content
stringlengths 219
31.2k
| complexity
stringclasses 5
values | file_name
stringlengths 6
9
| complexity_ranked
float64 0.1
0.9
|
---|---|---|---|
class
SubarraySum
{
/* Returns true if the there is a subarray of arr[] with a sum equal to
'sum' otherwise returns false. Also, prints the result */
int
subArraySum(
int
arr[],
int
n,
int
sum)
{
int
curr_sum, i, j;
// Pick a starting point
for
(i =
0
; i < n; i++)
{
curr_sum = arr[i];
// try all subarrays starting with 'i'
for
(j = i +
1
; j <= n; j++)
{
if
(curr_sum == sum)
{
int
p = j -
1
;
System.out.println(
"Sum found between indexes "
+ i
+
" and "
+ p);
return
1
;
}
if
(curr_sum > sum || j == n)
break
;
curr_sum = curr_sum + arr[j];
}
}
System.out.println(
"No subarray found"
);
return
0
;
}
public
static
void
main(String[] args)
{
SubarraySum arraysum =
new
SubarraySum();
int
arr[] = {
15
,
2
,
4
,
8
,
9
,
5
,
10
,
23
};
int
n = arr.length;
int
sum =
23
;
arraysum.subArraySum(arr, n, sum);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
133.java
| 0.9 |
// Java program to find a triplet
class
FindTriplet {
// returns true if there is triplet with sum equal
// to 'sum' present in A[]. Also, prints the triplet
boolean
find3Numbers(
int
A[],
int
arr_size,
int
sum)
{
int
l, r;
/* Sort the elements */
quickSort(A,
0
, arr_size -
1
);
/* Now fix the first element one by one and find the
other two elements */
for
(
int
i =
0
; i < arr_size -
2
; i++) {
// To find the other two elements, start two index variables
// from two corners of the array and move them toward each
// other
l = i +
1
;
// index of the first element in the remaining elements
r = arr_size -
1
;
// index of the last element
while
(l < r) {
if
(A[i] + A[l] + A[r] == sum) {
System.out.print(
"Triplet is "
+ A[i] +
", "
+ A[l] +
", "
+ A[r]);
return
true
;
}
else
if
(A[i] + A[l] + A[r] < sum)
l++;
else
// A[i] + A[l] + A[r] > sum
r--;
}
}
// If we reach here, then no triplet was found
return
false
;
}
int
partition(
int
A[],
int
si,
int
ei)
{
int
x = A[ei];
int
i = (si -
1
);
int
j;
for
(j = si; j <= ei -
1
; j++) {
if
(A[j] <= x) {
i++;
int
temp = A[i];
A[i] = A[j];
A[j] = temp;
}
}
int
temp = A[i +
1
];
A[i +
1
] = A[ei];
A[ei] = temp;
return
(i +
1
);
}
/* Implementation of Quick Sort
A[] --> Array to be sorted
si --> Starting index
ei --> Ending index
*/
void
quickSort(
int
A[],
int
si,
int
ei)
{
int
pi;
/* Partitioning index */
if
(si < ei) {
pi = partition(A, si, ei);
quickSort(A, si, pi -
1
);
quickSort(A, pi +
1
, ei);
}
}
// Driver program to test above functions
public
static
void
main(String[] args)
{
FindTriplet triplet =
new
FindTriplet();
int
A[] = {
1
,
4
,
45
,
6
,
10
,
8
};
int
sum =
22
;
int
arr_size = A.length;
triplet.find3Numbers(A, arr_size, sum);
}
}
|
n_square
|
140.java
| 0.9 |
// Java program to find triplets in a given
// array whose sum is zero
import
java.util.*;
class
GFG
{
// function to print triplets with 0 sum
static
void
findTriplets(
int
arr[],
int
n)
{
boolean
found =
false
;
for
(
int
i =
0
; i < n -
1
; i++)
{
// Find all pairs with sum equals to
// "-arr[i]"
HashSet<Integer> s =
new
HashSet<Integer>();
for
(
int
j = i +
1
; j < n; j++)
{
int
x = -(arr[i] + arr[j]);
if
(s.contains(x))
{
System.out.printf(
"%d %d %d\n"
, x, arr[i], arr[j]);
found =
true
;
}
else
{
s.add(arr[j]);
}
}
}
if
(found ==
false
)
{
System.out.printf(
" No Triplet Found\n"
);
}
}
// Driver code
public
static
void
main(String[] args)
{
int
arr[] = {
0
, -
1
,
2
, -
3
,
1
};
int
n = arr.length;
findTriplets(arr, n);
}
}
// This code contributed by Rajput-Ji
|
n_square
|
143.java
| 0.9 |
// Java program to print a given matrix in spiral form
import
java.io.*;
class
GFG {
// Function print matrix in spiral form
static
void
spiralPrint(
int
m,
int
n,
int
a[][])
{
int
i, k =
0
, l =
0
;
/* k - starting row index
m - ending row index
l - starting column index
n - ending column index
i - iterator
*/
while
(k < m && l < n) {
// Print the first row from the remaining rows
for
(i = l; i < n; ++i) {
System.out.print(a[k][i] +
" "
);
}
k++;
// Print the last column from the remaining columns
for
(i = k; i < m; ++i) {
System.out.print(a[i][n -
1
] +
" "
);
}
n--;
// Print the last row from the remaining rows */
if
(k < m) {
for
(i = n -
1
; i >= l; --i) {
System.out.print(a[m -
1
][i] +
" "
);
}
m--;
}
// Print the first column from the remaining columns */
if
(l < n) {
for
(i = m -
1
; i >= k; --i) {
System.out.print(a[i][l] +
" "
);
}
l++;
}
}
}
// driver program
public
static
void
main(String[] args)
{
int
R =
3
;
int
C =
6
;
int
a[][] = { {
1
,
2
,
3
,
4
,
5
,
6
},
{
7
,
8
,
9
,
10
,
11
,
12
},
{
13
,
14
,
15
,
16
,
17
,
18
} };
spiralPrint(R, C, a);
}
}
// Contributed by Pramod Kumar
|
n_square
|
147.java
| 0.9 |
// Java implementation to print
// the counter clock wise
// spiral traversal of matrix
import
java.io.*;
class
GFG
{
static
int
R =
4
;
static
int
C =
4
;
// function to print the
// required traversal
static
void
counterClockspiralPrint(
int
m,
int
n,
int
arr[][])
{
int
i, k =
0
, l =
0
;
/* k - starting row index
m - ending row index
l - starting column index
n - ending column index
i - iterator */
// initialize the count
int
cnt =
0
;
// total number of
// elements in matrix
int
total = m * n;
while
(k < m && l < n)
{
if
(cnt == total)
break
;
// Print the first column
// from the remaining columns
for
(i = k; i < m; ++i)
{
System.out.print(arr[i][l] +
" "
);
cnt++;
}
l++;
if
(cnt == total)
break
;
// Print the last row from
// the remaining rows
for
(i = l; i < n; ++i)
{
System.out.print(arr[m -
1
][i] +
" "
);
cnt++;
}
m--;
if
(cnt == total)
break
;
// Print the last column
// from the remaining columns
if
(k < m)
{
for
(i = m -
1
; i >= k; --i)
{
System.out.print(arr[i][n -
1
] +
" "
);
cnt++;
}
n--;
}
if
(cnt == total)
break
;
// Print the first row
// from the remaining rows
if
(l < n)
{
for
(i = n -
1
; i >= l; --i)
{
System.out.print(arr[k][i] +
" "
);
cnt++;
}
k++;
}
}
}
// Driver Code
public
static
void
main(String[] args)
{
int
arr[][] = { {
1
,
2
,
3
,
4
},
{
5
,
6
,
7
,
8
},
{
9
,
10
,
11
,
12
},
{
13
,
14
,
15
,
16
} };
// Function calling
counterClockspiralPrint(R, C, arr);
}
}
// This code is contributed by vt_m
|
n_square
|
148.java
| 0.9 |
// Java prorgam for finding max path in matrix
import
static
java.lang.Math.max;
class
GFG
{
public
static
int
N =
4
, M =
6
;
// Function to calculate max path in matrix
static
int
findMaxPath(
int
mat[][])
{
// To find max val in first row
int
res = -
1
;
for
(
int
i =
0
; i < M; i++)
res = max(res, mat[
0
][i]);
for
(
int
i =
1
; i < N; i++)
{
res = -
1
;
for
(
int
j =
0
; j < M; j++)
{
// When all paths are possible
if
(j >
0
&& j < M -
1
)
mat[i][j] += max(mat[i -
1
][j],
max(mat[i -
1
][j -
1
],
mat[i -
1
][j +
1
]));
// When diagonal right is not possible
else
if
(j >
0
)
mat[i][j] += max(mat[i -
1
][j],
mat[i -
1
][j -
1
]);
// When diagonal left is not possible
else
if
(j < M -
1
)
mat[i][j] += max(mat[i -
1
][j],
mat[i -
1
][j +
1
]);
// Store max path sum
res = max(mat[i][j], res);
}
}
return
res;
}
// driver program
public
static
void
main (String[] args)
{
int
mat[][] = { {
10
,
10
,
2
,
0
,
20
,
4
},
{
1
,
0
,
0
,
30
,
2
,
5
},
{
0
,
10
,
4
,
0
,
2
,
0
},
{
1
,
0
,
2
,
20
,
0
,
4
}
};
System.out.println(findMaxPath(mat));
}
}
// Contributed by Pramod Kumar
|
n_square
|
149.java
| 0.9 |
// Java program to remove duplicates from unsorted
// linked list
class
LinkedList {
static
Node head;
static
class
Node {
int
data;
Node next;
Node(
int
d) {
data = d;
next =
null
;
}
}
/* Function to remove duplicates from an
unsorted linked list */
void
remove_duplicates() {
Node ptr1 =
null
, ptr2 =
null
, dup =
null
;
ptr1 = head;
/* Pick elements one by one */
while
(ptr1 !=
null
&& ptr1.next !=
null
) {
ptr2 = ptr1;
/* Compare the picked element with rest
of the elements */
while
(ptr2.next !=
null
) {
/* If duplicate then delete it */
if
(ptr1.data == ptr2.next.data) {
/* sequence of steps is important here */
dup = ptr2.next;
ptr2.next = ptr2.next.next;
System.gc();
}
else
/* This is tricky */
{
ptr2 = ptr2.next;
}
}
ptr1 = ptr1.next;
}
}
void
printList(Node node) {
while
(node !=
null
) {
System.out.print(node.data +
" "
);
node = node.next;
}
}
public
static
void
main(String[] args) {
LinkedList list =
new
LinkedList();
list.head =
new
Node(
10
);
list.head.next =
new
Node(
12
);
list.head.next.next =
new
Node(
11
);
list.head.next.next.next =
new
Node(
11
);
list.head.next.next.next.next =
new
Node(
12
);
list.head.next.next.next.next.next =
new
Node(
11
);
list.head.next.next.next.next.next.next =
new
Node(
10
);
System.out.println(
"Linked List before removing duplicates : \n "
);
list.printList(head);
list.remove_duplicates();
System.out.println(
""
);
System.out.println(
"Linked List after removing duplicates : \n "
);
list.printList(head);
}
}
// This code has been contributed by Mayank Jaiswal
|
n_square
|
162.java
| 0.9 |
// Java Code to find the last man Standing
public
class
GFG {
// Node class to store data
static
class
Node
{
public
int
data ;
public
Node next;
public
Node(
int
data )
{
this
.data = data;
}
}
/* Function to find the only person left
after one in every m-th node is killed
in a circle of n nodes */
static
void
getJosephusPosition(
int
m,
int
n)
{
// Create a circular linked list of
// size N.
Node head =
new
Node(
1
);
Node prev = head;
for
(
int
i =
2
; i <= n; i++)
{
prev.next =
new
Node(i);
prev = prev.next;
}
// Connect last node to first
prev.next = head;
/* while only one node is left in the
linked list*/
Node ptr1 = head, ptr2 = head;
while
(ptr1.next != ptr1)
{
// Find m-th node
int
count =
1
;
while
(count != m)
{
ptr2 = ptr1;
ptr1 = ptr1.next;
count++;
}
/* Remove the m-th node */
ptr2.next = ptr1.next;
ptr1 = ptr2.next;
}
System.out.println (
"Last person left standing "
+
"(Josephus Position) is "
+ ptr1.data);
}
/* Driver program to test above functions */
public
static
void
main(String args[])
{
int
n =
14
, m =
2
;
getJosephusPosition(m, n);
}
}
|
n_square
|
171.java
| 0.9 |
// A Naive Java program to find
// maximum sum rotation
import
java.util.*;
import
java.io.*;
class
GFG {
// Returns maximum value of i*arr[i]
static
int
maxSum(
int
arr[],
int
n)
{
// Initialize result
int
res = Integer.MIN_VALUE;
// Consider rotation beginning with i
// for all possible values of i.
for
(
int
i =
0
; i < n; i++)
{
// Initialize sum of current rotation
int
curr_sum =
0
;
// Compute sum of all values. We don't
// actually rotation the array, but compute
// sum by finding ndexes when arr[i] is
// first element
for
(
int
j =
0
; j < n; j++)
{
int
index = (i + j) % n;
curr_sum += j * arr[index];
}
// Update result if required
res = Math.max(res, curr_sum);
}
return
res;
}
// Driver code
public
static
void
main(String args[])
{
int
arr[] = {
8
,
3
,
1
,
2
};
int
n = arr.length;
System.out.println(maxSum(arr, n));
}
}
// This code is contributed by Sahil_Bansall
|
n_square
|
18.java
| 0.9 |
// Java implementation for brute force method to calculate stock span values
import
java.util.Arrays;
class
GFG {
// method to calculate stock span values
static
void
calculateSpan(
int
price[],
int
n,
int
S[])
{
// Span value of first day is always 1
S[
0
] =
1
;
// Calculate span value of remaining days by linearly checking
// previous days
for
(
int
i =
1
; i < n; i++) {
S[i] =
1
;
// Initialize span value
// Traverse left while the next element on left is smaller
// than price[i]
for
(
int
j = i -
1
; (j >=
0
) && (price[i] >= price[j]); j--)
S[i]++;
}
}
// A utility function to print elements of array
static
void
printArray(
int
arr[])
{
System.out.print(Arrays.toString(arr));
}
// Driver program to test above functions
public
static
void
main(String[] args)
{
int
price[] = {
10
,
4
,
5
,
90
,
120
,
80
};
int
n = price.length;
int
S[] =
new
int
[n];
// Fill the span values in array S[]
calculateSpan(price, n, S);
// print the calculated span values
printArray(S);
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
186.java
| 0.9 |
// Java program to sort an
// array using stack
import
java.io.*;
import
java.util.*;
class
GFG
{
// This function return
// the sorted stack
static
Stack<Integer> sortStack(Stack<Integer> input)
{
Stack<Integer> tmpStack =
new
Stack<Integer>();
while
(!input.empty())
{
// pop out the
// first element
int
tmp = input.peek();
input.pop();
// while temporary stack is
// not empty and top of stack
// is smaller than temp
while
(!tmpStack.empty() &&
tmpStack.peek() < tmp)
{
// pop from temporary
// stack and push it
// to the input stack
input.push(tmpStack.peek());
tmpStack.pop();
}
// push temp in
// tempory of stack
tmpStack.push(tmp);
}
return
tmpStack;
}
static
void
sortArrayUsingStacks(
int
[]arr,
int
n)
{
// push array elements
// to stack
Stack<Integer> input =
new
Stack<Integer>();
for
(
int
i =
0
; i < n; i++)
input.push(arr[i]);
// Sort the temporary stack
Stack<Integer> tmpStack =
sortStack(input);
// Put stack elements
// in arrp[]
for
(
int
i =
0
; i < n; i++)
{
arr[i] = tmpStack.peek();
tmpStack.pop();
}
}
// Driver Code
public
static
void
main(String args[])
{
int
[]arr = {
10
,
5
,
15
,
45
};
int
n = arr.length;
sortArrayUsingStacks(arr, n);
for
(
int
i =
0
; i < n; i++)
System.out.print(arr[i] +
" "
);
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
|
n_square
|
199.java
| 0.9 |
// Java program to implement sorting a
// queue data structure
import
java.util.LinkedList;
import
java.util.Queue;
class
GFG
{
// Queue elements after sortIndex are
// already sorted. This function returns
// index of minimum element from front to
// sortIndex
public
static
int
minIndex(Queue<Integer> list,
int
sortIndex)
{
int
min_index = -
1
;
int
min_value = Integer.MAX_VALUE;
int
s = list.size();
for
(
int
i =
0
; i < s; i++)
{
int
current = list.peek();
// This is dequeue() in Java STL
list.poll();
// we add the condition i <= sortIndex
// because we don't want to traverse
// on the sorted part of the queue,
// which is the right part.
