sub-string that can me make removed arr --> pair type of array whose first field store character in string and second field stores corresponding index of that character*/ static int longestNull(String str) { ArrayList<Pair> arr = new ArrayList<>(); // store {'@',-1} in arr , here this value // will work as base index arr.add( new Pair( '@' , - 1 )); int maxlen = 0 ; // Initialize result // one by one iterate characters of string for ( int i = 0 ; i < str.length(); ++i) { // make pair of char and index , then // store them into arr arr.add( new Pair(str.charAt(i), i)); // now if last three elements of arr[] // are making sub-string "100" or not while (arr.size() >= 3 && arr.get(arr.size()- 3 ).first== '1' && arr.get(arr.size()- 2 ).first== '0' && arr.get(arr.size()- 1 ).first== '0' ) { // if above condition is true then // delete sub-string "100" from arr[] arr.remove(arr.size() - 3 ); arr.remove(arr.size() - 2 ); arr.remove(arr.size() - 1 ); } // index of current last element in arr[] int tmp = arr.get(arr.size() - 1 ).second; // This is important, here 'i' is the index // of current character inserted into arr[] // and 'tmp' is the index of last element // in arr[] after continuous deletion of // sub-string "100" from arr[] till we make // it null, difference of these to 'i-tmp' // gives the length of current sub-string // that can be make null by continuous // deletion of sub-string "100" maxlen = Math.max(maxlen, i - tmp); } return maxlen; } // Driver program to run the case public static void main(String args[]) { System.out.println(longestNull( "1011100000100" )); } } // This code is contributed by Sumit Ghosh
n
277.java
0.5
// An otpimized Java program to find pairs with distance // equal to English alphabet distance class Test { static final int MAX_CHAR = 26 ; // Method to count pairs with distance // equal to English alphabet distance static int countPairs(String str) { int result = 0 ; int n = str.length(); for ( int i = 0 ; i < n; i++) // This loop runs at most 26 times for ( int j = 1 ; (i + j) < n && j <= MAX_CHAR; j++) if ((Math.abs(str.charAt(i + j) - str.charAt(i)) == j)) result++; return result; } // Driver method public static void main(String args[]) { String str = "geeksforgeeks" ; System.out.println(countPairs(str)); } }
n
279.java
0.5
// Recursive Java Program to reverse an array import java.io.*; class ReverseArray { /* Function to reverse arr[] from start to end*/ static void rvereseArray( int arr[], int start, int end) { int temp; if (start >= end) return ; temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; rvereseArray(arr, start+ 1 , end- 1 ); } /* Utility that prints out an array on a line */ static void printArray( int arr[], int size) { for ( int i= 0 ; i < size; i++) System.out.print(arr[i] + " " ); System.out.println( "" ); } /*Driver function to check for above functions*/ public static void main (String[] args) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 }; printArray(arr, 6 ); rvereseArray(arr, 0 , 5 ); System.out.println( "Reversed array is " ); printArray(arr, 6 ); } } /*This article is contributed by Devesh Agrawal*/
n
28.java
0.5
// Java program to Find longest subsequence where // every character appears at-least k times class GFG { static final int MAX_CHARS = 26 ; static void longestSubseqWithK(String str, int k) { int n = str.length(); // Count frequencies of all characters int freq[] = new int [MAX_CHARS]; for ( int i = 0 ; i < n; i++) { freq[str.charAt(i) - 'a' ]++; } // Traverse given string again and print // all those characters whose frequency // is more than or equal to k. for ( int i = 0 ; i < n; i++) { if (freq[str.charAt(i) - 'a' ] >= k) { System.out.print(str.charAt(i)); } } } // Driver code static public void main(String[] args) { String str = "geeksforgeeks" ; int k = 2 ; longestSubseqWithK(str, k); } } // This code is contributed by Rajput-Ji
n
280.java
0.5
// Java program to count subsequences of the // form a^i b^j c^k public class No_of_subsequence { // Returns count of subsequences of the form // a^i b^j c^k static int countSubsequences(String s) { // Initialize counts of different subsequences // caused by different combination of 'a' int aCount = 0 ; // Initialize counts of different subsequences // caused by different combination of 'a' and // different combination of 'b' int bCount = 0 ; // Initialize counts of different subsequences // caused by different combination of 'a', 'b' // and 'c'. int cCount = 0 ; // Traverse all characters of given string for ( int i= 0 ; i< s.length(); i++) { /* If current character is 'a', then there are following possibilities : a) Current character begins a new subsequence. b) Current character is part of aCount subsequences. c) Current character is not part of aCount subsequences. */ if (s.charAt(i) == 'a' ) aCount = ( 1 + 2 * aCount); /* If current character is 'b', then there are following possibilities : a) Current character begins a new subsequence of b's with aCount subsequences. b) Current character is part of bCount subsequences. c) Current character is not part of bCount subsequences. */ else if (s.charAt(i) == 'b' ) bCount = (aCount + 2 * bCount); /* If current character is 'c', then there are following possibilities : a) Current character begins a new subsequence of c's with bCount subsequences. b) Current character is part of cCount subsequences. c) Current character is not part of cCount subsequences. */ else if (s.charAt(i) == 'c' ) cCount = (bCount + 2 * cCount); } return cCount; } // Driver code public static void main(String args[]) { String s = "abbc" ; System.out.println(countSubsequences(s)); } } // This code is contributed by Sumit Ghosh
n
281.java
0.5
// Java code to find number of subsequences of // "ab" in the string S which is repeated K times. import java.io.*; class GFG { static int countOccurrences(String s, int K) { int n = s.length(); int C = 0 , c1 = 0 , c2 = 0 ; for ( int i = 0 ; i < n; i++) { if (s.charAt(i) == 'a' ) c1++; // Count of 'a's if (s.charAt(i) == 'b' ) { c2++; // Count of 'b's // occurrence of "ab"s // in string S C += c1; } } // Add following two : // 1) K * (Occurrences of "ab" in single string) // 2) a is from one string and b is from other. return C * K + (K * (K - 1 ) / 2 ) * c1 * c2; } // Driver code public static void main(String[] args) { String S = "abcb" ; int k = 2 ; System.out.println(countOccurrences(S, k)); } } // This code is contributed by vt_m.
n
282.java
0.5
// Java Program to find the "GFG" subsequence // in the given string public class GFG { static int max = 100 ; // Print the count of "GFG" subsequence // in the string static void countSubsequence(String s, int n) { int cntG = 0 , cntF = 0 , result = 0 , C= 0 ; // Traversing the given string for ( int i = 0 ; i < n; i++) { switch (s.charAt(i)) { // If the character is 'G', // increment the count of 'G', // increase the result and // update the array. case 'G' : cntG++; result+=C; break ; // If the character is 'F', // increment the count of 'F' // and update the array. case 'F' : cntF++; C+=cntG; break ; // Ignore other character. default : continue ; } } System.out.println(result); } // Driver code public static void main(String args[]) { String s= "GFGFG" ; int n = s.length(); countSubsequence(s, n); } } // This code is contributed by Sam007
n
283.java
0.5
// Java program to count number of distinct // subsequences of a given string. import java.util.ArrayList; import java.util.Arrays; public class Count_Subsequences { static final int MAX_CHAR = 256 ; // Returns count of distinct sunsequences of str. static int countSub(String str) { // Create an array to store index // of last int [] last = new int [MAX_CHAR]; Arrays.fill(last, - 1 ); // Length of input string int n = str.length(); // dp[i] is going to store count of distinct // subsequences of length i. int [] dp = new int [n+ 1 ]; // Empty substring has only one subsequence dp[ 0 ] = 1 ; // Traverse through all lengths from 1 to n. for ( int i= 1 ; i<=n; i++) { // Number of subsequences with substring // str[0..i-1] dp[i] = 2 *dp[i- 1 ]; // If current character has appeared // before, then remove all subsequences // ending with previous occurrence. if (last[( int )str.charAt(i- 1 )] != - 1 ) dp[i] = dp[i] - dp[last[( int )str.charAt(i- 1 )]]; // Mark occurrence of current character last[( int )str.charAt(i- 1 )] = (i- 1 ); } return dp[n]; } // Driver code public static void main(String args[]) { System.out.println(countSub( "gfg" )); } } // This code is contributed by Sumit Ghosh
n
284.java
0.5
// Java program to find nth ugly number import java.lang.Math; class UglyNumber { /* Function to get the nth ugly number*/ int getNthUglyNo( int n) { int ugly[] = new int [n]; // To store ugly numbers int i2 = 0 , i3 = 0 , i5 = 0 ; int next_multiple_of_2 = 2 ; int next_multiple_of_3 = 3 ; int next_multiple_of_5 = 5 ; int next_ugly_no = 1 ; ugly[ 0 ] = 1 ; for ( int i = 1 ; i < n; i++) { next_ugly_no = Math.min(next_multiple_of_2, Math.min(next_multiple_of_3, next_multiple_of_5)); ugly[i] = next_ugly_no; if (next_ugly_no == next_multiple_of_2) { i2 = i2+ 1 ; next_multiple_of_2 = ugly[i2]* 2 ; } if (next_ugly_no == next_multiple_of_3) { i3 = i3+ 1 ; next_multiple_of_3 = ugly[i3]* 3 ; } if (next_ugly_no == next_multiple_of_5) { i5 = i5+ 1 ; next_multiple_of_5 = ugly[i5]* 5 ; } } /*End of for loop (i=1; i<n; i++) */ return next_ugly_no; } /* Driver program to test above functions */ public static void main(String args[]) { int n = 150 ; UglyNumber obj = new UglyNumber(); System.out.println(obj.getNthUglyNo(n)); } } // This code has been contributed by Amit Khandelwal (Amit Khandelwal 1)
n
287.java
0.5
// A O(n) solution that uses // table fact[] to calculate // the Permutation Coefficient import java .io.*; public class GFG { // Returns value of Permutation // Coefficient P(n, k) static int permutationCoeff( int n, int k) { int []fact = new int [n+ 1 ]; // base case fact[ 0 ] = 1 ; // Caculate value // factorials up to n for ( int i = 1 ; i <= n; i++) fact[i] = i * fact[i - 1 ]; // P(n,k) = n! / (n - k)! return fact[n] / fact[n - k]; } // Driver Code static public void main (String[] args) { int n = 10 , k = 2 ; System.out.println( "Value of" + " P( " + n + ", " + k + ") is " + permutationCoeff(n, k) ); } } // This code is contributed by anuj_67.
n
296.java
0.5
// Java program for solution of // friends pairing problem import java.io.*; class GFG { // Returns count of ways n people // can remain single or paired up. static int countFriendsPairings( int n) { int dp[] = new int [n + 1 ]; // Filling dp[] in bottom-up manner using // recursive formula explained above. for ( int i = 0 ; i <= n; i++) { if (i <= 2 ) dp[i] = i; else dp[i] = dp[i - 1 ] + (i - 1 ) * dp[i - 2 ]; } return dp[n]; } // Driver code public static void main(String[] args) { int n = 4 ; System.out.println(countFriendsPairings(n)); } } // This code is contributed by vt_m
n
299.java
0.5
import java.util.Arrays; public class Test { static int arr[] = new int []{ 1 , 2 , 3 , 4 , 5 }; // Method for rotation static void rotate() { int x = arr[arr.length- 1 ], i; for (i = arr.length- 1 ; i > 0 ; i--) arr[i] = arr[i- 1 ]; arr[ 0 ] = x; } /* Driver program */ public static void main(String[] args) { System.out.println( "Given Array is" ); System.out.println(Arrays.toString(arr)); rotate(); System.out.println( "Rotated Array is" ); System.out.println(Arrays.toString(arr)); } }
n
3.java
0.5
// Java program for solution of friends // pairing problem Using Recursion class GFG { static int [] dp = new int [ 1000 ]; // Returns count of ways n people // can remain single or paired up. static int countFriendsPairings( int n) { if (dp[n] != - 1 ) return dp[n]; if (n > 2 ) return dp[n] = countFriendsPairings(n - 1 ) + (n - 1 ) * countFriendsPairings(n - 2 ); else return dp[n] = n; } // Driver code public static void main(String[] args) { for ( int i = 0 ; i < 1000 ; i++) dp[i] = - 1 ; int n = 4 ; System.out.println(countFriendsPairings(n)); } } // This code is contributed by Ita_c.
n
300.java
0.5
// Java program to find nth // element of Newman-Conway Sequence import java.io.*; class GFG { // Recursion to find // n-th element static int sequence( int n) { if (n == 1 || n == 2 ) return 1 ; else return sequence(sequence(n - 1 )) + sequence(n - sequence(n - 1 )); } // Driver Program public static void main(String args[]) { int n = 10 ; System.out.println(sequence(n)); } } /*This code is contributed by Nikita Tiwari.*/
n
308.java
0.5
// JAVA Code for Newman-Conway Sequence import java.util.*; class GFG { // Function to find the n-th element static int sequence( int n) { // Declare array to store sequence int f[] = new int [n + 1 ]; f[ 0 ] = 0 ; f[ 1 ] = 1 ; f[ 2 ] = 1 ; int i; for (i = 3 ; i <= n; i++) f[i] = f[f[i - 1 ]] + f[i - f[i - 1 ]]; return f[n]; } /* Driver program to test above function */ public static void main(String[] args) { int n = 10 ; System.out.println(sequence(n)); } } // This code is contributed by Arnav Kr. Mandal.
n
309.java
0.5
// A simple Java program to rearrange contents of arr[] // such that arr[j] becomes j if arr[i] is j class RearrangeArray { // A simple method to rearrange 'arr[0..n-1]' so that 'arr[j]' // becomes 'i' if 'arr[i]' is 'j' void rearrangeNaive( int arr[], int n) { // Create an auxiliary array of same size int temp[] = new int [n]; int i; // Store result in temp[] for (i = 0 ; i < n; i++) temp[arr[i]] = i; // Copy temp back to arr[] for (i = 0 ; i < n; i++) arr[i] = temp[i]; } // A utility function to print contents of arr[0..n-1] void printArray( int arr[], int n) { int i; for (i = 0 ; i < n; i++) { System.out.print(arr[i] + " " ); } System.out.println( "" ); } // Driver program to test above functions public static void main(String[] args) { RearrangeArray arrange = new RearrangeArray(); int arr[] = { 1 , 3 , 0 , 2 }; int n = arr.length; System.out.println( "Given array is " ); arrange.printArray(arr, n); arrange.rearrangeNaive(arr, n); System.out.println( "Modified array is " ); arrange.printArray(arr, n); } }
n
32.java
0.5
// java program to find the maximum sum // such that no three are consecutive import java.io.*; class GFG { // Returns maximum subsequence sum such that no three // elements are consecutive static int maxSumWO3Consec( int arr[], int n) { // Stores result for subarray arr[0..i], i.e., // maximum possible sum in subarray arr[0..i] // such that no three elements are consecutive. int sum[] = new int [n]; // Base cases (process first three elements) if (n >= 1 ) sum[ 0 ] = arr[ 0 ]; if (n >= 2 ) sum[ 1 ] = arr[ 0 ] + arr[ 1 ]; if (n > 2 ) sum[ 2 ] = Math.max(sum[ 1 ], Math.max(arr[ 1 ] + arr[ 2 ], arr[ 0 ] + arr[ 2 ])); // Process rest of the elements // We have three cases // 1) Exclude arr[i], i.e., sum[i] = sum[i-1] // 2) Exclude arr[i-1], i.e., sum[i] = sum[i-2] + arr[i] // 3) Exclude arr[i-2], i.e., sum[i-3] + arr[i] + arr[i-1] for ( int i = 3 ; i < n; i++) sum[i] = Math.max(Math.max(sum[i - 1 ], sum[i - 2 ] + arr[i]), arr[i] + arr[i - 1 ] + sum[i - 3 ]); return sum[n - 1 ]; } // Driver code public static void main(String[] args) { int arr[] = { 100 , 1000 , 100 , 1000 , 1 }; int n = arr.length; System.out.println(maxSumWO3Consec(arr, n)); } } // This code is contributed by vt_m
n
320.java
0.5
// Java program to find the maximum // sum such that no three are // consecutive using recursion. import java.util.Arrays; class GFG { static int arr[] = { 100 , 1000 , 100 , 1000 , 1 }; static int sum[] = new int [ 10000 ]; // Returns maximum subsequence // sum such that no three // elements are consecutive static int maxSumWO3Consec( int n) { if (sum[n] != - 1 ) return sum[n]; //Base cases (process first three elements) if (n == 0 ) return sum[n] = 0 ; if (n == 1 ) return sum[n] = arr[ 0 ]; if (n == 2 ) return sum[n] = arr[ 1 ] + arr[ 0 ]; // Process rest of the elements // We have three cases return sum[n] = Math.max(Math.max(maxSumWO3Consec(n - 1 ), maxSumWO3Consec(n - 2 ) + arr[n - 1 ]), arr[n - 2 ] + arr[n - 1 ] + maxSumWO3Consec(n - 3 )); } // Driver code public static void main(String[] args) { int n = arr.length; Arrays.fill(sum, - 1 ); System.out.println(maxSumWO3Consec(n)); } } // This code is contributed by Rajput-Ji
n
321.java
0.5
// Java implementation to divide N into // maximum number of segments // of length a, b and c import java.util.*; class GFG { // function to find the maximum // number of segments static int maximumSegments( int n, int a, int b, int c) { // stores the maximum number of // segments each index can have int dp[] = new int [n + 10 ]; // initialize with -1 Arrays.fill(dp, - 1 ); // 0th index will have 0 segments // base case dp[ 0 ] = 0 ; // traverse for all possible // segments till n for ( int i = 0 ; i < n; i++) { if (dp[i] != - 1 ) { // conditions if (i + a <= n ) //avoid buffer overflow dp[i + a] = Math.max(dp[i] + 1 , dp[i + a]); if (i + b <= n ) //avoid buffer overflow dp[i + b] = Math.max(dp[i] + 1 , dp[i + b]); if (i + c <= n ) //avoid buffer overflow dp[i + c] = Math.max(dp[i] + 1 , dp[i + c]); } } return dp[n]; } // Driver code public static void main(String arg[]) { int n = 7 , a = 5 , b = 2 , c = 5 ; System.out.print(maximumSegments(n, a, b, c)); } } // This code is contributed by Anant Agarwal.
n
329.java
0.5
// A space efficient Java program to rearrange contents of // arr[] such that arr[j] becomes j if arr[i] is j class RearrangeArray { // A utility function to rearrange elements in the cycle // starting at arr[i]. This function assumes values in // arr[] be from 1 to n. It changes arr[j-1] to i+1 // if arr[i-1] is j+1 void rearrangeUtil( int arr[], int n, int i) { // 'val' is the value to be stored at 'arr[i]' // The next value is determined using current index int val = -(i + 1 ); // The next index is determined // using current value i = arr[i] - 1 ; // While all elements in cycle are not processed while (arr[i] > 0 ) { // Store value at index as it is going to be // used as next index int new_i = arr[i] - 1 ; // Update arr[] arr[i] = val; // Update value and index for next iteration val = -(i + 1 ); i = new_i; } } // A space efficient method to rearrange 'arr[0..n-1]' // so that 'arr[j]' becomes 'i' if 'arr[i]' is 'j' void rearrange( int arr[], int n) { // Increment all values by 1, so that all elements // can be made negative to mark them as visited int i; for (i = 0 ; i < n; i++) arr[i]++; // Process all cycles for (i = 0 ; i < n; i++) { // Process cycle starting at arr[i] if this cycle is // not already processed if (arr[i] > 0 ) rearrangeUtil(arr, n, i); } // Change sign and values of arr[] to get the original // values back, i.e., values in range from 0 to n-1 for (i = 0 ; i < n; i++) arr[i] = (-arr[i]) - 1 ; } // A utility function to print contents of arr[0..n-1] void printArray( int arr[], int n) { int i; for (i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); System.out.println( "" ); } // Driver program public static void main(String[] args) { RearrangeArray arrange = new RearrangeArray(); int arr[] = { 2 , 0 , 1 , 4 , 5 , 3 }; int n = arr.length; System.out.println( "Given array is " ); arrange.printArray(arr, n); arrange.rearrange(arr, n); System.out.println( "Modified array is " ); arrange.printArray(arr, n); } }
n
33.java
0.5
// A simple recursive JAVA program to find // maximum sum by recursively breaking a // number in 3 parts. import java.io.*; class GFG { final int MAX = 1000000 ; // Function to find the maximum sum static int breakSum( int n) { int dp[] = new int [n+ 1 ]; // base conditions dp[ 0 ] = 0 ; dp[ 1 ] = 1 ; // Fill in bottom-up manner using recursive // formula. for ( int i= 2 ; i<=n; i++) dp[i] = Math.max(dp[i/ 2 ] + dp[i/ 3 ] + dp[i/ 4 ], i); return dp[n]; } // Driver program to test the above function public static void main (String[] args) { int n = 24 ; System.out.println(breakSum(n)); } } // This code is contributed by Amit Kumar
n
331.java
0.5
// Java Code for Maximum sum in a 2 x n grid // such that no two elements are adjacent import java.util.*; class GFG { // Function to find max sum without adjacent public static int maxSum( int grid[][], int n) { // Sum including maximum element of first // column int incl = Math.max(grid[ 0 ][ 0 ], grid[ 1 ][ 0 ]); // Not including first column's element int excl = 0 , excl_new; // Traverse for further elements for ( int i = 1 ; i < n; i++ ) { // Update max_sum on including or // excluding of previous column excl_new = Math.max(excl, incl); // Include current column. Add maximum element // from both row of current column incl = excl + Math.max(grid[ 0 ][i], grid[ 1 ][i]); // If current column doesn't to be included excl = excl_new; } // Return maximum of excl and incl // As that will be the maximum sum return Math.max(excl, incl); } /* Driver program to test above function */ public static void main(String[] args) { int grid[][] = {{ 1 , 2 , 3 , 4 , 5 }, { 6 , 7 , 8 , 9 , 10 }}; int n = 5 ; System.out.println(maxSum(grid, n)); } } // This code is contributed by Arnav Kr. Mandal.
n
333.java
0.5
// Java Program to find the length of // substring with maximum difference of // zeroes and ones in binary string. import java.util.*; import java.lang.*; import java.io.*; class GFG { // Find the length of substring with maximum // difference of zeros and ones in binary // string public static int findLength(String str, int n) { int current_sum = 0 ; int max_sum = 0 ; // traverse a binary string from left to right for ( int i = 0 ; i < n; i++) { // add current value to the current_sum // according to the Character // if it's '0' add 1 else -1 current_sum += (str.charAt(i) == '0' ? 1 : - 1 ); if (current_sum < 0 ) current_sum = 0 ; // update maxium sum max_sum = Math.max(current_sum, max_sum); } // return -1 if string does not contain any zero // that means string contains all ones otherwise max_sum return max_sum == 0 ? - 1 : max_sum; } public static void main(String[] args) { String str = "11000010001" ; int n = str.length(); System.out.println(findLength(str, n)); } }
n
334.java
0.5
// Java program to write characters in // minimum time by inserting, removing // and copying operation public class GFG{ // method returns minimum time to write // 'N' characters static int minTimeForWritingChars( int N, int insert, int remove, int copy) { if (N == 0 ) return 0 ; if (N == 1 ) return insert; // declare dp array and initialize with zero int dp[] = new int [N + 1 ]; // loop for 'N' number of times for ( int i = 1 ; i <= N; i++) { /* if current char count is even then choose minimum from result for (i-1) chars and time for insertion and result for half of chars and time for copy */ if (i % 2 == 0 ) dp[i] = Math.min(dp[i- 1 ] + insert, dp[i/ 2 ] + copy); /* if current char count is odd then choose minimum from result for (i-1) chars and time for insertion and result for half of chars and time for copy and one extra character deletion*/ else dp[i] = Math.min(dp[i- 1 ] + insert, dp[(i+ 1 )/ 2 ] + copy + remove); } return dp[N]; } // Driver code to test above methods public static void main(String []args) { int N = 9 ; int insert = 1 , remove = 2 , copy = 1 ; System.out.println(minTimeForWritingChars(N, insert,remove, copy)); } // This code is contributed by Ryuga }
n
345.java
0.5
// Java program to print sum of all substring of // a number represented as a string import java.util.Arrays; class GFG{ // Returns sum of all substring of num public static int sumOfSubstrings(String num) { int n = num.length(); // allocate memory equal to length of string int sumofdigit[] = new int [n]; // initialize first value with first digit sumofdigit[ 0 ] = num.charAt( 0 )- '0' ; int res = sumofdigit[ 0 ]; // loop over all digits of string for ( int i = 1 ; i < n; i++) { int numi = num.charAt(i)- '0' ; // update each sumofdigit from previous value sumofdigit[i] = (i+ 1 ) * numi + 10 * sumofdigit[i- 1 ]; // add current value to the result res += sumofdigit[i]; } return res; } // Driver code to test above methods public static void main(String[] args) { String num = "1234" ; System.out.println(sumOfSubstrings(num)); } } // This code is contributed by Arnav Kr. Mandal.