if
(current <= min_value && i <= sortIndex)
{
min_index = i;
min_value = current;
}
list.add(current);
}
return
min_index;
}
// Moves given minimum element
// to rear of queue
public
static
void
insertMinToRear(Queue<Integer> list,
int
min_index)
{
int
min_value =
0
;
int
s = list.size();
for
(
int
i =
0
; i < s; i++)
{
int
current = list.peek();
list.poll();
if
(i != min_index)
list.add(current);
else
min_value = current;
}
list.add(min_value);
}
public
static
void
sortQueue(Queue<Integer> list)
{
for
(
int
i =
1
; i <= list.size(); i++)
{
int
min_index = minIndex(list,list.size() - i);
insertMinToRear(list, min_index);
}
}
//Driver function
public
static
void
main (String[] args)
{
Queue<Integer> list =
new
LinkedList<Integer>();
list.add(
30
);
list.add(
11
);
list.add(
15
);
list.add(
4
);
//Sort Queue
sortQueue(list);
//print sorted Queue
while
(list.isEmpty()==
false
)
{
System.out.print(list.peek() +
" "
);
list.poll();
}
}
}
// This code is contributed by akash1295
|
n_square
|
226.java
| 0.9 |
// Java program for recursive level order traversal in spiral form
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class
Node {
int
data;
Node left, right;
public
Node(
int
d)
{
data = d;
left = right =
null
;
}
}
class
BinaryTree {
Node root;
// Function to print the spiral traversal of tree
void
printSpiral(Node node)
{
int
h = height(node);
int
i;
/* ltr -> left to right. If this variable is set then the
given label is traversed from left to right */
boolean
ltr =
false
;
for
(i =
1
; i <= h; i++) {
printGivenLevel(node, i, ltr);
/*Revert ltr to traverse next level in opposite order*/
ltr = !ltr;
}
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int
height(Node node)
{
if
(node ==
null
)
return
0
;
else
{
/* compute the height of each subtree */
int
lheight = height(node.left);
int
rheight = height(node.right);
/* use the larger one */
if
(lheight > rheight)
return
(lheight +
1
);
else
return
(rheight +
1
);
}
}
/* Print nodes at a given level */
void
printGivenLevel(Node node,
int
level,
boolean
ltr)
{
if
(node ==
null
)
return
;
if
(level ==
1
)
System.out.print(node.data +
" "
);
else
if
(level >
1
) {
if
(ltr !=
false
) {
printGivenLevel(node.left, level -
1
, ltr);
printGivenLevel(node.right, level -
1
, ltr);
}
else
{
printGivenLevel(node.right, level -
1
, ltr);
printGivenLevel(node.left, level -
1
, ltr);
}
}
}
/* Driver program to test the above functions */
public
static
void
main(String[] args)
{
BinaryTree tree =
new
BinaryTree();
tree.root =
new
Node(
1
);
tree.root.left =
new
Node(
2
);
tree.root.right =
new
Node(
3
);
tree.root.left.left =
new
Node(
7
);
tree.root.left.right =
new
Node(
6
);
tree.root.right.left =
new
Node(
5
);
tree.root.right.right =
new
Node(
4
);
System.out.println(
"Spiral order traversal of Binary Tree is "
);
tree.printSpiral(tree.root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
227.java
| 0.9 |
// Java Program to find the maximum for each and every contiguous subarray of size k.
public
class
GFG {
// Method to find the maximum for each and every contiguous subarray of size k.
static
void
printKMax(
int
arr[],
int
n,
int
k)
{
int
j, max;
for
(
int
i =
0
; i <= n - k; i++) {
max = arr[i];
for
(j =
1
; j < k; j++) {
if
(arr[i + j] > max)
max = arr[i + j];
}
System.out.print(max +
" "
);
}
}
// Driver method
public
static
void
main(String args[])
{
int
arr[] = {
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
};
int
k =
3
;
printKMax(arr, arr.length, k);
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
229.java
| 0.9 |
// Java implementation to find the first negative
// integer in every window of size k
import
java.util.*;
class
solution
{
// function to find the first negative
// integer in every window of size k
static
void
printFirstNegativeInteger(
int
arr[],
int
n,
int
k)
{
// flag to check whether window contains
// a negative integer or not
boolean
flag;
// Loop for each subarray(window) of size k
for
(
int
i =
0
; i<(n-k+
1
); i++)
{
flag =
false
;
// traverse through the current window
for
(
int
j =
0
; j<k; j++)
{
// if a negative integer is found, then
// it is the first negative integer for
// current window. Print it, set the flag
// and break
if
(arr[i+j] <
0
)
{
System.out.print((arr[i+j])+
" "
);
flag =
true
;
break
;
}
}
// if the current window does not
// contain a negative integer
if
(!flag)
System.out.print(
"0"
+
" "
);
}
}
// Driver program to test above functions
public
static
void
main(String args[])
{
int
arr[] = {
12
, -
1
, -
7
,
8
, -
15
,
30
,
16
,
28
};
int
n = arr.length;
int
k =
3
;
printFirstNegativeInteger(arr, n, k);
}
}
// This code is contributed by
// Shashank_Sharma
|
n_square
|
237.java
| 0.9 |
// A simple Java program to find max subarray XOR
class
GFG {
static
int
maxSubarrayXOR(
int
arr[],
int
n)
{
int
ans = Integer.MIN_VALUE;
// Initialize result
// Pick starting points of subarrays
for
(
int
i=
0
; i<n; i++)
{
// to store xor of current subarray
int
curr_xor =
0
;
// Pick ending points of subarrays starting with i
for
(
int
j=i; j<n; j++)
{
curr_xor = curr_xor ^ arr[j];
ans = Math.max(ans, curr_xor);
}
}
return
ans;
}
// Driver program to test above functions
public
static
void
main(String args[])
{
int
arr[] = {
8
,
1
,
2
,
12
};
int
n = arr.length;
System.out.println(
"Max subarray XOR is "
+
maxSubarrayXOR(arr, n));
}
}
//This code is contributed by Sumit Ghosh
|
n_square
|
249.java
| 0.9 |
// Java program to split array and move first
// part to end.
import
java.util.*;
import
java.lang.*;
class
GFG {
public
static
void
splitArr(
int
arr[],
int
n,
int
k)
{
for
(
int
i =
0
; i < k; i++) {
// Rotate array by 1.
int
x = arr[
0
];
for
(
int
j =
0
; j < n -
1
; ++j)
arr[j] = arr[j +
1
];
arr[n -
1
] = x;
}
}
// Driver code
public
static
void
main(String[] args)
{
int
arr[] = {
12
,
10
,
5
,
6
,
52
,
36
};
int
n = arr.length;
int
position =
2
;
splitArr(arr,
6
, position);
for
(
int
i =
0
; i < n; ++i)
System.out.print(arr[i] +
" "
);
}
}
// Code Contributed by Mohit Gupta_OMG <(0_o)>
|
n_square
|
25.java
| 0.9 |
// Java program to CountKSubStr number of substrings
// with exactly distinct characters in a given string
import
java.util.Arrays;
public
class
CountKSubStr
{
// Function to count number of substrings
// with exactly k unique characters
int
countkDist(String str,
int
k)
{
// Initialize result
int
res =
0
;
int
n = str.length();
// To store count of characters from 'a' to 'z'
int
cnt[] =
new
int
[
26
];
// Consider all substrings beginning with
// str[i]
for
(
int
i =
0
; i < n; i++)
{
int
dist_count =
0
;
// Initializing count array with 0
Arrays.fill(cnt,
0
);
// Consider all substrings between str[i..j]
for
(
int
j=i; j<n; j++)
{
// If this is a new character for this
// substring, increment dist_count.
if
(cnt[str.charAt(j) -
'a'
] ==
0
)
dist_count++;
// Increment count of current character
cnt[str.charAt(j) -
'a'
]++;
// If distinct character count becomes k,
// then increment result.
if
(dist_count == k)
res++;
}
}
return
res;
}
// Driver Program
public
static
void
main(String[] args)
{
CountKSubStr ob =
new
CountKSubStr();
String ch =
"abcbaa"
;
int
k =
3
;
System.out.println(
"Total substrings with exactly "
+
k +
" distinct characters : "
+ ob.countkDist(ch, k));
}
}
|
n_square
|
251.java
| 0.9 |
// Java program to count number of substrings
// with counts of distinct characters as k.
class
GFG
{
static
int
MAX_CHAR =
26
;
// Returns true if all values
// in freq[] are either 0 or k.
static
boolean
check(
int
freq[],
int
k)
{
for
(
int
i =
0
; i < MAX_CHAR; i++)
if
(freq[i] !=
0
&& freq[i] != k)
return
false
;
return
true
;
}
// Returns count of substrings where frequency
// of every present character is k
static
int
substrings(String s,
int
k)
{
int
res =
0
;
// Initialize result
// Pick a starting point
for
(
int
i =
0
; i< s.length(); i++)
{
// Initialize all frequencies as 0
// for this starting point
int
freq[] =
new
int
[MAX_CHAR];
// One by one pick ending points
for
(
int
j = i; j<s.length(); j++)
{
// Increment frequency of current char
int
index = s.charAt(j) -
'a'
;
freq[index]++;
// If frequency becomes more than
// k, we can't have more substrings
// starting with i
if
(freq[index] > k)
break
;
// If frequency becomes k, then check
// other frequencies as well.
else
if
(freq[index] == k &&
check(freq, k) ==
true
)
res++;
}
}
return
res;
}
// Driver code
public
static
void
main(String[] args)
{
String s =
"aabbcc"
;
int
k =
2
;
System.out.println(substrings(s, k));
s =
"aabbc"
;
k =
2
;
System.out.println(substrings(s, k));
}
}
// This code has been contributed by 29AjayKumar
|
n_square
|
252.java
| 0.9 |
// Java program to count number of substrings
// of a string
import
java.io.*;
public
class
GFG {
static
int
countNonEmptySubstr(String str)
{
int
n = str.length();
return
n * (n +
1
) /
2
;
}
// Driver code
public
static
void
main(String args[])
{
String s =
"abcde"
;
System.out.println(
countNonEmptySubstr(s));
}
}
// This code is contributed
// by Manish Shaw (manishshaw1)
|
n_square
|
254.java
| 0.9 |
// Java program to count all substrings with same
// first and last characters.
public
class
GFG {
// Returns true if first and last characters
// of s are same.
static
boolean
checkEquality(String s)
{
return
(s.charAt(
0
) == s.charAt(s.length() -
1
));
}
static
int
countSubstringWithEqualEnds(String s)
{
int
result =
0
;
int
n = s.length();
// Starting point of substring
for
(
int
i =
0
; i < n; i++)
// Length of substring
for
(
int
len =
1
; len <= n-i; len++)
// Check if current substring has same
// starting and ending characters.
if
(checkEquality(s.substring(i, i + len)))
result++;
return
result;
}
// Driver function
public
static
void
main(String args[])
{
String s =
"abcab"
;
System.out.println(countSubstringWithEqualEnds(s));
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
257.java
| 0.9 |
// Space efficient Java program to count all
// substrings with same first and last characters.
public
class
GFG {
static
int
countSubstringWithEqualEnds(String s)
{
int
result =
0
;
int
n = s.length();
// Iterating through all substrings in
// way so that we can find first and last
// character easily
for
(
int
i =
0
; i < n; i++)
for
(
int
j = i; j < n; j++)
if
(s.charAt(i) == s.charAt(j))
result++;
return
result;
}
// Driver function
public
static
void
main(String args[])
{
String s =
"abcab"
;
System.out.println(countSubstringWithEqualEnds(s));
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
258.java
| 0.9 |
// Java program to split array and move first
// part to end.
import
java.util.*;
import
java.lang.*;
class
GFG {
// Function to spilt array and
// move first part to end
public
static
void
SplitAndAdd(
int
[] A,
int
length,
int
rotation){
//make a temporary array with double the size
int
[] tmp =
new
int
[length*
2
];
// copy array element in to new array twice
System.arraycopy(A,
0
, tmp,
0
, length);
System.arraycopy(A,
0
, tmp, length, length);
for
(
int
i=rotation;i<rotation+length;i++)
A[i-rotation]=tmp[i];
}
// Driver code
public
static
void
main(String[] args)
{
int
arr[] = {
12
,
10
,
5
,
6
,
52
,
36
};
int
n = arr.length;
int
position =
2
;
SplitAndAdd(arr, n, position);
for
(
int
i =
0
; i < n; ++i)
System.out.print(arr[i] +
" "
);
}
}
|
n_square
|
26.java
| 0.9 |
// Java program to print all words that have
// the same unique character set
import
java.util.ArrayList;
import
java.util.Arrays;
import
java.util.HashMap;
import
java.util.Map.Entry;
public
class
GFG {
static
final
int
MAX_CHAR =
26
;
// Generates a key from given string. The key
// contains all unique characters of given string
// in sorted order consisting of only distinct elements.
static
String getKey(String str)
{
boolean
[] visited =
new
boolean
[MAX_CHAR];
Arrays.fill(visited,
false
);
// store all unique characters of current
// word in key
for
(
int
j =
0
; j < str.length(); j++)
visited[str.charAt(j) -
'a'
] =
true
;
String key =
""
;
for
(
int
j=
0
; j < MAX_CHAR; j++)
if
(visited[j])
key = key + (
char
)(
'a'
+j);
return
key;
}
// Print all words together with same character sets.
static
void
wordsWithSameCharSet(String words[],
int
n)
{
// Stores indexes of all words that have same
// set of unique characters.
//unordered_map <string, vector <int> > Hash;
HashMap<String, ArrayList<Integer>> Hash =
new
HashMap<>();
// Traverse all words
for
(
int
i=
0
; i<n; i++)
{
String key = getKey(words[i]);
// if the key is already in the map
// then get its corresponding value
// and update the list and put it in the map
if
(Hash.containsKey(key))
{
ArrayList<Integer> get_al = Hash.get(key);
get_al.add(i);
Hash.put(key, get_al);
}
// if key is not present in the map
// then create a new list and add
// both key and the list
else
{
ArrayList<Integer> new_al =
new
ArrayList<>();
new_al.add(i);
Hash.put(key, new_al);
}
}
// print all words that have the same unique character set
for
(Entry<String, ArrayList<Integer>> it : Hash.entrySet())
{
ArrayList<Integer> get =it.getValue();
for
(Integer v:get)
System.out.print( words[v] +
", "
);
System.out.println();
}
}
// Driver program to test above function
public
static
void
main(String args[])
{
String words[] = {
"may"
,
"student"
,
"students"
,
"dog"
,
"studentssess"
,
"god"
,
"cat"
,
"act"
,
"tab"
,
"bat"
,
"flow"
,
"wolf"
,
"lambs"
,
"amy"
,
"yam"
,
"balms"
,
"looped"
,
"poodle"
};
int
n = words.length;
wordsWithSameCharSet(words, n);
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
264.java
| 0.9 |
// A simple C++ program to count number of
//substrings starting and ending with 1
class
CountSubString
{
int
countSubStr(
char
str[],
int
n)
{
int
res =
0
;
// Initialize result
// Pick a starting point
for
(
int
i =
0
; i<n; i++)
{
if
(str[i] ==
'1'
)
{
// Search for all possible ending point
for
(
int
j = i +
1
; j< n; j++)
{
if
(str[j] ==
'1'
)
res++;
}
}
}
return
res;
}
// Driver program to test the above function
public
static
void
main(String[] args)
{
CountSubString count =
new
CountSubString();
String string =
"00100101"
;
char
str[] = string.toCharArray();
int
n = str.length;
System.out.println(count.countSubStr(str,n));
}
}
|
n_square
|
271.java
| 0.9 |
// Java implementation to find the character in
// first string that is present at minimum index
// in second string
public
class
GFG
{
// method to find the minimum index character
static
void
printMinIndexChar(String str, String patt)
{
// to store the index of character having
// minimum index
int
minIndex = Integer.MAX_VALUE;
// lengths of the two strings
int
m = str.length();
int
n = patt.length();
// traverse 'patt'
for
(
int
i =
0
; i < n; i++) {
// for each character of 'patt' traverse 'str'
for
(
int
j =
0
; j < m; j++) {
// if patt.charAt(i)is found in 'str', check if
// it has the minimum index or not. If yes,
// then update 'minIndex' and break
if
(patt.charAt(i)== str.charAt(j) && j < minIndex) {
minIndex = j;
break
;
}
}
}
// print the minimum index character
if
(minIndex != Integer.MAX_VALUE)
System.out.println(
"Minimum Index Character = "
+
str.charAt(minIndex));
// if no character of 'patt' is present in 'str'
else
System.out.println(
"No character present"
);
}
// Driver Method
public
static
void
main(String[] args)
{
String str =
"geeksforgeeks"
;
String patt =
"set"
;
printMinIndexChar(str, patt);
}
}
|
n_square
|
274.java
| 0.9 |
// A Simple Java program to find pairs with distance
// equal to English alphabet distance
class
Test {
// Method to count pairs
static
int
countPairs(String str)
{
int
result =
0
;
int
n = str.length();
for
(
int
i =
0
; i < n; i++)
for
(
int
j = i +
1
; j < n; j++)
// Increment count if characters
// are at same distance
if
(Math.abs(str.charAt(i) - str.charAt(j)) ==
Math.abs(i - j))
result++;
return
result;
}
// Driver method
public
static
void
main(String args[])
{
String str =
"geeksforgeeks"
;
System.out.println(countPairs(str));
}
}
|
n_square
|
278.java
| 0.9 |
// Java program to count number of times
// S appears as a subsequence in T
import
java.io.*;
class
GFG {
static
int
findSubsequenceCount(String S, String T)
{
int
m = T.length();
int
n = S.length();
// T can't appear as a subsequence in S
if
(m > n)
return
0
;
// mat[i][j] stores the count of
// occurrences of T(1..i) in S(1..j).
int
mat[][] =
new
int
[m +
1
][n +
1
];
// Initializing first column with
// all 0s. An emptystring can't have
// another string as suhsequence
for
(
int
i =
1
; i <= m; i++)
mat[i][
0
] =
0
;
// Initializing first row with all 1s.
// An empty string is subsequence of all.
for
(
int
j =
0
; j <= n; j++)
mat[
0
][j] =
1
;
// Fill mat[][] in bottom up manner
for
(
int
i =
1
; i <= m; i++) {
for
(
int
j =
1
; j <= n; j++) {
// If last characters don't match,
// then value is same as the value
// without last character in S.
if
(T.charAt(i -
1
) != S.charAt(j -
1
))
mat[i][j] = mat[i][j -
1
];
// Else value is obtained considering two cases.
// a) All substrings without last character in S
// b) All substrings without last characters in
// both.
else
mat[i][j] = mat[i][j -
1
] + mat[i -
1
][j -
1
];
}
}
/* uncomment this to print matrix mat
for (int i = 1; i <= m; i++, cout << endl)
for (int j = 1; j <= n; j++)
System.out.println ( mat[i][j] +" "); */
return
mat[m][n];
}
// Driver code to check above method
public
static
void
main(String[] args)
{
String T =
"ge"
;
String S =
"geeksforgeeks"
;
System.out.println(findSubsequenceCount(S, T));
}
}
// This code is contributed by vt_m
|
n_square
|
285.java
| 0.9 |
// Java program to find n'th Bell number
import
java.io.*;
class
GFG
{
// Function to find n'th Bell Number
static
int
bellNumber(
int
n)
{
int
[][] bell =
new
int
[n+
1
][n+
1
];
bell[
0
][
0
] =
1
;
for
(
int
i=
1
; i<=n; i++)
{
// Explicitly fill for j = 0
bell[i][
0
] = bell[i-
1
][i-
1
];
// Fill for remaining values of j
for
(
int
j=
1
; j<=i; j++)
bell[i][j] = bell[i-
1
][j-
1
] + bell[i][j-
1
];
}
return
bell[n][
0
];
}
// Driver program
public
static
void
main (String[] args)
{
for
(
int
n=
0
; n<=
5
; n++)
System.out.println(
"Bell Number "
+ n +
" is "
+bellNumber(n));
}
}
// This code is contributed by Pramod Kumar
|
n_square
|
288.java
| 0.9 |
class
GFG{
// A dynamic programming based function to find nth
// Catalan number
static
int
catalanDP(
int
n) {
// Table to store results of subproblems
int
catalan[] =
new
int
[n +
2
];
// Initialize first two values in table
catalan[
0
] =
1
;
catalan[
1
] =
1
;
// Fill entries in catalan[] using recursive formula
for
(
int
i =
2
; i <= n; i++) {
catalan[i] =
0
;
for
(
int
j =
0
; j < i; j++) {
catalan[i] += catalan[j] * catalan[i - j -
1
];
}
}
// Return last entry
return
catalan[n];
}
// Driver code
public
static
void
main(String[] args) {
for
(
int
i =
0
; i <
10
; i++) {
System.out.print(catalanDP(i) +
" "
);
}
}
}
// This code contributed by Rajput-Ji
|
n_square
|
290.java
| 0.9 |
// A Dynamic Programming based solution that uses table C[][] to
// calculate the Binomial Coefficient
class
BinomialCoefficient
{
// Returns value of Binomial Coefficient C(n, k)
static
int
binomialCoeff(
int
n,
int
k)
{
int
C[][] =
new
int
[n+
1
][k+
1
];
int
i, j;
// Calculate value of Binomial Coefficient in bottom up manner
for
(i =
0
; i <= n; i++)
{
for
(j =
0
; j <= min(i, k); j++)
{
// Base Cases
if
(j ==
0
|| j == i)
C[i][j] =
1
;
// Calculate value using previously stored values
else
C[i][j] = C[i-
1
][j-
1
] + C[i-
1
][j];
}
}
return
C[n][k];
}
// A utility function to return minimum of two integers
static
int
min(
int
a,
int
b)
{
return
(a<b)? a: b;
}
/* Driver program to test above function*/
public
static
void
main(String args[])
{
int
n =
5
, k =
2
;
System.out.println(
"Value of C("
+n+
","
+k+
") is "
+binomialCoeff(n, k));
}
}
/*This code is contributed by Rajat Mishra*/
|
n_square
|
293.java
| 0.9 |
// Java code for Dynamic Programming based
// solution that uses table P[][] to
// calculate the Permutation Coefficient
import
java.io.*;
import
java.math.*;
class
GFG
{
// Returns value of Permutation
// Coefficient P(n, k)
static
int
permutationCoeff(
int
n,
int
k)
{
int
P[][] =
new
int
[n +
2
][k +
2
];
// Caculate value of Permutation
// Coefficient in bottom up manner
for
(
int
i =
0
; i <= n; i++)
{
for
(
int
j =
0
;
j <= Math.min(i, k);
j++)
{
// Base Cases
if
(j ==
0
)
P[i][j] =
1
;
// Calculate value using previosly
// stored values
else
P[i][j] = P[i -
1
][j] +
(j * P[i -
1
][j -
1
]);
// This step is important
// as P(i,j)=0 for j>i
P[i][j +
1
] =
0
;
}
}
return
P[n][k];
}
// Driver Code
public
static
void
main(String args[])
{
int
n =
10
, k =
2
;
System.out.println(
"Value of P( "
+ n +
","
+ k +
")"
+
" is "
+ permutationCoeff(n, k) );
}
}
// This code is contributed by Nikita Tiwari.
|
n_square
|
295.java
| 0.9 |
// Java program to solve Gold Mine problem
import
java.util.Arrays;
class
GFG {
static
final
int
MAX =
100
;
// Returns maximum amount of gold that
// can be collected when journey started
// from first column and moves allowed
// are right, right-up and right-down
static
int
getMaxGold(
int
gold[][],
int
m,
int
n)
{
// Create a table for storing
// intermediate results and initialize
// all cells to 0. The first row of
// goldMineTable gives the maximum
// gold that the miner can collect
// when starts that row
int
goldTable[][] =
new
int
[m][n];
for
(
int
[] rows:goldTable)
Arrays.fill(rows,
0
);
for
(
int
col = n-
1
; col >=
0
; col--)
{
for
(
int
row =
0
; row < m; row++)
{
// Gold collected on going to
// the cell on the right(->)
int
right = (col == n-
1
) ?
0
: goldTable[row][col+
1
];
// Gold collected on going to
// the cell to right up (/)
int
right_up = (row ==
0
||
col == n-
1
) ?
0
:
goldTable[row-
1
][col+
1
];
// Gold collected on going to
// the cell to right down (\)
int
right_down = (row == m-
1
|| col == n-
1
) ?
0
:
goldTable[row+
1
][col+
1
];
// Max gold collected from taking
// either of the above 3 paths
goldTable[row][col] = gold[row][col]
+ Math.max(right, Math.max(right_up,
right_down));
;
}
}
// The max amount of gold collected will be
// the max value in first column of all rows
int
res = goldTable[
0
][
0
];
for
(
int
i =
1
; i < m; i++)
res = Math.max(res, goldTable[i][
0
]);
return
res;
}
//driver code
public
static
void
main(String arg[])
{
int
gold[][]= { {
1
,
3
,
1
,
5
},
{
2
,
2
,
4
,
1
},
{
5
,
0
,
2
,
3
},
{
0
,
6
,
1
,
2
} };
int
m =
4
, n =
4
;
System.out.print(getMaxGold(gold, m, n));
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
298.java
| 0.9 |
// Java program to Rearrange positive
// and negative numbers in a array
import
java.io.*;
class
GFG {
/* Function to print an array */
static
void
printArray(
int
A[],
int
size)
{
for
(
int
i =
0
; i < size; i++)
System.out.print(A[i] +
" "
);
System.out.println();
}
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
static
void
merge(
int
arr[],
int
l,
int
m,
int
r)
{
int
i, j, k;
int
n1 = m - l +
1
;
int
n2 = r - m;
/* create temp arrays */
int
L[] =
new
int
[n1];
int
R[] =
new
int
[n2];
/* Copy data to temp arrays L[] and R[] */
for
(i =
0
; i < n1; i++)
L[i] = arr[l + i];
for
(j =
0
; j < n2; j++)
R[j] = arr[m +
1
+ j];
/* Merge the temp arrays back into arr[l..r]*/
// Initial index of first subarray
i =
0
;
// Initial index of second subarray
j =
0
;
// Initial index of merged subarray
k = l;
// Note the order of appearance of elements should
// be maintained - we copy elements of left subarray
// first followed by that of right subarray
// copy negative elements of left subarray
while
(i < n1 && L[i] <
0
)
arr[k++] = L[i++];
// copy negative elements of right subarray
while
(j < n2 && R[j] <
0
)
arr[k++] = R[j++];
// copy positive elements of left subarray
while
(i < n1)
arr[k++] = L[i++];
// copy positive elements of right subarray
while
(j < n2)
arr[k++] = R[j++];
}
// Function to Rearrange positive and negative
// numbers in a array
static
void
RearrangePosNeg(
int
arr[],
int
l,
int
r)
{
if
(l < r) {
// Same as (l + r)/2, but avoids overflow for
// large l and h
int
m = l + (r - l) /
2
;
// Sort first and second halves
RearrangePosNeg(arr, l, m);
RearrangePosNeg(arr, m +
1
, r);
merge(arr, l, m, r);
}
}
// Driver program
public
static
void
main(String[] args)
{
int
arr[] = { -
12
,
11
, -
13
, -
5
,
6
, -
7
,
5
, -
3
, -
6
};
int
arr_size = arr.length;
RearrangePosNeg(arr,
0
, arr_size -
1
);
printArray(arr, arr_size);
}
}
// This code is contributed by vt_m.
|
n_square
|
30.java
| 0.9 |
// A Dynamic Programming solution for subset
// sum problem
class
GFG {
// Returns true if there is a subset of
// set[] with sun equal to given sum
static
boolean
isSubsetSum(
int
set[],
int
n,
int
sum)
{
// The value of subset[i][j] will be
// true if there is a subset of
// set[0..j-1] with sum equal to i
boolean
subset[][] =
new
boolean
[sum+
1
][n+
1
];
// If sum is 0, then answer is true
for
(
int
i =
0
; i <= n; i++)
subset[
0
][i] =
true
;
// If sum is not 0 and set is empty,
// then answer is false
for
(
int
i =
1
; i <= sum; i++)
subset[i][
0
] =
false
;
// Fill the subset table in botton
// up manner
for
(
int
i =
1
; i <= sum; i++)
{
for
(
int
j =
1
; j <= n; j++)
{
subset[i][j] = subset[i][j-
1
];
if
(i >= set[j-
1
])
subset[i][j] = subset[i][j] ||
subset[i - set[j-
1
]][j-
1
];
}
}
/* // uncomment this code to print table
for (int i = 0; i <= sum; i++)
{
for (int j = 0; j <= n; j++)
System.out.println (subset[i][j]);
} */
return
subset[sum][n];
}
/* Driver program to test above function */
public
static
void
main (String args[])
{
int
set[] = {
3
,
34
,
4
,
12
,
5
,
2
};
int
sum =
9
;
int
n = set.length;
if
(isSubsetSum(set, n, sum) ==
true
)
System.out.println(
"Found a subset"
+
" with given sum"
);
else
System.out.println(
"No subset with"
+
" given sum"
);
}
}
/* This code is contributed by Rajat Mishra */
|
n_square
|
303.java
| 0.9 |
// Java program to check if there is a subset
// with sum divisible by m.
import
java.util.Arrays;
class
GFG {
// Returns true if there is a subset
// of arr[] with sum divisible by m
static
boolean
modularSum(
int
arr[],
int
n,
int
m)
{
if
(n > m)
return
true
;
// This array will keep track of all
// the possible sum (after modulo m)
// which can be made using subsets of arr[]
// initialising boolean array with all false
boolean
DP[]=
new
boolean
[m];
Arrays.fill(DP,
false
);
// we'll loop through all the elements
// of arr[]
for
(
int
i =
0
; i < n; i++)
{
// anytime we encounter a sum divisible
// by m, we are done
if
(DP[
0
])
return
true
;
// To store all the new encountered sum
// (after modulo). It is used to make
// sure that arr[i] is added only to
// those entries for which DP[j]
// was true before current iteration.
boolean
temp[] =
new
boolean
[m];
Arrays.fill(temp,
false
);
// For each element of arr[], we loop
// through all elements of DP table
// from 1 to m and we add current
// element i. e., arr[i] to all those
// elements which are true in DP table
for
(
int
j =
0
; j < m; j++)
{
// if an element is true in
// DP table
if
(DP[j] ==
true
)
{
if
(DP[(j + arr[i]) % m] ==
false
)
// We update it in temp and update
// to DP once loop of j is over
temp[(j + arr[i]) % m] =
true
;
}
}
// Updating all the elements of temp
// to DP table since iteration over
// j is over
for
(
int
j =
0
; j < m; j++)
if
(temp[j])
DP[j] =
true
;
// Also since arr[i] is a single
// element subset, arr[i]%m is one
// of the possible sum
DP[arr[i] % m] =
true
;
}
return
DP[
0
];
}
//driver code
public
static
void
main(String arg[])
{
int
arr[] = {
1
,
7
};
int
n = arr.length;
int
m =
5
;
if
(modularSum(arr, n, m))
System.out.print(
"YES\n"
);
else
System.out.print(
"NO\n"
);
}
}
//This code is contributed by Anant Agarwal.
|
n_square
|
304.java
| 0.9 |
import
java.util.Arrays;
// Java program to find the largest
// subset which where each pair
// is divisible.
class
GFG {
// function to find the longest Subsequence
static
int
largestSubset(
int
[] a,
int
n)
{
// Sort array in increasing order
Arrays.sort(a);
// dp[i] is going to store size of largest
// divisible subset beginning with a[i].
int
[] dp =
new
int
[n];
// Since last element is largest, d[n-1] is 1
dp[n -
1
] =
1
;
// Fill values for smaller elements.
for
(
int
i = n -
2
; i >=
0
; i--) {
// Find all multiples of a[i] and consider
// the multiple that has largest subset
// beginning with it.