n
349.java
0.5
// Java program to find the maximum stolen value import java.io.*; class GFG { // Function to calculate the maximum stolen value static int maxLoot( int hval[], int n) { if (n == 0 ) return 0 ; if (n == 1 ) return hval[ 0 ]; if (n == 2 ) return Math.max(hval[ 0 ], hval[ 1 ]); // dp[i] represent the maximum value stolen // so far after reaching house i. int [] dp = new int [n]; // Initialize the dp[0] and dp[1] dp[ 0 ] = hval[ 0 ]; dp[ 1 ] = Math.max(hval[ 0 ], hval[ 1 ]); // Fill remaining positions for ( int i = 2 ; i<n; i++) dp[i] = Math.max(hval[i]+dp[i- 2 ], dp[i- 1 ]); return dp[n- 1 ]; } // Driver program public static void main (String[] args) { int hval[] = { 6 , 7 , 1 , 3 , 8 , 2 , 4 }; int n = hval.length; System.out.println( "Maximum loot value : " + maxLoot(hval, n)); } } // Contributed by Pramod Kumar
n
350.java
0.5
// Java program to find the maximum stolen value import java.io.*; class GFG { // Function to calculate the maximum stolen value static int maxLoot( int hval[], int n) { if (n == 0 ) return 0 ; int value1 = hval[ 0 ]; if (n == 1 ) return value1; int value2 = Math.max(hval[ 0 ], hval[ 1 ]); if (n == 2 ) return value2; // contains maximum stolen value at the end int max_val = 0 ; // Fill remaining positions for ( int i= 2 ; i<n; i++) { max_val = Math.max(hval[i]+value1, value2); value1 = value2; value2 = max_val; } return max_val; } // driver program public static void main (String[] args) { int hval[] = { 6 , 7 , 1 , 3 , 8 , 2 , 4 }; int n = hval.length; System.out.println( "Maximum loot value : " + maxLoot(hval, n)); } } // Contributed by Pramod kumar
n
351.java
0.5
// Java program to illustrate // the number of ways to represent // N as sum of 1, 3 and 4. class GFG { // Function to count the // number of ways to represent // n as sum of 1, 3 and 4 static int countWays( int n) { int DP[] = new int [n + 1 ]; // base cases DP[ 0 ] = DP[ 1 ] = DP[ 2 ] = 1 ; DP[ 3 ] = 2 ; // iterate for all values from 4 to n for ( int i = 4 ; i <= n; i++) DP[i] = DP[i - 1 ] + DP[i - 3 ] + DP[i - 4 ]; return DP[n]; } // driver code public static void main(String[] args) { int n = 10 ; System.out.println(countWays(n)); } } // This code is contributed // by prerna saini.
n
352.java
0.5
// Java program to count ways to build street // under given constraints public class GFG { // function to count ways of building // a street of n rows static long countWays( int n) { long dp[][] = new long [ 2 ][n + 1 ]; // base case dp[ 0 ][ 1 ] = 1 ; dp[ 1 ][ 1 ] = 2 ; for ( int i = 2 ; i <= n; i++) { // ways of building houses in both // the spots of ith row dp[ 0 ][i] = dp[ 0 ][i - 1 ] + dp[ 1 ][i - 1 ]; // ways of building an office in one of // the two spots of ith row dp[ 1 ][i] = dp[ 0 ][i - 1 ] * 2 + dp[ 1 ][i - 1 ]; } // total ways for n rows return dp[ 0 ][n] + dp[ 1 ][n]; } // driver program for checking above function public static void main(String[] args) { int n = 5 ; System.out.print( "Total no of ways with n = " + n + " are: " + countWays(n)); } } /*This code is contributed by PrinciRaj1992*/
n
353.java
0.5
// Java implementation to count number // of ways to tile a floor of size // n x m using 1 x m tiles import java.io.*; class GFG { // function to count the total number of ways static int countWays( int n, int m) { // table to store values // of subproblems int count[] = new int [n + 1 ]; count[ 0 ] = 0 ; // Fill the table upto value n int i; for (i = 1 ; i <= n; i++) { // recurrence relation if (i > m) count[i] = count[i - 1 ] + count[i - m]; // base cases else if (i < m) count[i] = 1 ; // i = = m else count[i] = 2 ; } // required number of ways return count[n]; } // Driver program public static void main(String[] args) { int n = 7 ; int m = 4 ; System.out.println( "Number of ways = " + countWays(n, m)); } } // This code is contributed by vt_m.
n
354.java
0.5
// Java program to count of ways to place 1 x 4 tiles // on n x 4 grid import java.io.*; class Grid { // Function that count the number of ways to place 1 x 4 tiles // on n x 4 grid. static int count( int n) { // Create a table to store results of sub-problems // dp[i] stores count of ways for i x 4 grid. int [] dp = new int [n+ 1 ]; dp[ 0 ] = 0 ; // Fill the table from d[1] to dp[n] for ( int i= 1 ;i<=n;i++) { // Base cases if (i >= 1 && i <= 3 ) dp[i] = 1 ; else if (i== 4 ) dp[i] = 2 ; else { // dp(i-1) : Place first tile horizontally // dp(i-4) : Place first tile vertically // which means 3 more tiles have // to be placed vertically. dp[i] = dp[i- 1 ] + dp[i- 4 ]; } } return dp[n]; } // Driver program public static void main (String[] args) { int n = 5 ; System.out.println( "Count of ways is: " + count(n)); } } // Contributed by Pramod Kumar
n
355.java
0.5
// Java program for counting n digit numbers with // non decreasing digits import java.io.*; class GFG { // Function that returns count of non- decreasing numbers // with n digits static int nonDecNums( int n) { // a[i][j] = count of all possible number // with i digits having leading digit as j int [][] a = new int [n + 1 ][ 10 ]; // Initialization of all 0-digit number for ( int i = 0 ; i <= 9 ; i++) a[ 0 ][i] = 1 ; // Initialization of all i-digit // non-decreasing number leading with 9 for ( int i = 1 ; i <= n; i++) a[i][ 9 ] = 1 ; // for all digits we should calculate // number of ways depending upon leading // digits for ( int i = 1 ; i <= n; i++) for ( int j = 8 ; j >= 0 ; j--) a[i][j] = a[i - 1 ][j] + a[i][j + 1 ]; return a[n][ 0 ]; } // driver program public static void main(String[] args) { int n = 2 ; System.out.println( "Non-decreasing digits = " + nonDecNums(n)); } } // Contributed by Pramod Kumar
n
356.java
0.5
// Java program to find maximum revenue // by placing billboard on the highway // with given constarints. class GFG { static int maxRevenue( int m, int [] x, int [] revenue, int n, int t) { // Array to store maximum revenue // at each miles. int [] maxRev = new int [m + 1 ]; for ( int i = 0 ; i < m + 1 ; i++) maxRev[i] = 0 ; // actual minimum distance between // 2 billboards. int nxtbb = 0 ; for ( int i = 1 ; i <= m; i++) { // check if all billboards are // already placed. if (nxtbb < n) { // check if we have billboard for // that particular mile. If not, // copy the previous maximum revenue. if (x[nxtbb] != i) maxRev[i] = maxRev[i - 1 ]; // we do have billboard for this mile. else { // We have 2 options, we either take // current or we ignore current billboard. // If current position is less than or // equal to t, then we can have only // one billboard. if (i <= t) maxRev[i] = Math.max(maxRev[i - 1 ], revenue[nxtbb]); // Else we may have to remove // previously placed billboard else maxRev[i] = Math.max(maxRev[i - t - 1 ] + revenue[nxtbb], maxRev[i - 1 ]); nxtbb++; } } else maxRev[i] = maxRev[i - 1 ]; } return maxRev[m]; } // Driver Code public static void main(String []args) { int m = 20 ; int [] x = new int []{ 6 , 7 , 12 , 13 , 14 }; int [] revenue = new int []{ 5 , 6 , 5 , 3 , 1 }; int n = x.length; int t = 5 ; System.out.println(maxRevenue(m, x, revenue, n, t)); } } // This code is contributed by Ita_c.
n
358.java
0.5
// Java program to rearrange an // array in minimum maximum form public class Main { // Prints max at first position, min at second // position second max at third position, second // min at fourth position and so on. public static void rearrange( int arr[], int n) { // initialize index of first minimum and first // maximum element int max_ele = arr[n - 1 ]; int min_ele = arr[ 0 ]; // traverse array elements for ( int i = 0 ; i < n; i++) { // at even index : we have to put maximum element if (i % 2 == 0 ) { arr[i] = max_ele; max_ele -= 1 ; } // at odd index : we have to put minimum element else { arr[i] = min_ele; min_ele += 1 ; } } } // Driver code public static void main(String args[]) { int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 }; int n = arr.length; System.out.println( "Original Array" ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); rearrange(arr, n); System.out.print( "\nModified Array\n" ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } }
n
36.java
0.5
// Java program for calculating LISS // using dynamic programming public class LisTree { /* A binary tree node has data, pointer to left child and a pointer to right child */ static class node { int data, liss; node left, right; public node( int data) { this .data = data; this .liss = 0 ; } } // A memoization function returns size // of the largest independent set in // a given binary tree static int liss(node root) { if (root == null ) return 0 ; if (root.liss != 0 ) return root.liss; if (root.left == null && root.right == null ) return root.liss = 1 ; // Calculate size excluding the // current node int liss_excl = liss(root.left) + liss(root.right); // Calculate size including the // current node int liss_incl = 1 ; if (root.left != null ) { liss_incl += (liss(root.left.left) + liss(root.left.right)); } if (root.right != null ) { liss_incl += (liss(root.right.left) + liss(root.right.right)); } // Maximum of two sizes is LISS, // store it for future uses. return root.liss = Math.max(liss_excl, liss_incl); } public static void main(String[] args) { // Let us construct the tree given // in the above diagram node root = new node( 20 ); root.left = new node( 8 ); root.left.left = new node( 4 ); root.left.right = new node( 12 ); root.left.right.left = new node( 10 ); root.left.right.right = new node( 14 ); root.right = new node( 22 ); root.right.right = new node( 25 ); System.out.println( "Size of the Largest Independent Set is " + liss(root)); } } // This code is contributed by Rishabh Mahrsee
n
360.java
0.5
// A dynamic programming based Java program for partition problem import java.io.*; class Partition { // Returns true if arr[] can be partitioned in two subsets of // equal sum, otherwise false static boolean findPartition ( int arr[], int n) { int sum = 0 ; int i, j; // Caculcate sun of all elements for (i = 0 ; i < n; i++) sum += arr[i]; if (sum% 2 != 0 ) return false ; boolean part[][]= new boolean [sum/ 2 + 1 ][n+ 1 ]; // initialize top row as true for (i = 0 ; i <= n; i++) part[ 0 ][i] = true ; // initialize leftmost column, except part[0][0], as 0 for (i = 1 ; i <= sum/ 2 ; i++) part[i][ 0 ] = false ; // Fill the partition table in botton up manner for (i = 1 ; i <= sum/ 2 ; i++) { for (j = 1 ; j <= n; j++) { part[i][j] = part[i][j- 1 ]; if (i >= arr[j- 1 ]) part[i][j] = part[i][j] || part[i - arr[j- 1 ]][j- 1 ]; } } /* // uncomment this part to print table for (i = 0; i <= sum/2; i++) { for (j = 0; j <= n; j++) printf ("%4d", part[i][j]); printf("\n"); } */ return part[sum/ 2 ][n]; } /*Driver function to check for above function*/ public static void main (String[] args) { int arr[] = { 3 , 1 , 1 , 2 , 2 , 1 }; int n = arr.length; if (findPartition(arr, n) == true ) System.out.println( "Can be divided into two " "subsets of equal sum" ); else System.out.println( "Can not be divided into" " two subsets of equal sum" ); } } /* This code is contributed by Devesh Agrawal */
n
362.java
0.5
// A DP based Java program to find maximum tasks. class GFG { // Returns the maximum among the 2 numbers static int max( int x, int y) { return (x > y ? x : y); } // Returns maximum amount of task that can be // done till day n static int maxTasks( int []high, int []low, int n) { // An array task_dp that stores the maximum // task done int [] task_dp = new int [n + 1 ]; // If n = 0, no solution exists task_dp[ 0 ] = 0 ; // If n = 1, high effort task on that day will // be the solution task_dp[ 1 ] = high[ 0 ]; // Fill the entire array determining which // task to choose on day i for ( int i = 2 ; i <= n; i++) task_dp[i] = Math.max(high[i - 1 ] + task_dp[i - 2 ], low[i - 1 ] + task_dp[i - 1 ]); return task_dp[n]; } // Driver code public static void main(String[] args) { int n = 5 ; int []high = { 3 , 6 , 8 , 7 , 6 }; int []low = { 1 , 5 , 4 , 5 , 3 }; System.out.println(maxTasks(high, low, n)); } } // This code is contributed by Code_Mech.
n
365.java
0.5
// Java program to Move All -ve Element At End // Without changing order Of Array Element import java.util.Arrays; class GFG { // Moves all -ve element to end of array in // same order. static void segregateElements( int arr[], int n) { // Create an empty array to store result int temp[] = new int [n]; // Traversal array and store +ve element in // temp array int j = 0 ; // index of temp for ( int i = 0 ; i < n; i++) if (arr[i] >= 0 ) temp[j++] = arr[i]; // If array contains all positive or all // negative. if (j == n || j == 0 ) return ; // Store -ve element in temp array for ( int i = 0 ; i < n; i++) if (arr[i] < 0 ) temp[j++] = arr[i]; // Copy contents of temp[] to arr[] for ( int i = 0 ; i < n; i++) arr[i] = temp[i]; } // Driver code public static void main(String arg[]) { int arr[] = { 1 , - 1 , - 3 , - 2 , 7 , 5 , 11 , 6 }; int n = arr.length; segregateElements(arr, n); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } } // This code is contributed by Anant Agarwal.
n
37.java
0.5
// Java program for different tree traversals /* Class containing left and right child of current node and key value*/ class Node { int key; Node left, right; public Node( int item) { key = item; left = right = null ; } } class BinaryTree { // Root of Binary Tree Node root; BinaryTree() { root = null ; } /* Given a binary tree, print its nodes according to the "bottom-up" postorder traversal. */ void printPostorder(Node node) { if (node == null ) return ; // first recur on left subtree printPostorder(node.left); // then recur on right subtree printPostorder(node.right); // now deal with the node System.out.print(node.key + " " ); } /* Given a binary tree, print its nodes in inorder*/ void printInorder(Node node) { if (node == null ) return ; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ System.out.print(node.key + " " ); /* now recur on right child */ printInorder(node.right); } /* Given a binary tree, print its nodes in preorder*/ void printPreorder(Node node) { if (node == null ) return ; /* first print data of node */ System.out.print(node.key + " " ); /* then recur on left sutree */ printPreorder(node.left); /* now recur on right subtree */ printPreorder(node.right); } // Wrappers over above recursive functions void printPostorder() { printPostorder(root); } void printInorder() { printInorder(root); } void printPreorder() { printPreorder(root); } // Driver method public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); System.out.println( "Preorder traversal of binary tree is " ); tree.printPreorder(); System.out.println( "\nInorder traversal of binary tree is " ); tree.printInorder(); System.out.println( "\nPostorder traversal of binary tree is " ); tree.printPostorder(); } }
n
374.java
0.5
// Java program for finding postorder // traversal of BST from preorder traversal import java.util.* ; class Solution { static class INT { int data; INT( int d) { data=d; } } // Function to find postorder traversal from // preorder traversal. static void findPostOrderUtil( int pre[], int n, int minval, int maxval, INT preIndex) { // If entire preorder array is traversed then // return as no more element is left to be // added to post order array. if (preIndex.data == n) return ; // If array element does not lie in range specified, // then it is not part of current subtree. if (pre[preIndex.data] < minval || pre[preIndex.data] > maxval) { return ; } // Store current value, to be printed later, after // printing left and right subtrees. Increment // preIndex to find left and right subtrees, // and pass this updated value to recursive calls. int val = pre[preIndex.data]; preIndex.data++; // All elements with value between minval and val // lie in left subtree. findPostOrderUtil(pre, n, minval, val, preIndex); // All elements with value between val and maxval // lie in right subtree. findPostOrderUtil(pre, n, val, maxval, preIndex); System.out.print( val + " " ); } // Function to find postorder traversal. static void findPostOrder( int pre[], int n) { // To store index of element to be // traversed next in preorder array. // This is passed by reference to // utility function. INT preIndex = new INT( 0 ); findPostOrderUtil(pre, n, Integer.MIN_VALUE, Integer.MAX_VALUE, preIndex); } // Driver code public static void main(String args[]) { int pre[] = { 40 , 30 , 35 , 80 , 100 }; int n = pre.length; // Calling function findPostOrder(pre, n); } } // This code is contributed // by Arnab Kundu
n
377.java
0.5
// Java implementation to replace each node // in binary tree with the sum of its inorder // predecessor and successor import java.util.*; class Solution { // node of a binary tree static class Node { int data; Node left, right; } //INT class static class INT { int data; } // function to get a new node of a binary tree static Node getNode( int data) { // allocate node Node new_node = new Node(); // put in the data; new_node.data = data; new_node.left = new_node.right = null ; return new_node; } // function to store the inorder traversal // of the binary tree in 'arr' static void storeInorderTraversal( Node root, Vector<Integer> arr) { // if root is null if (root== null ) return ; // first recur on left child storeInorderTraversal(root.left, arr); // then store the root's data in 'arr' arr.add(root.data); // now recur on right child storeInorderTraversal(root.right, arr); } // function to replace each node with the sum of its // inorder predecessor and successor static void replaceNodeWithSum( Node root, Vector<Integer> arr, INT i) { // if root is null if (root== null ) return ; // first recur on left child replaceNodeWithSum(root.left, arr, i); // replace node's data with the sum of its // inorder predecessor and successor root.data = arr.get(i.data - 1 ) + arr.get(i.data + 1 ); // move 'i' to point to the next 'arr' element i.data++; // now recur on right child replaceNodeWithSum(root.right, arr, i); } // Utility function to replace each node in binary // tree with the sum of its inorder predecessor // and successor static void replaceNodeWithSumUtil( Node root) { // if tree is empty if (root== null ) return ; Vector<Integer> arr= new Vector<Integer>(); // store the value of inorder predecessor // for the leftmost leaf arr.add( 0 ); // store the inoder traversal of the tree in 'arr' storeInorderTraversal(root, arr); // store the value of inorder successor // for the rightmost leaf arr.add( 0 ); // replace each node with the required sum INT i = new INT(); i.data= 1 ; replaceNodeWithSum(root, arr, i); } // function to print the preorder traversal // of a binary tree static void preorderTraversal( Node root) { // if root is null if (root== null ) return ; // first print the data of node System.out.print( root.data + " " ); // then recur on left subtree preorderTraversal(root.left); // now recur on right subtree preorderTraversal(root.right); } // Driver program to test above public static void main(String args[]) { // binary tree formation Node root = getNode( 1 ); // 1 root.left = getNode( 2 ); // / \ root.right = getNode( 3 ); // 2 3 root.left.left = getNode( 4 ); // / \ / \ root.left.right = getNode( 5 ); // 4 5 6 7 root.right.left = getNode( 6 ); root.right.right = getNode( 7 ); System.out.println( "Preorder Traversal before tree modification:" ); preorderTraversal(root); replaceNodeWithSumUtil(root); System.out.println( "\nPreorder Traversal after tree modification:" ); preorderTraversal(root); } } //contributed by Arnab Kundu
n
378.java
0.5
// Java code to rearrange an array such // that even index elements are smaller // and odd index elements are greater // than their next. class GFG { static void rearrange( int arr[], int n) { int temp; for ( int i = 0 ; i < n - 1 ; i++) { if (i % 2 == 0 && arr[i] > arr[i + 1 ]) { temp = arr[i]; arr[i] = arr[i + 1 ]; arr[i + 1 ] = temp; } if (i % 2 != 0 && arr[i] < arr[i + 1 ]) { temp = arr[i]; arr[i] = arr[i + 1 ]; arr[i + 1 ] = temp; } } } /* Utility that prints out an array in a line */ static void printArray( int arr[], int size) { for ( int i = 0 ; i < size; i++) System.out.print(arr[i] + " " ); System.out.println(); } // Driver code public static void main(String[] args) { int arr[] = { 6 , 4 , 2 , 1 , 8 , 3 }; int n = arr.length; System.out.print( "Before rearranging: \n" ); printArray(arr, n); rearrange(arr, n); System.out.print( "After rearranging: \n" ); printArray(arr, n); } } // This code is contributed by Anant Agarwal.