int
mxm =
0
;
for
(
int
j = i +
1
; j < n; j++) {
if
(a[j] % a[i] ==
0
) {
mxm = Math.max(mxm, dp[j]);
}
}
dp[i] =
1
+ mxm;
}
// Return maximum value from dp[]
return
Arrays.stream(dp).max().getAsInt();
}
// driver code to check the above function
public
static
void
main(String[] args)
{
int
[] a = {
1
,
3
,
6
,
13
,
17
,
18
};
int
n = a.length;
System.out.println(largestSubset(a, n));
}
}
/* This JAVA code is contributed by Rajput-Ji*/
|
n_square
|
305.java
| 0.9 |
// A Dynamic Programming solution for Rod cutting problem
class
RodCutting
{
/* Returns the best obtainable price for a rod of
length n and price[] as prices of different pieces */
static
int
cutRod(
int
price[],
int
n)
{
int
val[] =
new
int
[n+
1
];
val[
0
] =
0
;
// Build the table val[] in bottom up manner and return
// the last entry from the table
for
(
int
i =
1
; i<=n; i++)
{
int
max_val = Integer.MIN_VALUE;
for
(
int
j =
0
; j < i; j++)
max_val = Math.max(max_val,
price[j] + val[i-j-
1
]);
val[i] = max_val;
}
return
val[n];
}
/* Driver program to test above functions */
public
static
void
main(String args[])
{
int
arr[] =
new
int
[] {
1
,
5
,
8
,
9
,
10
,
17
,
17
,
20
};
int
size = arr.length;
System.out.println(
"Maximum Obtainable Value is "
+
cutRod(arr, size));
}
}
/* This code is contributed by Rajat Mishra */
|
n_square
|
307.java
| 0.9 |
// A memoization based Java program to
// count even length binary sequences
// such that the sum of first and
// second half bits is same
import
java.io.*;
class
GFG {
// A lookup table to store the results of
// subproblems
static
int
lookup[][] =
new
int
[
1000
][
1000
];
// dif is diference between sums of first
// n bits and last n bits i.e.,
// dif = (Sum of first n bits) - (Sum of last n bits)
static
int
countSeqUtil(
int
n,
int
dif)
{
// We can't cover diference of
// more than n with 2n bits
if
(Math.abs(dif) > n)
return
0
;
// n == 1, i.e., 2 bit long sequences
if
(n ==
1
&& dif ==
0
)
return
2
;
if
(n ==
1
&& Math.abs(dif) ==
1
)
return
1
;
// Check if this subbproblem is already
// solved n is added to dif to make
// sure index becomes positive
if
(lookup[n][n+dif] != -
1
)
return
lookup[n][n+dif];
int
res =
// First bit is 0 & last bit is 1
countSeqUtil(n-
1
, dif+
1
) +
// First and last bits are same
2
*countSeqUtil(n-
1
, dif) +
// First bit is 1 & last bit is 0
countSeqUtil(n-
1
, dif-
1
);
// Store result in lookup table
// and return the result
return
lookup[n][n+dif] = res;
}
// A Wrapper over countSeqUtil(). It mainly
// initializes lookup table, then calls
// countSeqUtil()
static
int
countSeq(
int
n)
{
// Initialize all entries of lookup
// table as not filled
// memset(lookup, -1, sizeof(lookup));
for
(
int
k =
0
; k < lookup.length; k++)
{
for
(
int
j =
0
; j < lookup.length; j++)
{
lookup[k][j] = -
1
;
}
}
// call countSeqUtil()
return
countSeqUtil(n,
0
);
}
// Driver program
public
static
void
main(String[] args)
{
int
n =
2
;
System.out.println(
"Count of sequences is "
+ countSeq(
2
));
}
}
// This code is contributed by Prerna Saini
|
n_square
|
311.java
| 0.9 |
// Efficient java program to count total number
// of special sequences of length n where
class
Sequences
{
// DP based function to find the number of special
// sequences
static
int
getTotalNumberOfSequences(
int
m,
int
n)
{
// define T and build in bottom manner to store
// number of special sequences of length n and
// maximum value m
int
T[][]=
new
int
[m+
1
][n+
1
];
for
(
int
i=
0
; i<m+
1
; i++)
{
for
(
int
j=
0
; j<n+
1
; j++)
{
// Base case : If length of sequence is 0
// or maximum value is 0, there cannot
// exist any special sequence
if
(i ==
0
|| j ==
0
)
T[i][j] =
0
;
// if length of sequence is more than
// the maximum value, special sequence
// cannot exist
else
if
(i < j)
T[i][j] =
0
;
// If length of sequence is 1 then the
// number of special sequences is equal
// to the maximum value
// For example with maximum value 2 and
// length 1, there can be 2 special
// sequences {1}, {2}
else
if
(j ==
1
)
T[i][j] = i;
// otherwise calculate
else
T[i][j] = T[i-
1
][j] + T[i/
2
][j-
1
];
}
}
return
T[m][n];
}
// main function
public
static
void
main (String[] args)
{
int
m =
10
;
int
n =
4
;
System.out.println(
"Total number of possible sequences "
+
getTotalNumberOfSequences(m, n));
}
}
|
n_square
|
314.java
| 0.9 |
// java program to find maximum
// sum of bi-tonic sub-sequence
import
java.io.*;
class
GFG {
// Function return maximum sum
// of Bi-tonic sub-sequence
static
int
MaxSumBS(
int
arr[],
int
n)
{
int
max_sum = Integer.MIN_VALUE;
// MSIBS[i] ==> Maximum sum Increasing Bi-tonic
// subsequence ending with arr[i]
// MSDBS[i] ==> Maximum sum Decreasing Bi-tonic
// subsequence starting with arr[i]
// Initialize MSDBS and MSIBS values as arr[i] for
// all indexes
int
MSIBS[] =
new
int
[n];
int
MSDBS[] =
new
int
[n];
for
(
int
i =
0
; i < n; i++) {
MSDBS[i] = arr[i];
MSIBS[i] = arr[i];
}
// Compute MSIBS values from left to right */
for
(
int
i =
1
; i < n; i++)
for
(
int
j =
0
; j < i; j++)
if
(arr[i] > arr[j] && MSIBS[i] < MSIBS[j] + arr[i])
MSIBS[i] = MSIBS[j] + arr[i];
// Compute MSDBS values from right to left
for
(
int
i = n -
2
; i >=
0
; i--)
for
(
int
j = n -
1
; j > i; j--)
if
(arr[i] > arr[j] && MSDBS[i] < MSDBS[j] + arr[i])
MSDBS[i] = MSDBS[j] + arr[i];
// Find the maximum value of MSIBS[i] +
// MSDBS[i] - arr[i]
for
(
int
i =
0
; i < n; i++)
max_sum = Math.max(max_sum, (MSDBS[i] + MSIBS[i] - arr[i]));
// return max sum of bi-tonic
// sub-sequence
return
max_sum;
}
// Driver program
public
static
void
main(String[] args)
{
int
arr[] = {
1
,
15
,
51
,
45
,
33
,
100
,
12
,
18
,
9
};
int
n = arr.length;
System.out.println(
"Maximum Sum : "
+ MaxSumBS(arr, n));
}
}
// This code is contributed by vt_m
|
n_square
|
317.java
| 0.9 |
/* Dynamic Programming Java
implementation of Maximum Sum
Increasing Subsequence (MSIS)
problem */
class
GFG
{
/* maxSumIS() returns the
maximum sum of increasing
subsequence in arr[] of size n */
static
int
maxSumIS(
int
arr[],
int
n)
{
int
i, j, max =
0
;
int
msis[] =
new
int
[n];
/* Initialize msis values
for all indexes */
for
(i =
0
; i < n; i++)
msis[i] = arr[i];
/* Compute maximum sum values
in bottom up manner */
for
(i =
1
; i < n; i++)
for
(j =
0
; j < i; j++)
if
(arr[i] > arr[j] &&
msis[i] < msis[j] + arr[i])
msis[i] = msis[j] + arr[i];
/* Pick maximum of all
msis values */
for
(i =
0
; i < n; i++)
if
(max < msis[i])
max = msis[i];
return
max;
}
// Driver code
public
static
void
main(String args[])
{
int
arr[] =
new
int
[]{
1
,
101
,
2
,
3
,
100
,
4
,
5
};
int
n = arr.length;
System.out.println(
"Sum of maximum sum "
+
"increasing subsequence is "
+
maxSumIS(arr, n));
}
}
// This code is contributed
// by Rajat Mishra
|
n_square
|
318.java
| 0.9 |
/* Dynamic programming Java implementation
of maximum product of an increasing
subsequence */
import
java.util.Arrays;
import
java.util.Collections;
class
GFG {
// Returns product of maximum product
// increasing subsequence.
static
int
lis(
int
[] arr,
int
n)
{
int
[] mpis =
new
int
[n];
int
max = Integer.MIN_VALUE;
/* Initialize MPIS values */
for
(
int
i =
0
; i < n; i++)
mpis[i] = arr[i];
/* Compute optimized MPIS values
considering every element as ending
element of sequence */
for
(
int
i =
1
; i < n; i++)
for
(
int
j =
0
; j < i; j++)
if
(arr[i] > arr[j] && mpis[i]
< (mpis[j] * arr[i]))
mpis[i] = mpis[j] * arr[i];
/* Pick maximum of all product values
using for loop*/
for
(
int
k =
0
; k < mpis.length; k++)
{
if
(mpis[k] > max) {
max = mpis[k];
}
}
return
max;
}
// Driver program to test above function
static
public
void
main(String[] args)
{
int
[] arr = {
3
,
100
,
4
,
5
,
150
,
6
};
int
n = arr.length;
System.out.println(lis(arr, n));
}
}
// This code is contributed by parashar.
|
n_square
|
319.java
| 0.9 |
// Java program to find the longest subsequence
// such that the difference between adjacent
// elements of the subsequence is one.
import
java.io.*;
class
GFG {
// Function to find the length of longest
// subsequence
static
int
longestSubseqWithDiffOne(
int
arr[],
int
n)
{
// Initialize the dp[] array with 1 as a
// single element will be of 1 length
int
dp[] =
new
int
[n];
for
(
int
i =
0
; i< n; i++)
dp[i] =
1
;
// Start traversing the given array
for
(
int
i =
1
; i < n; i++)
{
// Compare with all the previous
// elements
for
(
int
j =
0
; j < i; j++)
{
// If the element is consecutive
// then consider this subsequence
// and update dp[i] if required.
if
((arr[i] == arr[j] +
1
) ||
(arr[i] == arr[j] -
1
))
dp[i] = Math.max(dp[i], dp[j]+
1
);
}
}
// Longest length will be the maximum
// value of dp array.
int
result =
1
;
for
(
int
i =
0
; i < n ; i++)
if
(result < dp[i])
result = dp[i];
return
result;
}
// Driver code
public
static
void
main(String[] args)
{
// Longest subsequence with one
// difference is
// {1, 2, 3, 4, 3, 2}
int
arr[] = {
1
,
2
,
3
,
4
,
5
,
3
,
2
};
int
n = arr.length;
System.out.println(longestSubseqWithDiffOne(
arr, n));
}
}
// This code is contributed by Prerna Saini
|
n_square
|
322.java
| 0.9 |
// JAVA Code for Maximum length subsequence
// with difference between adjacent elements
// as either 0 or 1
import
java.util.*;
class
GFG {
// function to find maximum length subsequence
// with difference between adjacent elements as
// either 0 or 1
public
static
int
maxLenSub(
int
arr[],
int
n)
{
int
mls[] =
new
int
[n], max =
0
;
// Initialize mls[] values for all indexes
for
(
int
i =
0
; i < n; i++)
mls[i] =
1
;
// Compute optimized maximum length
// subsequence values in bottom up manner
for
(
int
i =
1
; i < n; i++)
for
(
int
j =
0
; j < i; j++)
if
(Math.abs(arr[i] - arr[j]) <=
1
&& mls[i] < mls[j] +
1
)
mls[i] = mls[j] +
1
;
// Store maximum of all 'mls' values in 'max'
for
(
int
i =
0
; i < n; i++)
if
(max < mls[i])
max = mls[i];
// required maximum length subsequence
return
max;
}
/* Driver program to test above function */
public
static
void
main(String[] args)
{
int
arr[] = {
2
,
5
,
6
,
3
,
7
,
6
,
5
,
8
};
int
n = arr.length;
System.out.println(
"Maximum length subsequence = "
+
maxLenSub(arr, n));
}
}
// This code is contributed by Arnav Kr. Mandal.
|
n_square
|
323.java
| 0.9 |
// Java program to find maximum sum increasing
// subsequence tiint i-th index and including
// k-th index.
class
GFG {
static
int
pre_compute(
int
a[],
int
n,
int
index,
int
k)
{
int
dp[][] =
new
int
[n][n];
// Initializing the first row of
// the dp[][].
for
(
int
i =
0
; i < n; i++) {
if
(a[i] > a[
0
])
dp[
0
][i] = a[i] + a[
0
];
else
dp[
0
][i] = a[i];
}
// Creating the dp[][] matrix.
for
(
int
i =
1
; i < n; i++)
{
for
(
int
j =
0
; j < n; j++)
{
if
(a[j] > a[i] && j > i)
{
if
(dp[i -
1
][i] + a[j] >
dp[i -
1
][j])
dp[i][j] = dp[i -
1
][i]
+ a[j];
else
dp[i][j] = dp[i -
1
][j];
}
else
dp[i][j] = dp[i -
1
][j];
}
}
// To calculate for i=4 and k=6.
return
dp[index][k];
}
// Driver code
public
static
void
main(String[] args)
{
int
a[] = {
1
,
101
,
2
,
3
,
100
,
4
,
5
};
int
n = a.length;
int
index =
4
, k =
6
;
System.out.println(
pre_compute(a, n, index, k));
}
}
// This code is contributed by Smitha.
|
n_square
|
324.java
| 0.9 |
class
Pair{
int
a;
int
b;
public
Pair(
int
a,
int
b) {
this
.a = a;
this
.b = b;
}
// This function assumes that arr[] is sorted in increasing order
// according the first (or smaller) values in pairs.
static
int
maxChainLength(Pair arr[],
int
n)
{
int
i, j, max =
0
;
int
mcl[] =
new
int
[n];
/* Initialize MCL (max chain length) values for all indexes */
for
( i =
0
; i < n; i++ )
mcl[i] =
1
;
/* Compute optimized chain length values in bottom up manner */
for
( i =
1
; i < n; i++ )
for
( j =
0
; j < i; j++ )
if
( arr[i].a > arr[j].b && mcl[i] < mcl[j] +
1
)
mcl[i] = mcl[j] +
1
;
// mcl[i] now stores the maximum chain length ending with pair i
/* Pick maximum of all MCL values */
for
( i =
0
; i < n; i++ )
if
( max < mcl[i] )
max = mcl[i];
return
max;
}
/* Driver program to test above function */
public
static
void
main(String[] args)
{
Pair arr[] =
new
Pair[] {
new
Pair(
5
,
24
),
new
Pair(
15
,
25
),
new
Pair (
27
,
40
),
new
Pair(
50
,
60
)};
System.out.println(
"Length of maximum size chain is "
+
maxChainLength(arr, arr.length));
}
}
|
n_square
|
325.java
| 0.9 |
// JAVA Code for Maximum size square
// sub-matrix with all 1s
public
class
GFG
{
// method for Maximum size square sub-matrix with all 1s
static
void
printMaxSubSquare(
int
M[][])
{
int
i,j;
int
R = M.length;
//no of rows in M[][]
int
C = M[
0
].length;
//no of columns in M[][]
int
S[][] =
new
int
[R][C];
int
max_of_s, max_i, max_j;
/* Set first column of S[][]*/
for
(i =
0
; i < R; i++)
S[i][
0
] = M[i][
0
];
/* Set first row of S[][]*/
for
(j =
0
; j < C; j++)
S[
0
][j] = M[
0
][j];
/* Construct other entries of S[][]*/
for
(i =
1
; i < R; i++)
{
for
(j =
1
; j < C; j++)
{
if
(M[i][j] ==
1
)
S[i][j] = Math.min(S[i][j-
1
],
Math.min(S[i-
1
][j], S[i-
1
][j-
1
])) +
1
;
else
S[i][j] =
0
;
}
}
/* Find the maximum entry, and indexes of maximum entry
in S[][] */
max_of_s = S[
0
][
0
]; max_i =
0
; max_j =
0
;
for
(i =
0
; i < R; i++)
{
for
(j =
0
; j < C; j++)
{
if
(max_of_s < S[i][j])
{
max_of_s = S[i][j];
max_i = i;
max_j = j;
}
}
}
System.out.println(
"Maximum size sub-matrix is: "
);
for
(i = max_i; i > max_i - max_of_s; i--)
{
for
(j = max_j; j > max_j - max_of_s; j--)
{
System.out.print(M[i][j] +
" "
);
}
System.out.println();
}
}
// Driver program
public
static
void
main(String[] args)
{
int
M[][] = {{
0
,
1
,
1
,
0
,
1
},
{
1
,
1
,
0
,
1
,
0
},
{
0
,
1
,
1
,
1
,
0
},
{
1
,
1
,
1
,
1
,
0
},
{
1
,
1
,
1
,
1
,
1
},
{
0
,
0
,
0
,
0
,
0
}};
printMaxSubSquare(M);
}
}
|
n_square
|
328.java
| 0.9 |
// Java Code for Maximum weight path ending at
// any element of last row in a matrix
import
java.util.*;
class
GFG {
/* Function which return the maximum weight
path sum */
public
static
int
maxCost(
int
mat[][],
int
N)
{
// create 2D matrix to store the sum of
// the path
int
dp[][]=
new
int
[N][N];
dp[
0
][
0
] = mat[
0
][
0
];
// Initialize first column of total
// weight array (dp[i to N][0])
for
(
int
i =
1
; i < N; i++)
dp[i][
0
] = mat[i][
0
] + dp[i-
1
][
0
];
// Calculate rest path sum of weight matrix
for
(
int
i =
1
; i < N; i++)
for
(
int
j =
1
; j < i +
1
&& j < N; j++)
dp[i][j] = mat[i][j] +
Math.max(dp[i-
1
][j-
1
],
dp[i-
1
][j]);
// find the max weight path sum to reach
// the last row
int
result =
0
;
for
(
int
i =
0
; i < N; i++)
if
(result < dp[N-
1
][i])
result = dp[N-
1
][i];
// return maximum weight path sum
return
result;
}
/* Driver program to test above function */
public
static
void
main(String[] args)
{
int
mat[][] = { {
4
,
1
,
5
,
6
,
1
},
{
2
,
9
,
2
,
11
,
10
},
{
15
,
1
,
3
,
15
,
2
},
{
16
,
92
,
41
,
4
,
3
},
{
8
,
142
,
6
,
4
,
8
}
};
int
N =
5
;
System.out.println(
"Maximum Path Sum : "
+
maxCost(mat, N));
}
}
// This code is contributed by Arnav Kr. Mandal.
|
n_square
|
332.java
| 0.9 |
// Java program to find Maximum path sum
// start any column in row '0' and ends
// up to any column in row 'n-1'
import
java.util.*;
class
GFG {
static
int
N =
4
;
// function find maximum sum path
static
int
MaximumPath(
int
Mat[][])
{
int
result =
0
;
// creat 2D matrix to store the sum
// of the path
int
dp[][] =
new
int
[N][N +
2
];
// initialize all dp matrix as '0'
for
(
int
[] rows : dp)
Arrays.fill(rows,
0
);
// copy all element of first column into
// 'dp' first column
for
(
int
i =
0
; i < N; i++)
dp[
0
][i +
1
] = Mat[
0
][i];
for
(
int
i =
1
; i < N; i++)
for
(
int
j =
1
; j <= N; j++)
dp[i][j] = Math.max(dp[i -
1
][j -
1
],
Math.max(dp[i -
1
][j],
dp[i -
1
][j +
1
])) +
Mat[i][j -
1
];
// Find maximum path sum that end ups
// at any column of last row 'N-1'
for
(
int
i =
0
; i <= N; i++)
result = Math.max(result, dp[N -
1
][i]);
// return maximum sum path
return
result;
}
// driver code
public
static
void
main(String arg[])
{
int
Mat[][] = { {
4
,
2
,
3
,
4
},
{
2
,
9
,
1
,
10
},
{
15
,
1
,
3
,
0
},
{
16
,
92
,
41
,
44
} };
System.out.println(MaximumPath(Mat));
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
335.java
| 0.9 |
/* Java program for Dynamic Programming implementation
of Min Cost Path problem */
import
java.util.*;
class
MinimumCostPath
{
/* A utility function that returns minimum of 3 integers */
private
static
int
min(
int
x,
int
y,
int
z)
{
if
(x < y)
return
(x < z)? x : z;
else
return
(y < z)? y : z;
}
private
static
int
minCost(
int
cost[][],
int
m,
int
n)
{
int
i, j;
int
tc[][]=
new
int
[m+
1
][n+
1
];
tc[
0
][
0
] = cost[
0
][
0
];
/* Initialize first column of total cost(tc) array */
for
(i =
1
; i <= m; i++)
tc[i][
0
] = tc[i-
1
][
0
] + cost[i][
0
];
/* Initialize first row of tc array */
for
(j =
1
; j <= n; j++)
tc[
0
][j] = tc[
0
][j-
1
] + cost[
0
][j];
/* Construct rest of the tc array */
for
(i =
1
; i <= m; i++)
for
(j =
1
; j <= n; j++)
tc[i][j] = min(tc[i-
1
][j-
1
],
tc[i-
1
][j],
tc[i][j-
1
]) + cost[i][j];
return
tc[m][n];
}
/* Driver program to test above functions */
public
static
void
main(String args[])
{
int
cost[][]= {{
1
,
2
,
3
},
{
4
,
8
,
2
},
{
1
,
5
,
3
}};
System.out.println(minCost(cost,
2
,
2
));
}
}
// This code is contributed by Pankaj Kumar
|
n_square
|
337.java
| 0.9 |
// JAVA Code for Minimum number of jumps to reach end
class
GFG{
private
static
int
minJumps(
int
[] arr,
int
n) {
int
jumps[] =
new
int
[n];
// jumps[n-1] will hold the
// result
int
i, j;
if
(n ==
0
|| arr[
0
] ==
0
)
return
Integer.MAX_VALUE;
// if first element is 0,
// end cannot be reached
jumps[
0
] =
0
;
// Find the minimum number of jumps to reach arr[i]
// from arr[0], and assign this value to jumps[i]
for
(i =
1
; i < n; i++)
{
jumps[i] = Integer.MAX_VALUE;
for
(j =
0
; j < i; j++)
{
if
(i <= j + arr[j] && jumps[j] != Integer.MAX_VALUE)
{
jumps[i] = Math.min(jumps[i], jumps[j] +
1
);
break
;
}
}
}
return
jumps[n-
1
];
}
// driver program to test above function
public
static
void
main(String[] args) {
int
arr[] = {
1
,
3
,
6
,
1
,
0
,
9
};
System.out.println(
"Minimum number of jumps to reach end is : "
+
minJumps(arr,arr.length));
}
}
// This code is contributed by Arnav Kr. Mandal.
|
n_square
|
339.java
| 0.9 |
// Java program to find minimum removals
// to make max-min <= K
import
java.util.Arrays;
class
GFG
{
static
int
MAX=
100
;
static
int
dp[][]=
new
int
[MAX][MAX];
// function to check all possible combinations
// of removal and return the minimum one
static
int
countRemovals(
int
a[],
int
i,
int
j,
int
k)
{
// base case when all elements are removed
if
(i >= j)
return
0
;
// if condition is satisfied, no more
// removals are required
else
if
((a[j] - a[i]) <= k)
return
0
;
// if the state has already been visited
else
if
(dp[i][j] != -
1
)
return
dp[i][j];
// when Amax-Amin>d
else
if
((a[j] - a[i]) > k) {
// minimum is taken of the removal
// of minimum element or removal
// of the maximum element
dp[i][j] =
1
+ Math.min(countRemovals(a, i +
1
, j, k),
countRemovals(a, i, j -
1
, k));
}
return
dp[i][j];
}
// To sort the array and return the answer
static
int
removals(
int
a[],
int
n,
int
k)
{
// sort the array
Arrays.sort(a);
// fill all stated with -1
// when only one element
for
(
int
[] rows:dp)
Arrays.fill(rows,-
1
);
if
(n ==
1
)
return
0
;
else
return
countRemovals(a,
0
, n -
1
, k);
}
// Driver code
public
static
void
main (String[] args)
{
int
a[] = {
1
,
3
,
4
,
9
,
10
,
11
,
12
,
17
,
20
};
int
n = a.length;
int
k =
4
;
System.out.print(removals(a, n, k));
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
342.java
| 0.9 |
// A Dynamic Programming based Java program to find minimum
// number operations to convert str1 to str2
class
EDIST
{
static
int
min(
int
x,
int
y,
int
z)
{
if
(x <= y && x <= z)
return
x;
if
(y <= x && y <= z)
return
y;
else
return
z;
}
static
int
editDistDP(String str1, String str2,
int
m,
int
n)
{
// Create a table to store results of subproblems
int
dp[][] =
new
int
[m+
1
][n+
1
];
// Fill d[][] in bottom up manner
for
(
int
i=
0
; i<=m; i++)
{
for
(
int
j=
0
; j<=n; j++)
{
// If first string is empty, only option is to
// insert all characters of second string
if
(i==
0
)
dp[i][j] = j;
// Min. operations = j
// If second string is empty, only option is to
// remove all characters of second string
else
if
(j==
0
)
dp[i][j] = i;
// Min. operations = i
// If last characters are same, ignore last char
// and recur for remaining string
else
if
(str1.charAt(i-
1
) == str2.charAt(j-
1
))
dp[i][j] = dp[i-
1
][j-
1
];
// If the last character is different, consider all
// possibilities and find the minimum
else
dp[i][j] =
1
+ min(dp[i][j-
1
],
// Insert
dp[i-
1
][j],
// Remove
dp[i-
1
][j-
1
]);
// Replace
}
}
return
dp[m][n];
}
public
static
void
main(String args[])
{
String str1 =
"sunday"
;
String str2 =
"saturday"
;
System.out.println( editDistDP( str1 , str2 , str1.length(), str2.length()) );
}
}
/*This code is contributed by Rajat Mishra*/
|
n_square
|
344.java
| 0.9 |
// Java implementation of finding length of longest
// Common substring using Dynamic Programming
public
class
LongestCommonSubSequence
{
/*
Returns length of longest common substring
of X[0..m-1] and Y[0..n-1]
*/
static
int
LCSubStr(
char
X[],
char
Y[],
int
m,
int
n)
{
// Create a table to store lengths of longest common suffixes of
// substrings. Note that LCSuff[i][j] contains length of longest
// common suffix of X[0..i-1] and Y[0..j-1]. The first row and
// first column entries have no logical meaning, they are used only
// for simplicity of program
int
LCStuff[][] =
new
int
[m +
1
][n +
1
];
int
result =
0
;
// To store length of the longest common substring
// Following steps build LCSuff[m+1][n+1] in bottom up fashion
for
(
int
i =
0
; i <= m; i++)
{
for
(
int
j =
0
; j <= n; j++)
{
if
(i ==
0
|| j ==
0
)
LCStuff[i][j] =
0
;
else
if
(X[i -
1
] == Y[j -
1
])
{
LCStuff[i][j] = LCStuff[i -
1
][j -
1
] +
1
;
result = Integer.max(result, LCStuff[i][j]);
}
else
LCStuff[i][j] =
0
;
}
}
return
result;
}
// Driver Program to test above function
public
static
void
main(String[] args)
{
String X =
"OldSite:GeeksforGeeks.org"
;
String Y =
"NewSite:GeeksQuiz.com"
;
int
m = X.length();
int
n = Y.length();
System.out.println(
"Length of Longest Common Substring is "
+ LCSubStr(X.toCharArray(), Y.toCharArray(), m, n));
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
346.java
| 0.9 |
// Space optimized CPP implementation of
// longest common substring.
import
java.io.*;
import
java.util.*;
public
class
GFG {
// Function to find longest
// common substring.
static
int
LCSubStr(String X, String Y)
{
// Find length of both the strings.
int
m = X.length();
int
n = Y.length();
// Variable to store length of longest
// common substring.
int
result =
0
;
// Matrix to store result of two
// consecutive rows at a time.
int
[][]len =
new
int
[
2
][n];
// Variable to represent which row of
// matrix is current row.
int
currRow =
0
;
// For a particular value of
// i and j, len[currRow][j]
// stores length of longest
// common substring in string
// X[0..i] and Y[0..j].
for
(
int
i =
0
; i < m; i++) {
for
(
int
j =
0
; j < n; j++) {
if
(i ==
0
|| j ==
0
) {
len[currRow][j] =
0
;
}
else
if
(X.charAt(i -
1
) ==
Y.charAt(j -
1
))
{
len[currRow][j] =
len[(
1
- currRow)][(j -
1
)]
+
1
;
result = Math.max(result,
len[currRow][j]);
}
else
{
len[currRow][j] =
0
;
}
}
// Make current row as previous
// row and previous row as
// new current row.
currRow =
1
- currRow;
}
return
result;
}
// Driver Code
public
static
void
main(String args[])
{
String X =
"GeeksforGeeks"
;
String Y =
"GeeksQuiz"
;
System.out.print(LCSubStr(X, Y));
}
}
// This code is contributed by
// Manish Shaw (manishshaw1)
|
n_square
|
348.java
| 0.9 |
// Program to find minimum
// total offerings required
import
java.io.*;
class
GFG
{
// Returns minimum
// offerings required
static
int
offeringNumber(
int
n,
int
templeHeight[])
{
int
sum =
0
;
// Initialize result
// Go through all
// temples one by one
for
(
int
i =
0
; i < n; ++i)
{
// Go to left while
// height keeps increasing
int
left =
0
, right =
0
;
for
(
int
j = i -
1
; j >=
0
; --j)
{
if
(templeHeight[j] <
templeHeight[j +
1
])
++left;
else
break
;
}
// Go to right while
// height keeps increasing
for
(
int
j = i +
1
; j < n; ++j)
{
if
(templeHeight[j] <
templeHeight[j -
1
])
++right;
else
break
;
}
// This temple should offer
// maximum of two values
// to follow the rule.
sum += Math.max(right, left) +
1
;
}
return
sum;
}
// Driver code
public
static
void
main (String[] args)
{
int
arr1[] = {
1
,
2
,
2
};
System.out.println(offeringNumber(
3
, arr1));
int
arr2[] = {
1
,
4
,
3
,
6
,
2
,
1
};
System.out.println(offeringNumber(
6
, arr2));
}
}
// This code is contributed by akt_mit
|
n_square
|
357.java
| 0.9 |
// Java program to print
// equal sum sets of array.
import
java.io.*;
import
java.util.*;
class
GFG
{
// Function to print equal
// sum sets of array.
static
void
printEqualSumSets(
int
[]arr,
int
n)
{
int
i, currSum, sum =
0
;
// Finding sum of array elements
for
(i =
0
; i < arr.length; i++)
sum += arr[i];
// Check sum is even or odd.
// If odd then array cannot
// be partitioned. Print -1
// and return.
if
((sum &
1
) ==
1
)
{
System.out.print(
"-1"
);
return
;
}
// Divide sum by 2 to find
// sum of two possible subsets.
int
k = sum >>
1
;
// Boolean DP table to store
// result of states.
// dp[i,j] = true if there is a
// subset of elements in first i
// elements of array that has sum
// equal to j.
boolean
[][]dp =
new
boolean
[n +
1
][k +
1
];
// If number of elements are zero,
// then no sum can be obtained.
for
(i =
1
; i <= k; i++)
dp[
0
][i] =
false
;
// Sum 0 can be obtained by
// not selecting any element.
for
(i =
0
; i <= n; i++)
dp[i][
0
] =
true
;
// Fill the DP table
// in bottom up manner.
for
(i =
1
; i <= n; i++)
{
for
(currSum =
1
;
currSum <= k;
currSum++)
{
// Excluding current element.
dp[i][currSum] = dp[i -
1
][currSum];
// Including current element
if
(arr[i -
1
] <= currSum)
dp[i][currSum] = dp[i][currSum] |
dp[i -
1
][currSum - arr[i -
1
]];
}
}
// Required sets set1 and set2.
List<Integer> set1 =
new
ArrayList<Integer>();
List<Integer> set2 =
new
ArrayList<Integer>();
// If partition is not possible
// print -1 and return.
if
(!dp[n][k])
{
System.out.print(
"-1\n"
);
return
;
}
// Start from last
// element in dp table.
i = n;
currSum = k;
while
(i >
0
&& currSum >=
0
)
{
// If current element does
// not contribute to k, then
// it belongs to set 2.
if
(dp[i -
1
][currSum])
{
i--;
set2.add(arr[i]);
}
// If current element contribute
// to k then it belongs to set 1.
else
if
(dp[i -
1
][currSum - arr[i -
1
]])
{
i--;
currSum -= arr[i];
set1.add(arr[i]);
}
}
// Print elements of both the sets.
System.out.print(
"Set 1 elements: "
);
for
(i =
0
; i < set1.size(); i++)
System.out.print(set1.get(i) +
" "
);
System.out.print(
"\nSet 2 elements: "
);
for
(i =
0
; i < set2.size(); i++)
System.out.print(set2.get(i) +
" "
);
}
// Driver Code
public
static
void
main(String args[])
{
int
[]arr =
new
int
[]{
5
,
5
,
1
,
11
};
int
n = arr.length;
printEqualSumSets(arr, n);
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
|
n_square
|
363.java
| 0.9 |
/* Dynamic Programming implementation in Java for longest bitonic
subsequence problem */
import
java.util.*;
import
java.lang.*;
import
java.io.*;
class
LBS
{
/* lbs() returns the length of the Longest Bitonic Subsequence in
arr[] of size n. The function mainly creates two temporary arrays
lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
lis[i] ==> Longest Increasing subsequence ending with arr[i]
lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
static
int
lbs(
int
arr[],
int
n )
{
int
i, j;
/* Allocate memory for LIS[] and initialize LIS values as 1 for
all indexes */
int
[] lis =
new
int
[n];
for
(i =
0
; i < n; i++)
lis[i] =
1
;
/* Compute LIS values from left to right */
for
(i =
1
; i < n; i++)
for
(j =
0
; j < i; j++)
if
(arr[i] > arr[j] && lis[i] < lis[j] +
1
)
lis[i] = lis[j] +
1
;
/* Allocate memory for lds and initialize LDS values for
all indexes */
int
[] lds =
new
int
[n];
for
(i =
0
; i < n; i++)
lds[i] =
1
;
/* Compute LDS values from right to left */
for
(i = n-
2
; i >=
0
; i--)
for
(j = n-
1
; j > i; j--)
if
(arr[i] > arr[j] && lds[i] < lds[j] +
1
)
lds[i] = lds[j] +
1
;
/* Return the maximum value of lis[i] + lds[i] - 1*/
int
max = lis[
0
] + lds[
0
] -
1
;
for
(i =
1
; i < n; i++)
if
(lis[i] + lds[i] -
1
> max)
max = lis[i] + lds[i] -
1
;
return
max;
}
public
static
void
main (String[] args)
{
int
arr[] = {
0
,
8
,
4
,
12
,
2
,
10
,
6
,
14
,
1
,
9
,
5
,
13
,
3
,
11
,
7
,
15
};
int
n = arr.length;
System.out.println(
"Length of LBS is "
+ lbs( arr, n ));
}
}
|
n_square
|
366.java
| 0.9 |
// A Space optimized Dynamic Programming
// based Java program for LPS problem
class
GFG {
// Returns the length of the longest
// palindromic subsequence in str
static
int
lps(String s)
{
int
n = s.length();
// a[i] is going to store length
// of longest palindromic subsequence
// of substring s[0..i]
int
a[] =
new
int
[n];
// Pick starting point
for
(
int
i = n -
1
; i >=
0
; i--)
{
int
back_up =
0
;
// Pick ending points and see if s[i]
// increases length of longest common
// subsequence ending with s[j].
for
(
int
j = i; j < n; j++) {
// similar to 2D array L[i][j] == 1
// i.e., handling substrings of length
// one.
if
(j == i)
a[j] =
1
;
// Similar to 2D array L[i][j] = L[i+1][j-1]+2
// i.e., handling case when corner characters
// are same.
else
if
(s.charAt(i) == s.charAt(j))
{
int
temp = a[j];
a[j] = back_up +
2
;
back_up = temp;
}
// similar to 2D array L[i][j] = max(L[i][j-1],
// a[i+1][j])
else
{
back_up = a[j];
a[j] = Math.max(a[j -
1
], a[j]);
}
}
}
return
a[n -
1
];
}
/* Driver program to test above functions */
public
static
void
main(String[] args)
{
String str =
"GEEKSFORGEEKS"
;
System.out.println(lps(str));
}
}
//This article is contributed by prerna saini.
|
n_square
|
367.java
| 0.9 |
// Java code to Count Palindromic Subsequence
// in a given String
public
class
GFG
{
// Function return the total palindromic
// subsequence
static
int
countPS(String str)
{
int
N = str.length();
// create a 2D array to store the count
// of palindromic subsequence
int
[][] cps =
new
int
[N+
1
][N+
1
];
// palindromic subsequence of length 1
for
(
int
i =
0
; i < N; i++)
cps[i][i] =
1
;
// check subsequence of length L is
// palindrome or not
for
(
int
L=
2
; L<=N; L++)
{
for
(
int
i =
0
; i < N; i++)
{
int
k = L + i -
1
;
if
(k < N){
if
(str.charAt(i) == str.charAt(k))
cps[i][k] = cps[i][k-
1
] +
cps[i+
1
][k] +
1
;
else
cps[i][k] = cps[i][k-
1
] +
cps[i+
1
][k] -
cps[i+
1
][k-
1
];
}
}
}
// return total palindromic subsequence
return
cps[
0
][N-
1
];
}
// Driver program
public
static
void
main(String args[])
{
String str =
"abcb"
;
System.out.println(
"Total palindromic "
+
"subsequence are : "
+ countPS(str));
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
368.java
| 0.9 |
// Java Solution
public
class
LongestPalinSubstring
{
// A utility function to print a substring str[low..high]
static
void
printSubStr(String str,
int
low,
int
high) {
System.out.println(str.substring(low, high +
1
));
}
// This function prints the longest palindrome substring
// of str[].
// It also returns the length of the longest palindrome
static
int
longestPalSubstr(String str) {
int
n = str.length();
// get length of input string
// table[i][j] will be false if substring str[i..j]
// is not palindrome.