n
38.java
0.5
// Java program to find inorder successor of a node class Solution { // A Binary Tree Node static class Node { int data; Node left, right; } // Temporary node for case 2 static Node temp = new Node(); // Utility function to create a new tree node static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // function to find left most node in a tree static Node leftMostNode(Node node) { while (node != null && node.left != null ) node = node.left; return node; } // function to find right most node in a tree static Node rightMostNode(Node node) { while (node != null && node.right != null ) node = node.right; return node; } // recursive function to find the Inorder Scuccessor // when the right child of node x is null static Node findInorderRecursive(Node root, Node x ) { if (root== null ) return null ; if (root==x || (temp = findInorderRecursive(root.left,x))!= null || (temp = findInorderRecursive(root.right,x))!= null ) { if (temp!= null ) { if (root.left == temp) { System.out.print( "Inorder Successor of " +x.data); System.out.print( " is " + root.data + "\n" ); return null ; } } return root; } return null ; } // function to find inorder successor of // a node static void inorderSuccesor(Node root, Node x) { // Case1: If right child is not null if (x.right != null ) { Node inorderSucc = leftMostNode(x.right); System.out.print( "Inorder Successor of " +x.data+ " is " ); System.out.print(inorderSucc.data+ "\n" ); } // Case2: If right child is null if (x.right == null ) { int f = 0 ; Node rightMost = rightMostNode(root); // case3: If x is the right most node if (rightMost == x) System.out.print( "No inorder successor! Right most node.\n" ); else findInorderRecursive(root, x); } } // Driver program to test above functions public static void main(String args[]) { // Let's con the binary tree // as shown in above diagram Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.right = newNode( 6 ); // Case 1 inorderSuccesor(root, root.right); // case 2 inorderSuccesor(root, root.left.left); // case 3 inorderSuccesor(root, root.right.right); } } //contributed by Arnab Kundu
n
381.java
0.5
// Java program for nth nodes of inorder traversals import java.util. *; class Solution { static int count = 0 ; /* A binary tree node has data, pointer to left child and a pointer to right child */ static class Node { int data; Node left; Node right; } /* Helper function that allocates a new node with the given data and null left and right pointers. */ static Node newNode( int data) { Node node = new Node(); node.data = data; node.left = null ; node.right = null ; return (node); } /* Given a binary tree, print its nth nodes of inorder*/ static void NthInorder( Node node, int n) { if (node == null ) return ; if (count <= n) { /* first recur on left child */ NthInorder(node.left, n); count++; // when count = n then print element if (count == n) System.out.printf( "%d " , node.data); /* now recur on right child */ NthInorder(node.right, n); } } /* Driver program to test above functions*/ public static void main(String args[]) { Node root = newNode( 10 ); root.left = newNode( 20 ); root.right = newNode( 30 ); root.left.left = newNode( 40 ); root.left.right = newNode( 50 ); int n = 4 ; NthInorder(root, n); } } // This code is contributed // by Arnab Kundu
n
382.java
0.5
// Java program to find n-th node of // Postorder Traversal of Binary Tree public class NthNodePostOrder { static int flag = 0 ; // function to find the N-th node in the postorder // traversal of a given binary tree public static void NthPostordernode(Node root, int N) { if (root == null ) return ; if (flag <= N) { // left recursion NthPostordernode(root.left, N); // right recursion NthPostordernode(root.right, N); flag++; // prints the n-th node of preorder traversal if (flag == N) System.out.print(root.data); } } public static void main(String args[]) { Node root = new Node( 25 ); root.left = new Node( 20 ); root.right = new Node( 30 ); root.left.left = new Node( 18 ); root.left.right = new Node( 22 ); root.right.left = new Node( 24 ); root.right.right = new Node( 32 ); int N = 6 ; // prints n-th node found NthPostordernode(root, N); } } /* A binary tree node structure */ class Node { int data; Node left, right; Node( int data) { this .data=data; } }; // This code is contributed by Gaurav Tiwari
n
383.java
0.5
// Java implementation of an O(n) approach of level order // traversal in spiral form import java.util.*; // A Binary Tree node class Node { int data; Node left, right; public Node( int item) { data = item; left = right = null ; } } class BinaryTree { static Node root; void printSpiral(Node node) { if (node == null ) return ; // NULL check // Create two stacks to store alternate levels // For levels to be printed from right to left Stack<Node> s1 = new Stack<Node>(); // For levels to be printed from left to right Stack<Node> s2 = new Stack<Node>(); // Push first level to first stack 's1' s1.push(node); // Keep printing while any of the stacks has some nodes while (!s1.empty() || !s2.empty()) { // Print nodes of current level from s1 and push nodes of // next level to s2 while (!s1.empty()) { Node temp = s1.peek(); s1.pop(); System.out.print(temp.data + " " ); // Note that is right is pushed before left if (temp.right != null ) s2.push(temp.right); if (temp.left != null ) s2.push(temp.left); } // Print nodes of current level from s2 and push nodes of // next level to s1 while (!s2.empty()) { Node temp = s2.peek(); s2.pop(); System.out.print(temp.data + " " ); // Note that is left is pushed before right if (temp.left != null ) s1.push(temp.left); if (temp.right != null ) s1.push(temp.right); } } } public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 7 ); tree.root.left.right = new Node( 6 ); tree.root.right.left = new Node( 5 ); tree.root.right.right = new Node( 4 ); System.out.println( "Spiral Order traversal of Binary Tree is " ); tree.printSpiral(root); } } // This code has been contributed by Mayank Jaiswal(mayank_24)
n
385.java
0.5
// Java program to do level order // traversal line by line import java.util.LinkedList; import java.util.Queue; public class GFG { static class Node { int data; Node left; Node right; Node( int data) { this .data = data; left = null ; right = null ; } } // Prints level order traversal line // by line using two queues. static void levelOrder(Node root) { if (root == null ) return ; Queue<Node> q = new LinkedList<>(); // Pushing root node into the queue. q.add(root); // Pushing delimiter into the queue. q.add( null ); // Executing loop till queue becomes // empty while (!q.isEmpty()) { Node curr = q.poll(); // condition to check the // occurence of next level if (curr == null ) { if (!q.isEmpty()) { q.add( null ); System.out.println(); } } else { // Pushing left child current node if (curr.left != null ) q.add(curr.left); // Pushing right child current node if (curr.right != null ) q.add(curr.right); System.out.print(curr.data + " " ); } } } // Driver function public static void main(String[] args) { Node root = new Node( 1 ); root.left = new Node( 2 ); root.right = new Node( 3 ); root.left.left = new Node( 4 ); root.left.right = new Node( 5 ); root.right.right = new Node( 6 ); levelOrder(root); } } // This code is Contributed by Rishabh Jindal
n
386.java
0.5
// A recursive java program to print reverse level order traversal // using stack and queue import java.util.LinkedList; import java.util.Queue; import java.util.Stack; /* A binary tree node has data, pointer to left and right children */ class Node { int data; Node left, right; Node( int item) { data = item; left = right; } } class BinaryTree { Node root; /* Given a binary tree, print its nodes in reverse level order */ void reverseLevelOrder(Node node) { Stack<Node> S = new Stack(); Queue<Node> Q = new LinkedList(); Q.add(node); // Do something like normal level order traversal order.Following // are the differences with normal level order traversal // 1) Instead of printing a node, we push the node to stack // 2) Right subtree is visited before left subtree while (Q.isEmpty() == false ) { /* Dequeue node and make it root */ node = Q.peek(); Q.remove(); S.push(node); /* Enqueue right child */ if (node.right != null ) // NOTE: RIGHT CHILD IS ENQUEUED BEFORE LEFT Q.add(node.right); /* Enqueue left child */ if (node.left != null ) Q.add(node.left); } // Now pop all items from stack one by one and print them while (S.empty() == false ) { node = S.peek(); System.out.print(node.data + " " ); S.pop(); } } // Driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); // Let us create trees shown in above diagram tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); System.out.println( "Level Order traversal of binary tree is :" ); tree.reverseLevelOrder(tree.root); } } // This code has been contributed by Mayank Jaiswal
n
388.java
0.5
// Java program for special level order traversal import java.util.LinkedList; import java.util.Queue; /* Class containing left and right child of current node and key value*/ class Node { int data; Node left, right; public Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; /* Given a perfect binary tree, print its nodes in specific level order */ void printSpecificLevelOrder(Node node) { if (node == null ) return ; // Let us print root and next level first System.out.print(node.data); // Since it is perfect Binary Tree, right is not checked if (node.left != null ) System.out.print( " " + node.left.data + " " + node.right.data); // Do anything more if there are nodes at next level in // given perfect Binary Tree if (node.left.left == null ) return ; // Create a queue and enqueue left and right children of root Queue<Node> q = new LinkedList<Node>(); q.add(node.left); q.add(node.right); // We process two nodes at a time, so we need two variables // to store two front items of queue Node first = null , second = null ; // traversal loop while (!q.isEmpty()) { // Pop two items from queue first = q.peek(); q.remove(); second = q.peek(); q.remove(); // Print children of first and second in reverse order System.out.print( " " + first.left.data + " " +second.right.data); System.out.print( " " + first.right.data + " " +second.left.data); // If first and second have grandchildren, enqueue them // in reverse order if (first.left.left != null ) { q.add(first.left); q.add(second.right); q.add(first.right); q.add(second.left); } } } // Driver program to test for above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); tree.root.left.left.left = new Node( 8 ); tree.root.left.left.right = new Node( 9 ); tree.root.left.right.left = new Node( 10 ); tree.root.left.right.right = new Node( 11 ); tree.root.right.left.left = new Node( 12 ); tree.root.right.left.right = new Node( 13 ); tree.root.right.right.left = new Node( 14 ); tree.root.right.right.right = new Node( 15 ); tree.root.left.left.left.left = new Node( 16 ); tree.root.left.left.left.right = new Node( 17 ); tree.root.left.left.right.left = new Node( 18 ); tree.root.left.left.right.right = new Node( 19 ); tree.root.left.right.left.left = new Node( 20 ); tree.root.left.right.left.right = new Node( 21 ); tree.root.left.right.right.left = new Node( 22 ); tree.root.left.right.right.right = new Node( 23 ); tree.root.right.left.left.left = new Node( 24 ); tree.root.right.left.left.right = new Node( 25 ); tree.root.right.left.right.left = new Node( 26 ); tree.root.right.left.right.right = new Node( 27 ); tree.root.right.right.left.left = new Node( 28 ); tree.root.right.right.left.right = new Node( 29 ); tree.root.right.right.right.left = new Node( 30 ); tree.root.right.right.right.right = new Node( 31 ); System.out.println( "Specific Level Order traversal of binary" + "tree is " ); tree.printSpecificLevelOrder(tree.root); } } // This code has been contributed by Mayank Jaiswal
n
389.java
0.5
// Java program to update every array element with // multiplication of previous and next numbers in array import java.io.*; import java.util.*; import java.lang.Math; class Multipy { static void modify( int arr[], int n) { // Nothing to do when array size is 1 if (n <= 1 ) return ; // store current value of arr[0] and update it int prev = arr[ 0 ]; arr[ 0 ] = arr[ 0 ] * arr[ 1 ]; // Update rest of the array elements for ( int i= 1 ; i<n- 1 ; i++) { // Store current value of next interation int curr = arr[i]; // Update current value using previos value arr[i] = prev * arr[i+ 1 ]; // Update previous value prev = curr; } // Update last array element arr[n- 1 ] = prev * arr[n- 1 ]; } // Driver program to test above function public static void main(String[] args) { int arr[] = { 2 , 3 , 4 , 5 , 6 }; int n = arr.length; modify(arr, n); for ( int i= 0 ; i<n; i++) System.out.print(arr[i]+ " " ); } } /* This code is contributed by Devesh Agrawal */
n
39.java
0.5