// Else table[i][j] will be true
boolean
table[][] =
new
boolean
[n][n];
// All substrings of length 1 are palindromes
int
maxLength =
1
;
for
(
int
i =
0
; i < n; ++i)
table[i][i] =
true
;
// check for sub-string of length 2.
int
start =
0
;
for
(
int
i =
0
; i < n -
1
; ++i) {
if
(str.charAt(i) == str.charAt(i +
1
)) {
table[i][i +
1
] =
true
;
start = i;
maxLength =
2
;
}
}
// Check for lengths greater than 2. k is length
// of substring
for
(
int
k =
3
; k <= n; ++k) {
// Fix the starting index
for
(
int
i =
0
; i < n - k +
1
; ++i)
{
// Get the ending index of substring from
// starting index i and length k
int
j = i + k -
1
;
// checking for sub-string from ith index to
// jth index iff str.charAt(i+1) to
// str.charAt(j-1) is a palindrome
if
(table[i +
1
][j -
1
] && str.charAt(i) ==
str.charAt(j)) {
table[i][j] =
true
;
if
(k > maxLength) {
start = i;
maxLength = k;
}
}
}
}
System.out.print(
"Longest palindrome substring is; "
);
printSubStr(str, start, start + maxLength -
1
);
return
maxLength;
// return length of LPS
}
// Driver program to test above functions
public
static
void
main(String[] args) {
String str =
"forgeeksskeegfor"
;
System.out.println(
"Length is: "
+
longestPalSubstr(str));
}
}
// This code is contributed by Sumit Ghosh
|
n_square
|
369.java
| 0.9 |
// Java program to find palindromic substrings of a string
public
class
GFG
{
// Returns total number of palindrome substring of
// length greater then equal to 2
static
int
CountPS(
char
str[],
int
n)
{
// create empty 2-D matrix that counts all palindrome
// substring. dp[i][j] stores counts of palindromic
// substrings in st[i..j]
int
dp[][] =
new
int
[n][n];
// P[i][j] = true if substring str[i..j] is palindrome,
// else false
boolean
P[][] =
new
boolean
[n][n];
// palindrome of single length
for
(
int
i=
0
; i< n; i++)
P[i][i] =
true
;
// palindrome of length 2
for
(
int
i=
0
; i<n-
1
; i++)
{
if
(str[i] == str[i+
1
])
{
P[i][i+
1
] =
true
;
dp[i][i+
1
] =
1
;
}
}
// Palindromes of length more than 2. This loop is similar
// to Matrix Chain Multiplication. We start with a gap of
// length 2 and fill the DP table in a way that gap between
// starting and ending indexes increases one by one by
// outer loop.
for
(
int
gap=
2
; gap<n; gap++)
{
// Pick starting point for current gap
for
(
int
i=
0
; i<n-gap; i++)
{
// Set ending point
int
j = gap + i;
// If current string is palindrome
if
(str[i] == str[j] && P[i+
1
][j-
1
] )
P[i][j] =
true
;
// Add current palindrome substring ( + 1)
// and rest palindrome substring (dp[i][j-1] + dp[i+1][j])
// remove common palindrome substrings (- dp[i+1][j-1])
if
(P[i][j] ==
true
)
dp[i][j] = dp[i][j-
1
] + dp[i+
1
][j] +
1
- dp[i+
1
][j-
1
];
else
dp[i][j] = dp[i][j-
1
] + dp[i+
1
][j] - dp[i+
1
][j-
1
];
}
}
// return total palindromic substrings
return
dp[
0
][n-
1
];
}
// Driver Method
public
static
void
main(String[] args)
{
String str =
"abaab"
;
System.out.println(CountPS(str.toCharArray(), str.length()));
}
}
|
n_square
|
370.java
| 0.9 |
// Java program to query number of palindromic
// substrings of a string in a range
import
java.io.*;
class
GFG {
// Function to construct the dp array
static
void
constructDp(
int
dp[][], String str)
{
int
l = str.length();
// declare 2D array isPalin, isPalin[i][j] will
// be 1 if str(i..j) is palindrome
int
[][] isPalin =
new
int
[l +
1
][l +
1
];
// initialize dp and isPalin array by zeros
for
(
int
i =
0
; i <= l; i++) {
for
(
int
j =
0
; j <= l; j++) {
isPalin[i][j] = dp[i][j] =
0
;
}
}
// loop for starting index of range
for
(
int
i = l -
1
; i >=
0
; i--) {
// initialize value for one character strings as 1
isPalin[i][i] =
1
;
dp[i][i] =
1
;
// loop for ending index of range
for
(
int
j = i +
1
; j < l; j++) {
/* isPalin[i][j] will be 1 if ith and
jth characters are equal and mid
substring str(i+1..j-1) is also a
palindrome */
isPalin[i][j] = (str.charAt(i) == str.charAt(j) && (i +
1
> j -
1
|| (isPalin[i +
1
][j -
1
]) !=
0
)) ?
1
:
0
;
/* dp[i][j] will be addition of number
of palindromes from i to j-1 and i+1
to j subtracting palindromes from i+1
to j-1 (as counted twice) plus 1 if
str(i..j) is also a palindrome */
dp[i][j] = dp[i][j -
1
] + dp[i +
1
][j] - dp[i +
1
][j -
1
] + isPalin[i][j];
}
}
}
// method returns count of palindromic substring in range (l, r)
static
int
countOfPalindromeInRange(
int
dp[][],
int
l,
int
r)
{
return
dp[l][r];
}
// driver program
public
static
void
main(String args[])
{
int
MAX =
50
;
String str =
"xyaabax"
;
int
[][] dp =
new
int
[MAX][MAX];
constructDp(dp, str);
int
l =
3
;
int
r =
5
;
System.out.println(countOfPalindromeInRange(dp, l, r));
}
}
// Contributed by Pramod Kumar
|
n_square
|
371.java
| 0.9 |
// Java program to find sum of maximum
// sum alternating sequence starting with
// first element.
public
class
GFG
{
// Return sum of maximum sum alternating
// sequence starting with arr[0] and is first
// decreasing.
static
int
maxAlternateSum(
int
arr[],
int
n)
{
if
(n ==
1
)
return
arr[
0
];
// create two empty array that store result of
// maximum sum of alternate sub-sequence
// stores sum of decreasing and increasing
// sub-sequence
int
dec[] =
new
int
[n];
// store sum of increasing and decreasing sun-sequence
int
inc[] =
new
int
[n];
// As per question, first element must be part
// of solution.
dec[
0
] = inc[
0
] = arr[
0
];
int
flag =
0
;
// Traverse remaining elements of array
for
(
int
i=
1
; i<n; i++)
{
for
(
int
j=
0
; j<i; j++)
{
// IF current sub-sequence is decreasing the
// update dec[j] if needed. dec[i] by current
// inc[j] + arr[i]
if
(arr[j] > arr[i])
{
dec[i] = Math.max(dec[i], inc[j]+arr[i]);
// Revert the flag , if first decreasing
// is found
flag =
1
;
}
// If next element is greater but flag should be 1
// i.e. this element should be counted after the
// first decreasing element gets counted
else
if
(arr[j] < arr[i] && flag ==
1
)
// If current sub-sequence is increasing
// then update inc[i]
inc[i] = Math.max(inc[i], dec[j]+arr[i]);
}
}
// find maximum sum in b/w inc[] and dec[]
int
result = Integer.MIN_VALUE;
for
(
int
i =
0
; i < n; i++)
{
if
(result < inc[i])
result = inc[i];
if
(result < dec[i])
result = dec[i];
}
// return maximum sum alternate sun-sequence
return
result;
}
// Driver Method
public
static
void
main(String[] args)
{
int
arr[]= {
8
,
2
,
3
,
5
,
7
,
9
,
10
};
System.out.println(
"Maximum sum = "
+
maxAlternateSum(arr , arr.length));
}
}
|
n_square
|
372.java
| 0.9 |
// Java program to find longest
// alternating subsequence in an array
import
java.io.*;
class
GFG {
// Function to return longest
// alternating subsequence length
static
int
zzis(
int
arr[],
int
n)
{
/*las[i][0] = Length of the longest
alternating subsequence ending at
index i and last element is
greater than its previous element
las[i][1] = Length of the longest
alternating subsequence ending at
index i and last element is
smaller than its previous
element */
int
las[][] =
new
int
[n][
2
];
/* Initialize all values from 1 */
for
(
int
i =
0
; i < n; i++)
las[i][
0
] = las[i][
1
] =
1
;
int
res =
1
;
// Initialize result
/* Compute values in bottom up manner */
for
(
int
i =
1
; i < n; i++)
{
// Consider all elements as
// previous of arr[i]
for
(
int
j =
0
; j < i; j++)
{
// If arr[i] is greater, then
// check with las[j][1]
if
(arr[j] < arr[i] &&
las[i][
0
] < las[j][
1
] +
1
)
las[i][
0
] = las[j][
1
] +
1
;
// If arr[i] is smaller, then
// check with las[j][0]
if
( arr[j] > arr[i] &&
las[i][
1
] < las[j][
0
] +
1
)
las[i][
1
] = las[j][
0
] +
1
;
}
/* Pick maximum of both values at
index i */
if
(res < Math.max(las[i][
0
], las[i][
1
]))
res = Math.max(las[i][
0
], las[i][
1
]);
}
return
res;
}
/* Driver program */
public
static
void
main(String[] args)
{
int
arr[] = {
10
,
22
,
9
,
33
,
49
,
50
,
31
,
60
};
int
n = arr.length;
System.out.println(
"Length of Longest "
+
"alternating subsequence is "
+
zzis(arr, n));
}
}
// This code is contributed by Prerna Saini
|
n_square
|
373.java
| 0.9 |
// Java program to print postorder
// traversal from preorder and
// inorder traversals
import
java.util.Arrays;
class
GFG
{
// A utility function to search x in arr[] of size n
static
int
search(
int
arr[],
int
x,
int
n)
{
for
(
int
i =
0
; i < n; i++)
if
(arr[i] == x)
return
i;
return
-
1
;
}
// Prints postorder traversal from
// given inorder and preorder traversals
static
void
printPostOrder(
int
in1[],
int
pre[],
int
n)
{
// The first element in pre[] is
// always root, search it in in[]
// to find left and right subtrees
int
root = search(in1, pre[
0
], n);
// If left subtree is not empty,
// print left subtree
if
(root !=
0
)
printPostOrder(in1, Arrays.copyOfRange(pre,
1
, n), root);
// If right subtree is not empty,
// print right subtree
if
(root != n -
1
)
printPostOrder(Arrays.copyOfRange(in1, root+
1
, n),
Arrays.copyOfRange(pre,
1
+root, n), n - root -
1
);
// Print root
System.out.print( pre[
0
] +
" "
);
}
// Driver code
public
static
void
main(String args[])
{
int
in1[] = {
4
,
2
,
5
,
1
,
3
,
6
};
int
pre[] = {
1
,
2
,
4
,
5
,
3
,
6
};
int
n = in1.length;
System.out.println(
"Postorder traversal "
);
printPostOrder(in1, pre, n);
}
}
// This code is contributed by Arnab Kundu
|
n_square
|
375.java
| 0.9 |
// Java program to print Postorder traversal from given Inorder
// and Preorder traversals.
public
class
PrintPost {
static
int
preIndex =
0
;
void
printPost(
int
[] in,
int
[] pre,
int
inStrt,
int
inEnd)
{
if
(inStrt > inEnd)
return
;
// Find index of next item in preorder traversal in
// inorder.
int
inIndex = search(in, inStrt, inEnd, pre[preIndex++]);
// traverse left tree
printPost(in, pre, inStrt, inIndex -
1
);
// traverse right tree
printPost(in, pre, inIndex +
1
, inEnd);
// print root node at the end of traversal
System.out.print(in[inIndex] +
" "
);
}
int
search(
int
[] in,
int
startIn,
int
endIn,
int
data)
{
int
i =
0
;
for
(i = startIn; i < endIn; i++)
if
(in[i] == data)
return
i;
return
i;
}
// Driver code
public
static
void
main(String ars[])
{
int
in[] = {
4
,
2
,
5
,
1
,
3
,
6
};
int
pre[] = {
1
,
2
,
4
,
5
,
3
,
6
};
int
len = in.length;
PrintPost tree =
new
PrintPost();
tree.printPost(in, pre,
0
, len -
1
);
}
}
|
n_square
|
376.java
| 0.9 |
// Java program for recursive level order traversal in spiral form
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class
Node {
int
data;
Node left, right;
public
Node(
int
d)
{
data = d;
left = right =
null
;
}
}
class
BinaryTree {
Node root;
// Function to print the spiral traversal of tree
void
printSpiral(Node node)
{
int
h = height(node);
int
i;
/* ltr -> left to right. If this variable is set then the
given label is traversed from left to right */
boolean
ltr =
false
;
for
(i =
1
; i <= h; i++) {
printGivenLevel(node, i, ltr);
/*Revert ltr to traverse next level in opposite order*/
ltr = !ltr;
}
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int
height(Node node)
{
if
(node ==
null
)
return
0
;
else
{
/* compute the height of each subtree */
int
lheight = height(node.left);
int
rheight = height(node.right);
/* use the larger one */
if
(lheight > rheight)
return
(lheight +
1
);
else
return
(rheight +
1
);
}
}
/* Print nodes at a given level */
void
printGivenLevel(Node node,
int
level,
boolean
ltr)
{
if
(node ==
null
)
return
;
if
(level ==
1
)
System.out.print(node.data +
" "
);
else
if
(level >
1
) {
if
(ltr !=
false
) {
printGivenLevel(node.left, level -
1
, ltr);
printGivenLevel(node.right, level -
1
, ltr);
}
else
{
printGivenLevel(node.right, level -
1
, ltr);
printGivenLevel(node.left, level -
1
, ltr);
}
}
}
/* Driver program to test the above functions */
public
static
void
main(String[] args)
{
BinaryTree tree =
new
BinaryTree();
tree.root =
new
Node(
1
);
tree.root.left =
new
Node(
2
);
tree.root.right =
new
Node(
3
);
tree.root.left.left =
new
Node(
7
);
tree.root.left.right =
new
Node(
6
);
tree.root.right.left =
new
Node(
5
);
tree.root.right.right =
new
Node(
4
);
System.out.println(
"Spiral order traversal of Binary Tree is "
);
tree.printSpiral(tree.root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
384.java
| 0.9 |
// A recursive java program to print reverse level order traversal
// A binary tree node
class
Node
{
int
data;
Node left, right;
Node(
int
item)
{
data = item;
left = right;
}
}
class
BinaryTree
{
Node root;
/* Function to print REVERSE level order traversal a tree*/
void
reverseLevelOrder(Node node)
{
int
h = height(node);
int
i;
for
(i = h; i >=
1
; i--)
//THE ONLY LINE DIFFERENT FROM NORMAL LEVEL ORDER
{
printGivenLevel(node, i);
}
}
/* Print nodes at a given level */
void
printGivenLevel(Node node,
int
level)
{
if
(node ==
null
)
return
;
if
(level ==
1
)
System.out.print(node.data +
" "
);
else
if
(level >
1
)
{
printGivenLevel(node.left, level -
1
);
printGivenLevel(node.right, level -
1
);
}
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int
height(Node node)
{
if
(node ==
null
)
return
0
;
else
{
/* compute the height of each subtree */
int
lheight = height(node.left);
int
rheight = height(node.right);
/* use the larger one */
if
(lheight > rheight)
return
(lheight +
1
);
else
return
(rheight +
1
);
}
}
// Driver program to test above functions
public
static
void
main(String args[])
{
BinaryTree tree =
new
BinaryTree();
// Let us create trees shown in above diagram
tree.root =
new
Node(
1
);
tree.root.left =
new
Node(
2
);
tree.root.right =
new
Node(
3
);
tree.root.left.left =
new
Node(
4
);
tree.root.left.right =
new
Node(
5
);
System.out.println(
"Level Order traversal of binary tree is : "
);
tree.reverseLevelOrder(tree.root);
}
}
// This code has been contributed by Mayank Jaiswal
|
n_square
|
387.java
| 0.9 |
// Java program to construct a tree using inorder and preorder traversal
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class
Node {
char
data;
Node left, right;
Node(
char
item)
{
data = item;
left = right =
null
;
}
}
class
BinaryTree {
Node root;
static
int
preIndex =
0
;
/* Recursive function to construct binary of size len from
Inorder traversal in[] and Preorder traversal pre[].
Initial values of inStrt and inEnd should be 0 and len -1.