// Java program to reverse alternate levels of perfect binary tree // A binary tree node class Node { char data; Node left, right; Node( char item) { data = item; left = right = null ; } } // class to access index value by reference class Index { int index; } class BinaryTree { Node root; Index index_obj = new Index(); // function to store alternate levels in a tree void storeAlternate(Node node, char arr[], Index index, int l) { // base case if (node == null ) { return ; } // store elements of left subtree storeAlternate(node.left, arr, index, l + 1 ); // store this node only if level is odd if (l % 2 != 0 ) { arr[index.index] = node.data; index.index++; } storeAlternate(node.right, arr, index, l + 1 ); } // Function to modify Binary Tree (All odd level nodes are // updated by taking elements from array in inorder fashion) void modifyTree(Node node, char arr[], Index index, int l) { // Base case if (node == null ) { return ; } // Update nodes in left subtree modifyTree(node.left, arr, index, l + 1 ); // Update this node only if this is an odd level node if (l % 2 != 0 ) { node.data = arr[index.index]; (index.index)++; } // Update nodes in right subtree modifyTree(node.right, arr, index, l + 1 ); } // A utility function to reverse an array from index // 0 to n-1 void reverse( char arr[], int n) { int l = 0 , r = n - 1 ; while (l < r) { char temp = arr[l]; arr[l] = arr[r]; arr[r] = temp; l++; r--; } } void reverseAlternate() { reverseAlternate(root); } // The main function to reverse alternate nodes of a binary tree void reverseAlternate(Node node) { // Create an auxiliary array to store nodes of alternate levels char [] arr = new char [ 100 ]; // First store nodes of alternate levels storeAlternate(node, arr, index_obj, 0 ); //index_obj.index = 0; // Reverse the array reverse(arr, index_obj.index); // Update tree by taking elements from array index_obj.index = 0 ; modifyTree(node, arr, index_obj, 0 ); } void printInorder() { printInorder(root); } // A utility function to print indorder traversal of a // binary tree void printInorder(Node node) { if (node == null ) { return ; } printInorder(node.left); System.out.print(node.data + " " ); printInorder(node.right); } // Driver program to test the above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 'a' ); tree.root.left = new Node( 'b' ); tree.root.right = new Node( 'c' ); tree.root.left.left = new Node( 'd' ); tree.root.left.right = new Node( 'e' ); tree.root.right.left = new Node( 'f' ); tree.root.right.right = new Node( 'g' ); tree.root.left.left.left = new Node( 'h' ); tree.root.left.left.right = new Node( 'i' ); tree.root.left.right.left = new Node( 'j' ); tree.root.left.right.right = new Node( 'k' ); tree.root.right.left.left = new Node( 'l' ); tree.root.right.left.right = new Node( 'm' ); tree.root.right.right.left = new Node( 'n' ); tree.root.right.right.right = new Node( 'o' ); System.out.println( "Inorder Traversal of given tree" ); tree.printInorder(); tree.reverseAlternate(); System.out.println( "" ); System.out.println( "" ); System.out.println( "Inorder Traversal of modified tree" ); tree.printInorder(); } } // This code has been contributed by Mayank Jaiswal
n
390.java
0.5
// Java program to reverse alternate levels of a tree class Sol { static class Node { char key; Node left, right; }; static void preorder( Node root1, Node root2, int lvl) { // Base cases if (root1 == null || root2== null ) return ; // Swap subtrees if level is even if (lvl % 2 == 0 ) { char t = root1.key; root1.key = root2.key; root2.key = t; } // Recur for left and right subtrees (Note : left of root1 // is passed and right of root2 in first call and opposite // in second call. preorder(root1.left, root2.right, lvl+ 1 ); preorder(root1.right, root2.left, lvl+ 1 ); } // This function calls preorder() for left and right children // of root static void reverseAlternate( Node root) { preorder(root.left, root.right, 0 ); } // Inorder traversal (used to print initial and // modified trees) static void printInorder( Node root) { if (root == null ) return ; printInorder(root.left); System.out.print( root.key + " " ); printInorder(root.right); } // A utility function to create a new node static Node newNode( int key) { Node temp = new Node(); temp.left = temp.right = null ; temp.key = ( char )key; return temp; } // Driver program to test above functions public static void main(String args[]) { Node root = newNode( 'a' ); root.left = newNode( 'b' ); root.right = newNode( 'c' ); root.left.left = newNode( 'd' ); root.left.right = newNode( 'e' ); root.right.left = newNode( 'f' ); root.right.right = newNode( 'g' ); root.left.left.left = newNode( 'h' ); root.left.left.right = newNode( 'i' ); root.left.right.left = newNode( 'j' ); root.left.right.right = newNode( 'k' ); root.right.left.left = newNode( 'l' ); root.right.left.right = newNode( 'm' ); root.right.right.left = newNode( 'n' ); root.right.right.right = newNode( 'o' ); System.out.print( "Inorder Traversal of given tree\n" ); printInorder(root); reverseAlternate(root); System.out.print( "\n\nInorder Traversal of modified tree\n" ); printInorder(root); } } // This code is contributed by Arnab Kundu
n
391.java
0.5
// A java program for iterative postorder traversal using stack import java.util.ArrayList; import java.util.Stack; // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right; } } class BinaryTree { Node root; ArrayList<Integer> list = new ArrayList<Integer>(); // An iterative function to do postorder traversal // of a given binary tree ArrayList<Integer> postOrderIterative(Node node) { Stack<Node> S = new Stack<Node>(); // Check for empty tree if (node == null ) return list; S.push(node); Node prev = null ; while (!S.isEmpty()) { Node current = S.peek(); /* go down the tree in search of a leaf an if so process it and pop stack otherwise move down */ if (prev == null || prev.left == current || prev.right == current) { if (current.left != null ) S.push(current.left); else if (current.right != null ) S.push(current.right); else { S.pop(); list.add(current.data); } /* go up the tree from left node, if the child is right push it onto stack otherwise process parent and pop stack */ } else if (current.left == prev) { if (current.right != null ) S.push(current.right); else { S.pop(); list.add(current.data); } /* go up the tree from right node and after coming back from right node process parent and pop stack */ } else if (current.right == prev) { S.pop(); list.add(current.data); } prev = current; } return list; } // Driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); // Let us create trees shown in above diagram tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); ArrayList<Integer> mylist = tree.postOrderIterative(tree.root); System.out.println( "Post order traversal of binary tree is :" ); System.out.println(mylist); } } // This code has been contributed by Mayank Jaiswal
n
393.java
0.5
// Java program to print boundary traversal of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; // A simple function to print leaf nodes of a binary tree void printLeaves(Node node) { if (node != null ) { printLeaves(node.left); // Print it if it is a leaf node if (node.left == null && node.right == null ) System.out.print(node.data + " " ); printLeaves(node.right); } } // A function to print all left boundary nodes, except a leaf node. // Print the nodes in TOP DOWN manner void printBoundaryLeft(Node node) { if (node != null ) { if (node.left != null ) { // to ensure top down order, print the node // before calling itself for left subtree System.out.print(node.data + " " ); printBoundaryLeft(node.left); } else if (node.right != null ) { System.out.print(node.data + " " ); printBoundaryLeft(node.right); } // do nothing if it is a leaf node, this way we avoid // duplicates in output } } // A function to print all right boundary nodes, except a leaf node // Print the nodes in BOTTOM UP manner void printBoundaryRight(Node node) { if (node != null ) { if (node.right != null ) { // to ensure bottom up order, first call for right // subtree, then print this node printBoundaryRight(node.right); System.out.print(node.data + " " ); } else if (node.left != null ) { printBoundaryRight(node.left); System.out.print(node.data + " " ); } // do nothing if it is a leaf node, this way we avoid // duplicates in output } } // A function to do boundary traversal of a given binary tree void printBoundary(Node node) { if (node != null ) { System.out.print(node.data + " " ); // Print the left boundary in top-down manner. printBoundaryLeft(node.left); // Print all leaf nodes printLeaves(node.left); printLeaves(node.right); // Print the right boundary in bottom-up manner printBoundaryRight(node.right); } } // Driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 20 ); tree.root.left = new Node( 8 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 12 ); tree.root.left.right.left = new Node( 10 ); tree.root.left.right.right = new Node( 14 ); tree.root.right = new Node( 22 ); tree.root.right.right = new Node( 25 ); tree.printBoundary(tree.root); } }
n
394.java
0.5
// Java program to create complete Binary Tree from its Linked List // representation // importing necessary classes import java.util.*; // A linked list node class ListNode { int data; ListNode next; ListNode( int d) { data = d; next = null ; } } // A binary tree node class BinaryTreeNode { int data; BinaryTreeNode left, right = null ; BinaryTreeNode( int data) { this .data = data; left = right = null ; } } class BinaryTree { ListNode head; BinaryTreeNode root; // Function to insert a node at the beginning of // the Linked List void push( int new_data) { // allocate node and assign data ListNode new_node = new ListNode(new_data); // link the old list off the new node new_node.next = head; // move the head to point to the new node head = new_node; } // converts a given linked list representing a // complete binary tree into the linked // representation of binary tree. BinaryTreeNode convertList2Binary(BinaryTreeNode node) { // queue to store the parent nodes Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); // Base Case if (head == null ) { node = null ; return null ; } // 1.) The first node is always the root node, and // add it to the queue node = new BinaryTreeNode(head.data); q.add(node); // advance the pointer to the next node head = head.next; // until the end of linked list is reached, do the // following steps while (head != null ) { // 2.a) take the parent node from the q and // remove it from q BinaryTreeNode parent = q.peek(); BinaryTreeNode pp = q.poll(); // 2.c) take next two nodes from the linked list. // We will add them as children of the current // parent node in step 2.b. Push them into the // queue so that they will be parents to the // future nodes BinaryTreeNode leftChild = null , rightChild = null ; leftChild = new BinaryTreeNode(head.data); q.add(leftChild); head = head.next; if (head != null ) { rightChild = new BinaryTreeNode(head.data); q.add(rightChild); head = head.next; } // 2.b) assign the left and right children of // parent parent.left = leftChild; parent.right = rightChild; } return node; } // Utility function to traverse the binary tree // after conversion void inorderTraversal(BinaryTreeNode node) { if (node != null ) { inorderTraversal(node.left); System.out.print(node.data + " " ); inorderTraversal(node.right); } } // Driver program to test above functions public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.push( 36 ); /* Last node of Linked List */ tree.push( 30 ); tree.push( 25 ); tree.push( 15 ); tree.push( 12 ); tree.push( 10 ); /* First node of Linked List */ BinaryTreeNode node = tree.convertList2Binary(tree.root); System.out.println( "Inorder Traversal of the" + " constructed Binary Tree is:" ); tree.inorderTraversal(node); } } // This code has been contributed by Mayank Jaiswal
n
398.java
0.5
// Java program to construct binary tree from // given array in level order fashion public class Tree { Node root; // Tree Node static class Node { int data; Node left, right; Node( int data) { this .data = data; this .left = null ; this .right = null ; } } // Function to insert nodes in level order public Node insertLevelOrder( int [] arr, Node root, int i) { // Base case for recursion if (i < arr.length) { Node temp = new Node(arr[i]); root = temp; // insert left child root.left = insertLevelOrder(arr, root.left, 2 * i + 1 ); // insert right child root.right = insertLevelOrder(arr, root.right, 2 * i + 2 ); } return root; } // Function to print tree nodes in InOrder fashion public void inOrder(Node root) { if (root != null ) { inOrder(root.left); System.out.print(root.data + " " ); inOrder(root.right); } } // Driver program to test above function public static void main(String args[]) { Tree t2 = new Tree(); int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 , 6 , 6 , 6 }; t2.root = t2.insertLevelOrder(arr, t2.root, 0 ); t2.inOrder(t2.root); } }
n
399.java
0.5
// Java program to find a pair with a given // sum in a sorted and rotated array class PairInSortedRotated { // This function returns true if arr[0..n-1] // has a pair with sum equals to x. static boolean pairInSortedRotated( int arr[], int n, int x) { // Find the pivot element int i; for (i = 0 ; i < n - 1 ; i++) if (arr[i] > arr[i+ 1 ]) break ; int l = (i + 1 ) % n; // l is now index of // smallest element int r = i; // r is now index of largest //element // Keep moving either l or r till they meet while (l != r) { // If we find a pair with sum x, we // return true if (arr[l] + arr[r] == x) return true ; // If current pair sum is less, move // to the higher sum if (arr[l] + arr[r] < x) l = (l + 1 ) % n; else // Move to the lower sum side r = (n + r - 1 ) % n; } return false ; } /* Driver program to test above function */ public static void main (String[] args) { int arr[] = { 11 , 15 , 6 , 8 , 9 , 10 }; int sum = 16 ; int n = arr.length; if (pairInSortedRotated(arr, n, sum)) System.out.print( "Array has two elements" + " with sum 16" ); else System.out.print( "Array doesn't have two" + " elements with sum 16 " ); } } /*This code is contributed by Prakriti Gupta*/
n
4.java
0.5
// Java program to construct a binary tree from preorder traversal // A Binary Tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class Index { int index = 0 ; } class BinaryTree { Node root; Index myindex = new Index(); /* A recursive function to create a Binary Tree from given pre[] preLN[] arrays. The function returns root of tree. index_ptr is used to update index values in recursive calls. index must be initially passed as 0 */ Node constructTreeUtil( int pre[], char preLN[], Index index_ptr, int n, Node temp) { // store the current value of index in pre[] int index = index_ptr.index; // Base Case: All nodes are constructed if (index == n) return null ; // Allocate memory for this node and increment index for // subsequent recursive calls temp = new Node(pre[index]); (index_ptr.index)++; // If this is an internal node, construct left and right subtrees // and link the subtrees if (preLN[index] == 'N' ) { temp.left = constructTreeUtil(pre, preLN, index_ptr, n, temp.left); temp.right = constructTreeUtil(pre, preLN, index_ptr, n, temp.right); } return temp; } // A wrapper over constructTreeUtil() Node constructTree( int pre[], char preLN[], int n, Node node) { // Initialize index as 0. Value of index is used in recursion to // maintain the current index in pre[] and preLN[] arrays. int index = 0 ; return constructTreeUtil(pre, preLN, myindex, n, node); } /* This function is used only for testing */ void printInorder(Node node) { if (node == null ) return ; /* first recur on left child */ printInorder(node.left); /* then print the data of node */ System.out.print(node.data + " " ); /* now recur on right child */ printInorder(node.right); } // driver function to test the above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); int pre[] = new int []{ 10 , 30 , 20 , 5 , 15 }; char preLN[] = new char []{ 'N' , 'N' , 'L' , 'L' , 'L' }; int n = pre.length; // construct the above tree Node mynode = tree.constructTree(pre, preLN, n, tree.root); // Test the constructed tree System.out.println( "Following is Inorder Traversal of the" + "Constructed Binary Tree: " ); tree.printInorder(mynode); } } // This code has been contributed by Mayank Jaiswal
n
400.java
0.5
// Java program to convert BTT to DLL using // simple inorder traversal public class BinaryTreeToDLL { static class node { int data; node left, right; public node( int data) { this .data = data; } } static node prev; // Changes left pointers to work as previous // pointers in converted DLL The function // simply does inorder traversal of Binary // Tree and updates left pointer using // previously visited node static void fixPrevptr(node root) { if (root == null ) return ; fixPrevptr(root.left); root.left = prev; prev = root; fixPrevptr(root.right); } // Changes right pointers to work // as next pointers in converted DLL static node fixNextptr(node root) { // Find the right most node in // BT or last node in DLL while (root.right != null ) root = root.right; // Start from the rightmost node, traverse // back using left pointers. While traversing, // change right pointer of nodes while (root != null && root.left != null ) { node left = root.left; left.right = root; root = root.left; } // The leftmost node is head of linked list, return it return root; } static node BTTtoDLL(node root) { prev = null ; // Set the previous pointer fixPrevptr(root); // Set the next pointer and return head of DLL return fixNextptr(root); } // Traverses the DLL from left tor right static void printlist(node root) { while (root != null ) { System.out.print(root.data + " " ); root = root.right; } } // Standard Inorder traversal of tree static void inorder(node root) { if (root == null ) return ; inorder(root.left); System.out.print(root.data + " " ); inorder(root.right); } public static void main(String[] args) { // Let us create the tree shown in above diagram node root = new node( 10 ); root.left = new node( 12 ); root.right = new node( 15 ); root.left.left = new node( 25 ); root.left.right = new node( 30 ); root.right.left = new node( 36 ); System.out.println( "Inorder Tree Traversal" ); inorder(root); node head = BTTtoDLL(root); System.out.println( "\nDLL Traversal" ); printlist(head); } } // This code is contributed by Rishabh Mahrsee
n
404.java
0.5
// A Java program for in-place conversion of Binary Tree to DLL // A binary tree node has data, left pointers and right pointers class Node { int data; Node left, right; public Node( int data) { this .data = data; left = right = null ; } } class BinaryTree { Node root; // head --> Pointer to head node of created doubly linked list Node head; // Initialize previously visited node as NULL. This is // static so that the same value is accessible in all recursive // calls static Node prev = null ; // A simple recursive function to convert a given Binary tree // to Doubly Linked List // root --> Root of Binary Tree void BinaryTree2DoubleLinkedList(Node root) { // Base case if (root == null ) return ; // Recursively convert left subtree BinaryTree2DoubleLinkedList(root.left); // Now convert this node if (prev == null ) head = root; else { root.left = prev; prev.right = root; } prev = root; // Finally convert right subtree BinaryTree2DoubleLinkedList(root.right); } /* Function to print nodes in a given doubly linked list */ void printList(Node node) { while (node != null ) { System.out.print(node.data + " " ); node = node.right; } } // Driver program to test above functions public static void main(String[] args) { // Let us create the tree as shown in above diagram BinaryTree tree = new BinaryTree(); tree.root = new Node( 10 ); tree.root.left = new Node( 12 ); tree.root.right = new Node( 15 ); tree.root.left.left = new Node( 25 ); tree.root.left.right = new Node( 30 ); tree.root.right.left = new Node( 36 ); // convert to DLL tree.BinaryTree2DoubleLinkedList(tree.root); // Print the converted List tree.printList(tree.head); } } // This code has been contributed by Mayank Jaiswal(mayank_24)
n
405.java
0.5
// Java program to convert a given Binary Tree to // Doubly Linked List /* Structure for tree and Linked List */ class Node { int data; Node left, right; public Node( int data) { this .data = data; left = right = null ; } } class BinaryTree { // 'root' - root of binary tree Node root; // 'head' - reference to head node of created //double linked list Node head; // A simple recursive function to convert a given // Binary tree to Doubly Linked List void BToDLL(Node root) { // Base cases if (root == null ) return ; // Recursively convert right subtree BToDLL(root.right); // insert root into DLL root.right = head; // Change left pointer of previous head if (head != null ) (head).left = root; // Change head of Doubly linked list head = root; // Recursively convert left subtree BToDLL(root.left); } // Utility function for printing double linked list. void printList(Node head) { System.out.println( "Extracted Double Linked List is : " ); while (head != null ) { System.out.print(head.data + " " ); head = head.right; } } // Driver program to test the above functions public static void main(String[] args) { /* Constructing below tree 5 / \ 3 6 / \ \ 1 4 8 / \ / \ 0 2 7 9 */ BinaryTree tree = new BinaryTree(); tree.root = new Node( 5 ); tree.root.left = new Node( 3 ); tree.root.right = new Node( 6 ); tree.root.left.right = new Node( 4 ); tree.root.left.left = new Node( 1 ); tree.root.right.right = new Node( 8 ); tree.root.left.left.right = new Node( 2 ); tree.root.left.left.left = new Node( 0 ); tree.root.right.right.left = new Node( 7 ); tree.root.right.right.right = new Node( 9 ); tree.BToDLL(tree.root); tree.printList(tree.head); } } // This code has been contributed by Mayank Jaiswal(mayank_24)
n
406.java
0.5
/* Java program to convert left-right to down-right representation of binary tree */ class GFG { // A Binary Tree Node static class node { int key; node left, right; node( int key) { this .key = key; this .left = null ; this .right = null ; } } // An Iterative level order traversal // based function to convert left-right // to down-right representation. static void convert(node root) { // Base Case if (root == null ) return ; // Recursively convert left // an right subtrees convert(root.left); convert(root.right); // If left child is NULL, make right // child as left as it is the first child. if (root.left == null ) root.left = root.right; // If left child is NOT NULL, then make // right child as right of left child else root.left.right = root.right; // Set root's right as NULL root.right = null ; } // A utility function to traverse a // tree stored in down-right form. static void downRightTraversal(node root) { if (root != null ) { System.out.print(root.key + " " ); downRightTraversal(root.right); downRightTraversal(root.left); } } // Utility function to create // a new tree node static node newNode( int key) { node temp = new node( 0 ); temp.key = key; temp.left = null ; temp.right = null ; return temp; } // Driver Code public static void main(String[] args) { // Let us create binary tree // shown in above diagram /* 1 / \ 2 3 / \ 4 5 / / \ 6 7 8 */ node root = new node( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.right.left = newNode( 4 ); root.right.right = newNode( 5 ); root.right.left.left = newNode( 6 ); root.right.right.left = newNode( 7 ); root.right.right.right = newNode( 8 ); convert(root); System.out.println( "Traversal of the tree " + "converted to down-right form" ); downRightTraversal(root); } } // This code is contributed // by Prerna Saini
n
408.java
0.5
// Java program to convert a tree into its sum tree // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; // Convert a given tree to a tree where every node contains sum of // values of nodes in left and right subtrees in the original tree int toSumTree(Node node) { // Base case if (node == null ) return 0 ; // Store the old value int old_val = node.data; // Recursively call for left and right subtrees and store the sum // as new value of this node node.data = toSumTree(node.left) + toSumTree(node.right); // Return the sum of values of nodes in left and right subtrees // and old_value of this node return node.data + old_val; } // A utility function to print inorder traversal of a Binary Tree void printInorder(Node node) { if (node == null ) return ; printInorder(node.left); System.out.print(node.data + " " ); printInorder(node.right); } /* Driver function to test above functions */ public static void main(String args[]) { BinaryTree tree = new BinaryTree(); /* Constructing tree given in the above figure */ tree.root = new Node( 10 ); tree.root.left = new Node(- 2 ); tree.root.right = new Node( 6 ); tree.root.left.left = new Node( 8 ); tree.root.left.right = new Node(- 4 ); tree.root.right.left = new Node( 7 ); tree.root.right.right = new Node( 5 ); tree.toSumTree(tree.root); // Print inorder traversal of the converted tree to test result // of toSumTree() System.out.println( "Inorder Traversal of the resultant tree is:" ); tree.printInorder(tree.root); } } // This code has been contributed by Mayank Jaiswal
n
409.java
0.5
// Java program to store sum of nodes in left subtree in every // node class GfG { // A tree node static class node { int data; node left, right; } // Function to modify a Binary Tree so that every node // stores sum of values in its left child including its // own value static int updatetree(node root) { // Base cases if (root == null ) return 0 ; if (root.left == null && root.right == null ) return root.data; // Update left and right subtrees int leftsum = updatetree(root.left); int rightsum = updatetree(root.right); // Add leftsum to current node root.data += leftsum; // Return sum of values under root return root.data + rightsum; } // Utility function to do inorder traversal static void inorder(node node) { if (node == null ) return ; inorder(node.left); System.out.print(node.data + " " ); inorder(node.right); } // Utility function to create a new node static node newNode( int data) { node node = new node(); node.data = data; node.left = null ; node.right = null ; return (node); } // Driver program public static void main(String[] args) { /* Let us construct below tree 1 / \ 2 3 / \ \ 4 5 6 */ node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.left = newNode( 4 ); root.left.right = newNode( 5 ); root.right.right = newNode( 6 ); updatetree(root); System.out.println( "Inorder traversal of the modified tree is" ); inorder(root); } }
n
410.java
0.5