The function doesn't do any error checking for cases where
inorder and preorder do not form a tree */
Node buildTree(
char
in[],
char
pre[],
int
inStrt,
int
inEnd)
{
if
(inStrt > inEnd)
return
null
;
/* Pick current node from Preorder traversal using preIndex
and increment preIndex */
Node tNode =
new
Node(pre[preIndex++]);
/* If this node has no children then return */
if
(inStrt == inEnd)
return
tNode;
/* Else find the index of this node in Inorder traversal */
int
inIndex = search(in, inStrt, inEnd, tNode.data);
/* Using index in Inorder traversal, construct left and
right subtress */
tNode.left = buildTree(in, pre, inStrt, inIndex -
1
);
tNode.right = buildTree(in, pre, inIndex +
1
, inEnd);
return
tNode;
}
/* UTILITY FUNCTIONS */
/* Function to find index of value in arr[start...end]
The function assumes that value is present in in[] */
int
search(
char
arr[],
int
strt,
int
end,
char
value)
{
int
i;
for
(i = strt; i <= end; i++) {
if
(arr[i] == value)
return
i;
}
return
i;
}
/* This funtcion is here just to test buildTree() */
void
printInorder(Node node)
{
if
(node ==
null
)
return
;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
System.out.print(node.data +
" "
);
/* now recur on right child */
printInorder(node.right);
}
// driver program to test above functions
public
static
void
main(String args[])
{
BinaryTree tree =
new
BinaryTree();
char
in[] =
new
char
[] {
'D'
,
'B'
,
'E'
,
'A'
,
'F'
,
'C'
};
char
pre[] =
new
char
[] {
'A'
,
'B'
,
'D'
,
'E'
,
'C'
,
'F'
};
int
len = in.length;
Node root = tree.buildTree(in, pre,
0
, len -
1
);
// building the tree by printing inorder traversal
System.out.println(
"Inorder traversal of constructed tree is : "
);
tree.printInorder(root);
}
}
// This code has been contributed by Mayank Jaiswal
|
n_square
|
396.java
| 0.9 |
// Java Program to construct ancestor matrix for a given tree
import
java.util.*;
class
GFG
{
// ancestorMatrix function to populate the matrix of
public
static
void
ancestorMatrix(Node root ,
int
matrix[][],
int
size)
{
// base case:
if
(root==
null
)
return
;
// call recursively for a preorder {left}
ancestorMatrix(root.left, matrix, size);
// call recursively for preorder {right}
ancestorMatrix(root.right, matrix, size);
// here we will reach the root node automatically
// try solving on pen and paper
if
(root.left !=
null
)
{
// make the current node as parent of its children node
matrix[root.data][root.left.data] =
1
;
// iterate through all the columns of children node
// all nodes which are children to
// children of root node will also
// be children of root node
for
(
int
i =
0
; i < size; i++)
{
// if children of root node is a parent
// of someone (i.e 1) then make that node
// as children of root also
if
(matrix[root.left.data][i] ==
1
)
matrix[root.data][i] =
1
;
}
}
// same procedure followed for right node as well
if
(root.right !=
null
)
{
matrix[root.data][root.right.data] =
1
;
for
(
int
i =
0
; i < size; i++)
{
if
(matrix[root.right.data][i]==
1
)
matrix[root.data][i] =
1
;
}
}
}
// Driver program to test the program
public
static
void
main(String[] args)
{
// construct the binary tree as follows
Node tree_root =
new
Node(
5
);
tree_root.left =
new
Node (
1
);
tree_root.right =
new
Node(
2
);
tree_root.left.left =
new
Node(
0
);
tree_root.left.right =
new
Node(
4
);
tree_root.right.left =
new
Node(
3
);
// size of matrix
int
size =
6
;
int
matrix [][] =
new
int
[size][size];
ancestorMatrix(tree_root, matrix, size);
for
(
int
i =
0
; i < size; i++)
{
for
(
int
j =
0
; j < size; j++)
{
System.out.print(matrix[i][j]+
" "
);
}
System.out.println();
}
}
// node class for tree node
static
class
Node
{
public
int
data ;
public
Node left ,right;
public
Node (
int
data)
{
this
.data = data;
this
.left =
this
.right =
null
;
}
}
}
// This code is contributed by Sparsh Singhal
|
n_square
|
401.java
| 0.9 |
// Java program to construct tree from inorder traversal
/* A binary tree node has data, pointer to left child
and a pointer to right child */
class
Node
{
int
data;
Node left, right;
Node(
int
item)
{
data = item;
left = right =
null
;
}
}
class
BinaryTree
{
Node root;
/* Recursive function to construct binary of size len from
Inorder traversal inorder[]. Initial values of start and end
should be 0 and len -1. */
Node buildTree(
int
inorder[],
int
start,
int
end, Node node)
{
if
(start > end)
return
null
;
/* Find index of the maximum element from Binary Tree */
int
i = max(inorder, start, end);
/* Pick the maximum value and make it root */
node =
new
Node(inorder[i]);
/* If this is the only element in inorder[start..end],
then return it */
if
(start == end)
return
node;
/* Using index in Inorder traversal, construct left and
right subtress */
node.left = buildTree(inorder, start, i -
1
, node.left);
node.right = buildTree(inorder, i +
1
, end, node.right);
return
node;
}
/* UTILITY FUNCTIONS */
/* Function to find index of the maximum value in arr[start...end] */
int
max(
int
arr[],
int
strt,
int
end)
{
int
i, max = arr[strt], maxind = strt;
for
(i = strt +
1
; i <= end; i++)
{
if
(arr[i] > max)
{
max = arr[i];
maxind = i;
}
}
return
maxind;
}
/* This funtcion is here just to test buildTree() */
void
printInorder(Node node)
{
if
(node ==
null
)
return
;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
System.out.print(node.data +
" "
);
/* now recur on right child */
printInorder(node.right);
}
public
static
void
main(String args[])
{
BinaryTree tree =
new
BinaryTree();
/* Assume that inorder traversal of following tree is given
40
/ \
10 30
/ \
5 28 */
int
inorder[] =
new
int
[]{
5
,
10
,
40
,
30
,
28
};
int
len = inorder.length;
Node mynode = tree.buildTree(inorder,
0
, len -
1
, tree.root);
/* Let us test the built tree by printing Inorder traversal */
System.out.println(
"Inorder traversal of the constructed tree is "
);
tree.printInorder(mynode);
}
}
// This code has been contributed by Mayank Jaiswal
|
n_square
|
402.java
| 0.9 |
// Java program to construct a tree using inorder
// and postorder traversals
/* A binary tree node has data, pointer to left
child and a pointer to right child */
class
Node {
int
data;
Node left, right;
public
Node(
int
data)
{
this
.data = data;
left = right =
null
;
}
}
// Class Index created to implement pass by reference of Index
class
Index {
int
index;
}
class
BinaryTree {
/* Recursive function to construct binary of size n
from Inorder traversal in[] and Postrder traversal
post[]. Initial values of inStrt and inEnd should
be 0 and n -1. The function doesn't do any error
checking for cases where inorder and postorder
do not form a tree */
Node buildUtil(
int
in[],
int
post[],
int
inStrt,
int
inEnd, Index pIndex)
{
// Base case
if
(inStrt > inEnd)
return
null
;
/* Pick current node from Postrder traversal using
postIndex and decrement postIndex */
Node node =
new
Node(post[pIndex.index]);
(pIndex.index)--;
/* If this node has no children then return */
if
(inStrt == inEnd)
return
node;
/* Else find the index of this node in Inorder
traversal */
int
iIndex = search(in, inStrt, inEnd, node.data);
/* Using index in Inorder traversal, construct left and
right subtress */
node.right = buildUtil(in, post, iIndex +
1
, inEnd, pIndex);
node.left = buildUtil(in, post, inStrt, iIndex -
1
, pIndex);
return
node;
}
// This function mainly initializes index of root
// and calls buildUtil()
Node buildTree(
int
in[],
int
post[],
int
n)
{
Index pIndex =
new
Index();
pIndex.index = n -
1
;
return
buildUtil(in, post,
0
, n -
1
, pIndex);
}
/* Function to find index of value in arr[start...end]
The function assumes that value is postsent in in[] */
int
search(
int
arr[],
int
strt,
int
end,
int
value)
{
int
i;
for
(i = strt; i <= end; i++) {
if
(arr[i] == value)
break
;
}
return
i;
}
/* This funtcion is here just to test */
void
preOrder(Node node)
{
if
(node ==
null
)
return
;
System.out.print(node.data +
" "
);
preOrder(node.left);
preOrder(node.right);
}
public
static
void
main(String[] args)
{
BinaryTree tree =
new
BinaryTree();
int
in[] =
new
int
[] {
4
,
8
,
2
,
5
,
1
,
6
,
3
,
7
};
int
post[] =
new
int
[] {
8
,
4
,
5
,
2
,
6
,
7
,
3
,
1
};
int
n = in.length;
Node root = tree.buildTree(in, post, n);
System.out.println(
"Preorder of the constructed tree : "
);
tree.preOrder(root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
403.java
| 0.9 |
// Java program to convert an arbitrary binary tree to a tree that holds
// children sum property
// A binary tree node
class
Node
{
int
data;
Node left, right;
Node(
int
item)
{
data = item;
left = right =
null
;
}
}
class
BinaryTree
{
Node root;
/* This function changes a tree to hold children sum
property */
void
convertTree(Node node)
{
int
left_data =
0
, right_data =
0
, diff;
/* If tree is empty or it's a leaf node then
return true */
if
(node ==
null
|| (node.left ==
null
&& node.right ==
null
))
return
;
else
{
/* convert left and right subtrees */
convertTree(node.left);
convertTree(node.right);
/* If left child is not present then 0 is used
as data of left child */
if
(node.left !=
null
)
left_data = node.left.data;
/* If right child is not present then 0 is used
as data of right child */
if
(node.right !=
null
)
right_data = node.right.data;
/* get the diff of node's data and children sum */
diff = left_data + right_data - node.data;
/* If node's children sum is greater than the node's data */
if
(diff >
0
)
node.data = node.data + diff;
/* THIS IS TRICKY --> If node's data is greater than children
sum, then increment subtree by diff */
if
(diff <
0
)
// -diff is used to make diff positive
increment(node, -diff);
}
}
/* This function is used to increment subtree by diff */
void
increment(Node node,
int
diff)
{
/* IF left child is not NULL then increment it */
if
(node.left !=
null
)
{
node.left.data = node.left.data + diff;
// Recursively call to fix the descendants of node->left
increment(node.left, diff);
}
else
if
(node.right !=
null
)
// Else increment right child
{
node.right.data = node.right.data + diff;
// Recursively call to fix the descendants of node->right
increment(node.right, diff);
}
}
/* Given a binary tree, printInorder() prints out its
inorder traversal*/
void
printInorder(Node node)
{
if
(node ==
null
)
return
;
/* first recur on left child */
printInorder(node.left);
/* then print the data of node */
System.out.print(node.data +
" "
);
/* now recur on right child */
printInorder(node.right);
}
// Driver program to test above functions
public
static
void
main(String args[])
{
BinaryTree tree =
new
BinaryTree();
tree.root =
new
Node(
50
);
tree.root.left =
new
Node(
7
);
tree.root.right =
new
Node(
2
);
tree.root.left.left =
new
Node(
3
);
tree.root.left.right =
new
Node(
5
);
tree.root.right.left =
new
Node(
1
);
tree.root.right.right =
new
Node(
30
);
System.out.println(
"Inorder traversal before conversion is :"
);
tree.printInorder(tree.root);
tree.convertTree(tree.root);
System.out.println(
""
);
System.out.println(
"Inorder traversal after conversion is :"
);
tree.printInorder(tree.root);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
407.java
| 0.9 |
// Java program to check if Binary tree is sum tree or not
/* A binary tree node has data, left child and right child */
class
Node
{
int
data;
Node left, right, nextRight;
Node(
int
item)
{
data = item;
left = right = nextRight =
null
;
}
}
class
BinaryTree
{
Node root;
/* A utility function to get the sum of values in tree with root
as root */
int
sum(Node node)
{
if
(node ==
null
)
return
0
;
return
sum(node.left) + node.data + sum(node.right);
}
/* returns 1 if sum property holds for the given
node and both of its children */
int
isSumTree(Node node)
{
int
ls, rs;
/* If node is NULL or it's a leaf node then
return true */
if
((node ==
null
) || (node.left ==
null
&& node.right ==
null
))
return
1
;
/* Get sum of nodes in left and right subtrees */
ls = sum(node.left);
rs = sum(node.right);
/* if the node and both of its children satisfy the
property return 1 else 0*/
if
((node.data == ls + rs) && (isSumTree(node.left) !=
0
)
&& (isSumTree(node.right)) !=
0
)
return
1
;
return
0
;
}
/* Driver program to test above functions */
public
static
void
main(String args[])
{
BinaryTree tree =
new
BinaryTree();
tree.root =
new
Node(
26
);
tree.root.left =
new
Node(
10
);
tree.root.right =
new
Node(
3
);
tree.root.left.left =
new
Node(
4
);
tree.root.left.right =
new
Node(
6
);
tree.root.right.right =
new
Node(
3
);
if
(tree.isSumTree(tree.root) !=
0
)
System.out.println(
"The given tree is a sum tree"
);
else
System.out.println(
"The given tree is not a sum tree"
);
}
}
// This code has been contributed by Mayank Jaiswal
|
n_square
|
416.java
| 0.9 |
// Java program to check if there exist an edge whose
// removal creates two trees of same size
class
Node
{
int
key;
Node left, right;
public
Node(
int
key)
{
this
.key = key;
left = right =
null
;
}
}
class
BinaryTree
{
Node root;
// To calculate size of tree with given root
int
count(Node node)
{
if
(node ==
null
)
return
0
;
return
count(node.left) + count(node.right) +
1
;
}
// This function returns true if there is an edge
// whose removal can divide the tree in two halves
// n is size of tree
boolean
checkRec(Node node,
int
n)
{
// Base cases
if
(node ==
null
)
return
false
;
// Check for root
if
(count(node) == n - count(node))
return
true
;
// Check for rest of the nodes
return
checkRec(node.left, n)
|| checkRec(node.right, n);
}
// This function mainly uses checkRec()
boolean
check(Node node)
{
// Count total nodes in given tree
int
n = count(node);
// Now recursively check all nodes
return
checkRec(node, n);
}
// Driver code
public
static
void
main(String[] args)
{
BinaryTree tree =
new
BinaryTree();
tree.root =
new
Node(
5
);
tree.root.left =
new
Node(
1
);
tree.root.right =
new
Node(
6
);
tree.root.left.left =
new
Node(
3
);
tree.root.right.left =
new
Node(
7
);
tree.root.right.right =
new
Node(
4
);
if
(tree.check(tree.root)==
true
)
System.out.println(
"YES"
);
else
System.out.println(
"NO"
);
}
}
// This code has been contributed by Mayank Jaiswal(mayank_24)
|
n_square
|
421.java
| 0.9 |
/* Java program to check if all three given
traversals are of the same tree */
import
java.util.*;
class
GfG {
static
int
preIndex =
0
;
// A Binary Tree Node
static
class
Node
{
int
data;
Node left, right;
}
// Utility function to create a new tree node
static
Node newNode(
int
data)
{
Node temp =
new
Node();
temp.data = data;
temp.left =
null
;
temp.right =
null
;
return
temp;
}
/* Function to find index of value in arr[start...end]
The function assumes that value is present in in[] */
static
int
search(
int
arr[],
int
strt,
int
end,
int
value)
{
for
(
int
i = strt; i <= end; i++)
{
if
(arr[i] == value)
return
i;
}
return
-
1
;
}
/* Recursive function to construct binary tree
of size len from Inorder traversal in[] and
Preorder traversal pre[]. Initial values
of inStrt and inEnd should be 0 and len -1.
The function doesn't do any error checking for
cases where inorder and preorder do not form a
tree */
static
Node buildTree(
int
in[],
int
pre[],
int
inStrt,
int
inEnd)
{
if
(inStrt > inEnd)
return
null
;
/* Pick current node from Preorder traversal
using preIndex and increment preIndex */
Node tNode = newNode(pre[preIndex++]);
/* If this node has no children then return */
if
(inStrt == inEnd)
return
tNode;
/* Else find the index of this node in
Inorder traversal */
int
inIndex = search(in, inStrt, inEnd, tNode.data);
/* Using index in Inorder traversal,
construct left and right subtress */
tNode.left = buildTree(in, pre, inStrt, inIndex-
1
);
tNode.right = buildTree(in, pre, inIndex+
1
, inEnd);
return
tNode;
}
/* function to compare Postorder traversal
on constructed tree and given Postorder */
static
int
checkPostorder(Node node,
int
postOrder[],
int
index)
{
if
(node ==
null
)
return
index;
/* first recur on left child */
index = checkPostorder(node.left,postOrder,index);
/* now recur on right child */
index = checkPostorder(node.right,postOrder,index);
/* Compare if data at current index in
both Postorder traversals are same */
if
(node.data == postOrder[index])
index++;
else
return
-
1
;
return
index;
}
// Driver program to test above functions
public
static
void
main(String[] args)
{
int
inOrder[] = {
4
,
2
,
5
,
1
,
3
};
int
preOrder[] = {
1
,
2
,
4
,
5
,
3
};
int
postOrder[] = {
4
,
5
,
2
,
3
,
1
};
int
len = inOrder.length;
// build tree from given
// Inorder and Preorder traversals
Node root = buildTree(inOrder, preOrder,
0
, len -
1
);
// compare postorder traversal on constructed
// tree with given Postorder traversal
int
index = checkPostorder(root,postOrder,
0
);
// If both postorder traversals are same
if
(index == len)
System.out.println(
"Yes"
);
else
System.out.println(
"No"
);
}
}
|
n_square
|
423.java
| 0.9 |
// A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
// The program is for adjacency matrix representation of the graph
import
java.util.*;
import
java.lang.*;
import
java.io.*;
class
MST {
// Number of vertices in the graph
private
static
final
int
V =
5
;
// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
int
minKey(
int
key[], Boolean mstSet[])
{
// Initialize min value
int
min = Integer.MAX_VALUE, min_index = -
1
;
for
(
int
v =
0
; v < V; v++)
if
(mstSet[v] ==
false
&& key[v] < min) {
min = key[v];
min_index = v;
}
return
min_index;
}
// A utility function to print the constructed MST stored in
// parent[]
void
printMST(
int
parent[],
int
graph[][])
{
System.out.println(
"Edge \tWeight"
);
for
(
int
i =
1
; i < V; i++)
System.out.println(parent[i] +
" - "
+ i +
"\t"
+ graph[i][parent[i]]);
}
// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void
primMST(
int
graph[][])
{
// Array to store constructed MST
int
parent[] =
new
int
[V];
// Key values used to pick minimum weight edge in cut
int
key[] =
new
int
[V];
// To represent set of vertices not yet included in MST
Boolean mstSet[] =
new
Boolean[V];
// Initialize all keys as INFINITE
for
(
int
i =
0
; i < V; i++) {
key[i] = Integer.MAX_VALUE;
mstSet[i] =
false
;
}
// Always include first 1st vertex in MST.