// Java program to find maximum number to be removed // to convert a tree into forest containg trees of // even number of nodes import java.util.*; class GFG { static int N = 12 ,ans; static Vector<Vector<Integer>> tree= new Vector<Vector<Integer>>(); // Return the number of nodes of subtree having // node as a root. static int dfs( int visit[], int node) { int num = 0 , temp = 0 ; // Mark node as visited. visit[node] = 1 ; // Traverse the adjacency list to find non- // visited node. for ( int i = 0 ; i < tree.get(node).size(); i++) { if (visit[tree.get(node).get(i)] == 0 ) { // Finding number of nodes of the subtree // of a subtree. temp = dfs( visit, tree.get(node).get(i)); // If nodes are even, increment number of // edges to removed. // Else leave the node as child of subtree. if (temp% 2 != 0 ) num += temp; else ans++; } } return num+ 1 ; } // Return the maxium number of edge to remove // to make forest. static int minEdge( int n) { int visit[] = new int [n+ 2 ]; ans = 0 ; dfs( visit, 1 ); return ans; } // Driven Program public static void main(String args[]) { int n = 10 ; //set the size of vector for ( int i = 0 ; i < n + 2 ;i++) tree.add( new Vector<Integer>()); tree.get( 1 ).add( 3 ); tree.get( 3 ).add( 1 ); tree.get( 1 ).add( 6 ); tree.get( 6 ).add( 1 ); tree.get( 1 ).add( 2 ); tree.get( 2 ).add( 1 ); tree.get( 3 ).add( 4 ); tree.get( 4 ).add( 3 ); tree.get( 6 ).add( 8 ); tree.get( 8 ).add( 6 ); tree.get( 2 ).add( 7 ); tree.get( 7 ).add( 2 ); tree.get( 2 ).add( 5 ); tree.get( 5 ).add( 2 ); tree.get( 4 ).add( 9 ); tree.get( 9 ).add( 4 ); tree.get( 4 ).add( 10 ); tree.get( 10 ).add( 4 ); System.out.println( minEdge( n)); } } // This code is contributed by Arnab Kundu
n
411.java
0.5
// Java program to covert a ternary // expreesion to a tree. import java.util.Queue; import java.util.LinkedList; // Class to represent Tree node class Node { char data; Node left, right; public Node( char item) { data = item; left = null ; right = null ; } } // Class to covert a ternary expression to a Tree class BinaryTree { // Function to convert Ternary Expression to a Binary // Tree. It return the root of tree Node convertExpression( char [] expression, int i) { // Base case if (i >= expression.length) return null ; // store current character of expression_string // [ 'a' to 'z'] Node root = new Node(expression[i]); // Move ahead in str ++i; // if current character of ternary expression is '?' // then we add next character as a left child of // current node if (i < expression.length && expression[i]== '?' ) root.left = convertExpression(expression, i+ 1 ); // else we have to add it as a right child of // current node expression.at(0) == ':' else if (i < expression.length) root.right = convertExpression(expression, i+ 1 ); return root; } // function print tree public void printTree( Node root) { if (root == null ) return ; System.out.print(root.data + " " ); printTree(root.left); printTree(root.right); } // Driver program to test above function public static void main(String args[]) { String exp = "a?b?c:d:e" ; BinaryTree tree = new BinaryTree(); char [] expression=exp.toCharArray(); Node root = tree.convertExpression(expression, 0 ); tree.printTree(root) ; } } /* This code is contributed by Mr. Somesh Awasthi */
n
412.java
0.5
/* Java program to flip a binary tree */ import java.util.Queue; import java.util.LinkedList; public class FlipTree { // method to flip the binary tree public static Node flipBinaryTree(Node root) { if (root == null ) return root; if (root.left == null && root.right == null ) return root; // recursively call the same method Node flippedRoot=flipBinaryTree(root.left); // rearranging main root Node after returning // from recursive call root.left.left=root.right; root.left.right=root; root.left=root.right= null ; return flippedRoot; } // Iterative method to do level order traversal // line by line public static void printLevelOrder(Node root) { // Base Case if (root== null ) return ; // Create an empty queue for level order traversal Queue<Node> q= new LinkedList<>(); // Enqueue Root and initialize height q.add(root); while ( true ) { // nodeCount (queue size) indicates number // of nodes at current lelvel. int nodeCount = q.size(); if (nodeCount == 0 ) break ; // Dequeue all nodes of current level and // Enqueue all nodes of next level while (nodeCount > 0 ) { Node node = q.remove(); System.out.print(node.data+ " " ); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); nodeCount--; } System.out.println(); } } public static void main(String args[]) { Node root= new Node( 1 ); root.left= new Node( 2 ); root.right= new Node( 1 ); root.right.left = new Node( 4 ); root.right.right = new Node( 5 ); System.out.println( "Level order traversal of given tree" ); printLevelOrder(root); root = flipBinaryTree(root); System.out.println( "Level order traversal of flipped tree" ); printLevelOrder(root); } } /* A binary tree node structure */ class Node { int data; Node left, right; Node( int data) { this .data=data; } }; //This code is contributed by Gaurav Tiwari
n
413.java
0.5
// Java program to flip a binary tree import java.util.*; class GFG { // A binary tree node static class Node { int data; Node left, right; }; // Utility function to create // a new Binary Tree Node static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // method to flip the binary tree static Node flipBinaryTree(Node root) { // Initialization of pointers Node curr = root; Node next = null ; Node temp = null ; Node prev = null ; // Iterate through all left nodes while (curr != null ) { next = curr.left; // Swapping nodes now, need // temp to keep the previous // right child // Making prev's right // as curr's left child curr.left = temp; // Storing curr's right child temp = curr.right; // Making prev as curr's // right child curr.right = prev; prev = curr; curr = next; } return prev; } // Iterative method to do // level order traversal // line by line static void printLevelOrder(Node root) { // Base Case if (root == null ) return ; // Create an empty queue for // level order traversal Queue<Node> q = new LinkedList<Node>(); // Enqueue Root and // initialize height q.add(root); while ( true ) { // nodeCount (queue size) // indicates number of nodes // at current lelvel. int nodeCount = q.size(); if (nodeCount == 0 ) break ; // Dequeue all nodes of current // level and Enqueue all nodes // of next level while (nodeCount > 0 ) { Node node = q.peek(); System.out.print(node.data + " " ); q.remove(); if (node.left != null ) q.add(node.left); if (node.right != null ) q.add(node.right); nodeCount--; } System.out.println(); } } // Driver code public static void main(String args[]) { Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.right.left = newNode( 4 ); root.right.right = newNode( 5 ); System.out.print( "Level order traversal " + "of given tree\n" ); printLevelOrder(root); root = flipBinaryTree(root); System.out.print( "\nLevel order traversal " + "of the flipped tree\n" ); printLevelOrder(root); } } // This code is contributed // by Arnab Kundu
n
414.java
0.5
// Java program to check children sum property /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { int data; Node left, right; public Node( int d) { data = d; left = right = null ; } } class BinaryTree { Node root; /* returns 1 if children sum property holds for the given node and both of its children*/ int isSumProperty(Node node) { /* left_data is left child data and right_data is for right child data*/ int left_data = 0 , right_data = 0 ; /* If node is NULL or it's a leaf node then return true */ if (node == null || (node.left == null && node.right == null )) return 1 ; else { /* If left child is not present then 0 is used as data of left child */ if (node.left != null ) left_data = node.left.data; /* If right child is not present then 0 is used as data of right child */ if (node.right != null ) right_data = node.right.data; /* if the node and both of its children satisfy the property return 1 else 0*/ if ((node.data == left_data + right_data) && (isSumProperty(node.left)!= 0 ) && isSumProperty(node.right)!= 0 ) return 1 ; else return 0 ; } } /* driver program to test the above functions */ public static void main(String[] args) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 10 ); tree.root.left = new Node( 8 ); tree.root.right = new Node( 2 ); tree.root.left.left = new Node( 3 ); tree.root.left.right = new Node( 5 ); tree.root.right.right = new Node( 2 ); if (tree.isSumProperty(tree.root) != 0 ) System.out.println( "The given tree satisfies children" + " sum property" ); else System.out.println( "The given tree does not satisfy children" + " sum property" ); } }
n
415.java
0.5
// Java program to check if Binary tree is sum tree or not /* A binary tree node has data, left child and right child */ class Node { int data; Node left, right, nextRight; Node( int item) { data = item; left = right = nextRight = null ; } } class BinaryTree { Node root; /* Utility function to check if the given node is leaf or not */ int isLeaf(Node node) { if (node == null ) return 0 ; if (node.left == null && node.right == null ) return 1 ; return 0 ; } /* returns 1 if SumTree property holds for the given tree */ int isSumTree(Node node) { int ls; // for sum of nodes in left subtree int rs; // for sum of nodes in right subtree /* If node is NULL or it's a leaf node then return true */ if (node == null || isLeaf(node) == 1 ) return 1 ; if (isSumTree(node.left) != 0 && isSumTree(node.right) != 0 ) { // Get the sum of nodes in left subtree if (node.left == null ) ls = 0 ; else if (isLeaf(node.left) != 0 ) ls = node.left.data; else ls = 2 * (node.left.data); // Get the sum of nodes in right subtree if (node.right == null ) rs = 0 ; else if (isLeaf(node.right) != 0 ) rs = node.right.data; else rs = 2 * (node.right.data); /* If root's data is equal to sum of nodes in left and right subtrees then return 1 else return 0*/ if ((node.data == rs + ls)) return 1 ; else return 0 ; } return 0 ; } /* Driver program to test above functions */ public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 26 ); tree.root.left = new Node( 10 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 6 ); tree.root.right.right = new Node( 3 ); if (tree.isSumTree(tree.root) != 0 ) System.out.println( "The given tree is a sum tree" ); else System.out.println( "The given tree is not a sum tree" ); } } // This code has been contributed by Mayank Jaiswal
n
417.java
0.5
// Java program to check if two binary tree are cousins class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class BinaryTree { Node root; // Recursive function to check if two Nodes are // siblings boolean isSibling(Node node, Node a, Node b) { // Base case if (node == null ) return false ; return ((node.left == a && node.right == b) || (node.left == b && node.right == a) || isSibling(node.left, a, b) || isSibling(node.right, a, b)); } // Recursive function to find level of Node 'ptr' in // a binary tree int level(Node node, Node ptr, int lev) { // base cases if (node == null ) return 0 ; if (node == ptr) return lev; // Return level if Node is present in left subtree int l = level(node.left, ptr, lev + 1 ); if (l != 0 ) return l; // Else search in right subtree return level(node.right, ptr, lev + 1 ); } // Returns 1 if a and b are cousins, otherwise 0 boolean isCousin(Node node, Node a, Node b) { // 1. The two Nodes should be on the same level // in the binary tree. // 2. The two Nodes should not be siblings (means // that they should not have the same parent // Node). return ((level(node, a, 1 ) == level(node, b, 1 )) && (!isSibling(node, a, b))); } //Driver program to test above functions public static void main(String args[]) { BinaryTree tree = new BinaryTree(); tree.root = new Node( 1 ); tree.root.left = new Node( 2 ); tree.root.right = new Node( 3 ); tree.root.left.left = new Node( 4 ); tree.root.left.right = new Node( 5 ); tree.root.left.right.right = new Node( 15 ); tree.root.right.left = new Node( 6 ); tree.root.right.right = new Node( 7 ); tree.root.right.left.right = new Node( 8 ); Node Node1, Node2; Node1 = tree.root.left.left; Node2 = tree.root.right.right; if (tree.isCousin(tree.root, Node1, Node2)) System.out.println( "Yes" ); else System.out.println( "No" ); } } // This code has been contributed by Mayank Jaiswal
n
418.java
0.5
// Java program to check if all leaves are at same level // A binary tree node class Node { int data; Node left, right; Node( int item) { data = item; left = right = null ; } } class Leaf { int leaflevel= 0 ; } class BinaryTree { Node root; Leaf mylevel = new Leaf(); /* Recursive function which checks whether all leaves are at same level */ boolean checkUtil(Node node, int level, Leaf leafLevel) { // Base case if (node == null ) return true ; // If a leaf node is encountered if (node.left == null && node.right == null ) { // When a leaf node is found first time if (leafLevel.leaflevel == 0 ) { // Set first found leaf's level leafLevel.leaflevel = level; return true ; } // If this is not first leaf node, compare its level with // first leaf's level return (level == leafLevel.leaflevel); } // If this node is not leaf, recursively check left and right // subtrees return checkUtil(node.left, level + 1 , leafLevel) && checkUtil(node.right, level + 1 , leafLevel); } /* The main function to check if all leafs are at same level. It mainly uses checkUtil() */ boolean check(Node node) { int level = 0 ; return checkUtil(node, level, mylevel); } public static void main(String args[]) { // Let us create the tree as shown in the example BinaryTree tree = new BinaryTree(); tree.root = new Node( 12 ); tree.root.left = new Node( 5 ); tree.root.left.left = new Node( 3 ); tree.root.left.right = new Node( 9 ); tree.root.left.left.left = new Node( 1 ); tree.root.left.right.left = new Node( 1 ); if (tree.check(tree.root)) System.out.println( "Leaves are at same level" ); else System.out.println( "Leaves are not at same level" ); } } // This code has been contributed by Mayank Jaiswal
n
419.java
0.5