key[
0
] =
0
;
// Make key 0 so that this vertex is
// picked as first vertex
parent[
0
] = -
1
;
// First node is always root of MST
// The MST will have V vertices
for
(
int
count =
0
; count < V -
1
; count++) {
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
int
u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] =
true
;
// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for
(
int
v =
0
; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if
(graph[u][v] !=
0
&& mstSet[v] ==
false
&& graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
// print the constructed MST
printMST(parent, graph);
}
public
static
void
main(String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
MST t =
new
MST();
int
graph[][] =
new
int
[][] { {
0
,
2
,
0
,
6
,
0
},
{
2
,
0
,
3
,
8
,
5
},
{
0
,
3
,
0
,
0
,
7
},
{
6
,
8
,
0
,
0
,
9
},
{
0
,
5
,
7
,
9
,
0
} };
// Print the solution
t.primMST(graph);
}
}
// This code is contributed by Aakash Hasija
|
n_square
|
465.java
| 0.9 |
// A Java program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
import
java.util.*;
import
java.lang.*;
import
java.io.*;
class
ShortestPath
{
// A utility function to find the vertex with minimum distance value,
// from the set of vertices not yet included in shortest path tree
static
final
int
V=
9
;
int
minDistance(
int
dist[], Boolean sptSet[])
{
// Initialize min value
int
min = Integer.MAX_VALUE, min_index=-
1
;
for
(
int
v =
0
; v < V; v++)
if
(sptSet[v] ==
false
&& dist[v] <= min)
{
min = dist[v];
min_index = v;
}
return
min_index;
}
// A utility function to print the constructed distance array
void
printSolution(
int
dist[],
int
n)
{
System.out.println(
"Vertex Distance from Source"
);
for
(
int
i =
0
; i < V; i++)
System.out.println(i+
" tt "
+dist[i]);
}
// Funtion that implements Dijkstra's single source shortest path
// algorithm for a graph represented using adjacency matrix
// representation
void
dijkstra(
int
graph[][],
int
src)
{
int
dist[] =
new
int
[V];
// The output array. dist[i] will hold
// the shortest distance from src to i
// sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
Boolean sptSet[] =
new
Boolean[V];
// Initialize all distances as INFINITE and stpSet[] as false
for
(
int
i =
0
; i < V; i++)
{
dist[i] = Integer.MAX_VALUE;
sptSet[i] =
false
;
}
// Distance of source vertex from itself is always 0
dist[src] =
0
;
// Find shortest path for all vertices
for
(
int
count =
0
; count < V-
1
; count++)
{
// Pick the minimum distance vertex from the set of vertices
// not yet processed. u is always equal to src in first
// iteration.
int
u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] =
true
;
// Update dist value of the adjacent vertices of the
// picked vertex.
for
(
int
v =
0
; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an
// edge from u to v, and total weight of path from src to
// v through u is smaller than current value of dist[v]
if
(!sptSet[v] && graph[u][v]!=
0
&&
dist[u] != Integer.MAX_VALUE &&
dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist, V);
}
// Driver method
public
static
void
main (String[] args)
{
/* Let us create the example graph discussed above */
int
graph[][] =
new
int
[][]{{
0
,
4
,
0
,
0
,
0
,
0
,
0
,
8
,
0
},
{
4
,
0
,
8
,
0
,
0
,
0
,
0
,
11
,
0
},
{
0
,
8
,
0
,
7
,
0
,
4
,
0
,
0
,
2
},
{
0
,
0
,
7
,
0
,
9
,
14
,
0
,
0
,
0
},
{
0
,
0
,
0
,
9
,
0
,
10
,
0
,
0
,
0
},
{
0
,
0
,
4
,
14
,
10
,
0
,
2
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
,
2
,
0
,
1
,
6
},
{
8
,
11
,
0
,
0
,
0
,
0
,
1
,
0
,
7
},
{
0
,
0
,
2
,
0
,
0
,
0
,
6
,
7
,
0
}
};
ShortestPath t =
new
ShortestPath();
t.dijkstra(graph,
0
);
}
}
//This code is contributed by Aakash Hasija
|
n_square
|
467.java
| 0.9 |
// Java program to to maximize array
// sum after k operations.
class
GFG
{
// This function does k operations
// on array in a way that maximize
// the array sum. index --> stores
// the index of current minimum
// element for j'th operation
static
int
maximumSum(
int
arr[],
int
n,
int
k)
{
// Modify array K number of times
for
(
int
i =
1
; i <= k; i++)
{
int
min = +
2147483647
;
int
index = -
1
;
// Find minimum element in array for
// current operation and modify it
// i.e; arr[j] --> -arr[j]
for
(
int
j=
0
; j<n; j++)
{
if
(arr[j] < min)
{
min = arr[j];
index = j;
}
}
// this the condition if we find 0 as
// minimum element, so it will useless to
// replace 0 by -(0) for remaining operations
if
(min ==
0
)
break
;
// Modify element of array
arr[index] = -arr[index];
}
// Calculate sum of array
int
sum =
0
;
for
(
int
i =
0
; i < n; i++)
sum += arr[i];
return
sum;
}
// Driver program
public
static
void
main(String arg[])
{
int
arr[] = {-
2
,
0
,
5
, -
1
,
2
};
int
k =
4
;
int
n = arr.length;
System.out.print(maximumSum(arr, n, k));
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
471.java
| 0.9 |
// Java program to find lexicographically minimum
// value after k swaps.
class
GFG {
// Modifies arr[0..n-1] to lexicographically
// smallest with k swaps.
static
void
minimizeWithKSwaps(
int
arr[],
int
n,
int
k)
{
for
(
int
i =
0
; i < n-
1
&& k >
0
; ++i)
{
// Set the position where we want
// to put the smallest integer
int
pos = i;
for
(
int
j = i+
1
; j < n ; ++j)
{
// If we exceed the Max swaps
// then terminate the loop
if
(j - i > k)
break
;
// Find the minimum value from i+1 to
// max k or n
if
(arr[j] < arr[pos])
pos = j;
}
// Swap the elements from Minimum position
// we found till now to the i index
int
temp;
for
(
int
j = pos; j>i; --j)
{
temp=arr[j];
arr[j]=arr[j-
1
];
arr[j-
1
]=temp;
}
// Set the final value after swapping pos-i
// elements
k -= pos-i;
}
}
// Driver method
public
static
void
main(String[] args)
{
int
arr[] = {
7
,
6
,
9
,
2
,
1
};
int
n = arr.length;
int
k =
3
;
minimizeWithKSwaps(arr, n, k);
//Print the final Array
for
(
int
i=
0
; i<n; ++i)
System.out.print(arr[i] +
" "
);
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
488.java
| 0.9 |
// Java program to find
// lexicographically
// maximum value after
// k swaps.
import
java.io.*;
class
GFG
{
static
void
SwapInts(
int
array[],
int
position1,
int
position2)
{
// Swaps elements
// in an array.
// Copy the first
// position's element
int
temp = array[position1];
// Assign to the
// second element
array[position1] = array[position2];
// Assign to the
// first element
array[position2] = temp;
}
// Function which
// modifies the array
static
void
KSwapMaximum(
int
[]arr,
int
n,
int
k)
{
for
(
int
i =
0
;
i < n -
1
&& k >
0
; ++i)
{
// Here, indexPositionition
// is set where we want to
// put the current largest
// integer
int
indexPosition = i;
for
(
int
j = i +
1
; j < n; ++j)
{
// If we exceed the
// Max swaps then
// break the loop
if
(k <= j - i)
break
;
// Find the maximum value
// from i+1 to max k or n
// which will replace
// arr[indexPosition]
if
(arr[j] > arr[indexPosition])
indexPosition = j;
}
// Swap the elements from
// Maximum indexPosition
// we found till now to
// the ith index
for
(
int
j = indexPosition; j > i; --j)
SwapInts(arr, j, j -
1
);
// Updates k after swapping
// indexPosition-i elements
k -= indexPosition - i;
}
}
// Driver code
public
static
void
main(String args[])
{
int
[]arr = {
3
,
5
,
4
,
1
,
2
};
int
n = arr.length;
int
k =
3
;
KSwapMaximum(arr, n, k);
// Print the final Array
for
(
int
i =
0
; i < n; ++i)
System.out.print(arr[i] +
" "
);
}
}
// This code is contributed by
// Manish Shaw(manishshaw1)
|
n_square
|
489.java
| 0.9 |
// A Java program to implement greedy algorithm for graph coloring
import
java.io.*;
import
java.util.*;
import
java.util.LinkedList;
// This class represents an undirected graph using adjacency list
class
Graph
{
private
int
V;
// No. of vertices
private
LinkedList<Integer> adj[];
//Adjacency List
//Constructor
Graph(
int
v)
{
V = v;
adj =
new
LinkedList[v];
for
(
int
i=
0
; i<v; ++i)
adj[i] =
new
LinkedList();
}
//Function to add an edge into the graph
void
addEdge(
int
v,
int
w)
{
adj[v].add(w);
adj[w].add(v);
//Graph is undirected
}
// Assigns colors (starting from 0) to all vertices and
// prints the assignment of colors
void
greedyColoring()
{
int
result[] =
new
int
[V];
// Initialize all vertices as unassigned
Arrays.fill(result, -
1
);
// Assign the first color to first vertex
result[
0
] =
0
;
// A temporary array to store the available colors. False
// value of available[cr] would mean that the color cr is
// assigned to one of its adjacent vertices
boolean
available[] =
new
boolean
[V];
// Initially, all colors are available
Arrays.fill(available,
true
);
// Assign colors to remaining V-1 vertices
for
(
int
u =
1
; u < V; u++)
{
// Process all adjacent vertices and flag their colors
// as unavailable
Iterator<Integer> it = adj[u].iterator() ;
while
(it.hasNext())
{
int
i = it.next();
if
(result[i] != -
1
)
available[result[i]] =
false
;
}
// Find the first available color
int
cr;
for
(cr =
0
; cr < V; cr++){
if
(available[cr])
break
;
}
result[u] = cr;
// Assign the found color
// Reset the values back to true for the next iteration
Arrays.fill(available,
true
);
}
// print the result
for
(
int
u =
0
; u < V; u++)
System.out.println(
"Vertex "
+ u +
" ---> Color "
+ result[u]);
}
// Driver method
public
static
void
main(String args[])
{
Graph g1 =
new
Graph(
5
);
g1.addEdge(
0
,
1
);
g1.addEdge(
0
,
2
);
g1.addEdge(
1
,
2
);
g1.addEdge(
1
,
3
);
g1.addEdge(
2
,
3
);
g1.addEdge(
3
,
4
);
System.out.println(
"Coloring of graph 1"
);
g1.greedyColoring();
System.out.println();
Graph g2 =
new
Graph(
5
);
g2.addEdge(
0
,
1
);
g2.addEdge(
0
,
2
);
g2.addEdge(
1
,
2
);
g2.addEdge(
1
,
4
);
g2.addEdge(
2
,
4
);
g2.addEdge(
4
,
3
);
System.out.println(
"Coloring of graph 2 "
);
g2.greedyColoring();
}
}
// This code is contributed by Aakash Hasija
|
n_square
|
490.java
| 0.9 |
// Java program to fin maximum cash
// flow among a set of persons
class
GFG
{
// Number of persons (or vertices in the graph)
static
final
int
N =
3
;
// A utility function that returns
// index of minimum value in arr[]
static
int
getMin(
int
arr[])
{
int
minInd =
0
;
for
(
int
i =
1
; i < N; i++)
if
(arr[i] < arr[minInd])
minInd = i;
return
minInd;
}
// A utility function that returns
// index of maximum value in arr[]
static
int
getMax(
int
arr[])
{
int
maxInd =
0
;
for
(
int
i =
1
; i < N; i++)
if
(arr[i] > arr[maxInd])
maxInd = i;
return
maxInd;
}
// A utility function to return minimum of 2 values
static
int
minOf2(
int
x,
int
y)
{
return
(x < y) ? x: y;
}
// amount[p] indicates the net amount
// to be credited/debited to/from person 'p'
// If amount[p] is positive, then
// i'th person will amount[i]
// If amount[p] is negative, then
// i'th person will give -amount[i]
static
void
minCashFlowRec(
int
amount[])
{
// Find the indexes of minimum and
// maximum values in amount[]
// amount[mxCredit] indicates the maximum amount
// to be given (or credited) to any person .
// And amount[mxDebit] indicates the maximum amount
// to be taken(or debited) from any person.
// So if there is a positive value in amount[],
// then there must be a negative value
int
mxCredit = getMax(amount), mxDebit = getMin(amount);
// If both amounts are 0, then
// all amounts are settled
if
(amount[mxCredit] ==
0
&& amount[mxDebit] ==
0
)
return
;
// Find the minimum of two amounts
int
min = minOf2(-amount[mxDebit], amount[mxCredit]);
amount[mxCredit] -= min;
amount[mxDebit] += min;
// If minimum is the maximum amount to be
System.out.println(
"Person "
+ mxDebit +
" pays "
+ min
+
" to "
+
"Person "
+ mxCredit);
// Recur for the amount array.
// Note that it is guaranteed that
// the recursion would terminate
// as either amount[mxCredit] or
// amount[mxDebit] becomes 0
minCashFlowRec(amount);
}
// Given a set of persons as graph[]
// where graph[i][j] indicates
// the amount that person i needs to
// pay person j, this function
// finds and prints the minimum
// cash flow to settle all debts.
static
void
minCashFlow(
int
graph[][])
{
// Create an array amount[],
// initialize all value in it as 0.
int
amount[]=
new
int
[N];
// Calculate the net amount to
// be paid to person 'p', and
// stores it in amount[p]. The
// value of amount[p] can be
// calculated by subtracting
// debts of 'p' from credits of 'p'
for
(
int
p =
0
; p < N; p++)
for
(
int
i =
0
; i < N; i++)
amount[p] += (graph[i][p] - graph[p][i]);
minCashFlowRec(amount);
}
// Driver code
public
static
void
main (String[] args)
{
// graph[i][j] indicates the amount
// that person i needs to pay person j
int
graph[][] = { {
0
,
1000
,
2000
},
{
0
,
0
,
5000
},
{
0
,
0
,
0
},};
// Print the solution
minCashFlow(graph);
}
}
// This code is contributed by Anant Agarwal.
|
n_square
|
497.java
| 0.9 |
import
java.util.*;
import
java.lang.*;
class
Main
{
static
void
minAbsSumPair(
int
arr[],
int
arr_size)
{
int
inv_count =
0
;
int
l, r, min_sum, sum, min_l, min_r;
/* Array should have at least two elements*/
if
(arr_size <
2
)
{
System.out.println(
"Invalid Input"
);
return
;
}
/* Initialization of values */
min_l =
0
;
min_r =
1
;
min_sum = arr[
0
] + arr[
1
];
for
(l =
0
; l < arr_size -
1
; l++)
{
for
(r = l+
1
; r < arr_size; r++)
{
sum = arr[l] + arr[r];
if
(Math.abs(min_sum) > Math.abs(sum))
{
min_sum = sum;
min_l = l;
min_r = r;
}
}
}
System.out.println(
" The two elements whose "
+
"sum is minimum are "
+
arr[min_l]+
" and "
+arr[min_r]);
}
// main function
public
static
void
main (String[] args)
{
int
arr[] = {
1
,
60
, -
10
,
70
, -
80
,
85
};
minAbsSumPair(arr,
6
);
}
}
|
n_square
|
522.java
| 0.9 |
// Java implementation of simple
// algorithm to find smaller
// element on left side
import
java.io.*;
class
GFG {
// Prints smaller elements on
// left side of every element
static
void
printPrevSmaller(
int
[]arr,
int
n)
{
// Always print empty or '_'
// for first element
System.out.print(
"_, "
);
// Start from second element
for
(
int
i =
1
; i < n; i++)
{
// look for smaller
// element on left of 'i'
int
j;
for
(j = i -
1
; j >=
0
; j--)
{
if
(arr[j] < arr[i])
{
System.out.print(arr[j] +
", "
);
break
;
}
}
// If there is no smaller
// element on left of 'i'
if
(j == -
1
)
System.out.print(
"_, "
) ;
}
}
// Driver Code
public
static
void
main (String[] args)
{
int
[]arr = {
1
,
3
,
0
,
2
,
5
};
int
n = arr.length;
printPrevSmaller(arr, n);
}
}
// This code is contributed by anuj_67.
|
n_square
|
550.java
| 0.9 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] arr = new int [n];
int maxindex=0;
int minindex=0;
int max;
int min;
for(int i=0;i<arr.length;i++) {
arr[i]=sc.nextInt();
}
int k=Integer.MAX_VALUE;
for(int i=0;i<arr.length;i++) {
for(int j=i;j<arr.length;j++) {
if(i!=j) {
int k1=Math.min(arr[i], arr[j])/Math.abs(i-j);
if(k1<k) {
k = k1;
}
}
}
}
System.out.println(k);
}
}
|
n_square
|
556.java
| 0.9 |
import java.io.*;
import java.util.*;
public class hi {
public static void main(String[] args) throws IOException{
Reader in=new Reader();
PrintWriter w = new PrintWriter(System.out);
int n=in.nextInt();
int[] arr=in.nextIntArray(n);
int k=Integer.MAX_VALUE;
for (int i = 0; i < n; i++) {
for (int j = i+1; j < n; j++) {
int a=(int)Math.floor((Math.min(arr[i],arr[j])/Math.abs(i-j)));
if(a < k)
k=a;
}
}
w.println(k);
w.close();
return;
}
}
class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String nextLine() throws IOException{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isEndOfLine(c));
return res.toString();
}
public String next() throws IOException{
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public int[] nextIntArray(int n) throws IOException{
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
}
|
n_square
|
560.java
| 0.9 |
import java.util.*;
import java.io.*;
public class PartySweet {
static BufferedReader br;
static StringTokenizer tokenizer;
public static void main(String[] args) throws Exception {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt(), m = nextInt();
int[] b = new int[n];
int[] g = new int[m];
for(int i = 0; i < n; i++)
b[i] = nextInt();
for(int i = 0; i < m; i++)
g[i] = nextInt();
int total = 0;
int max = 0, max2 = 0;
for(int i = 0; i < n; i++) {
if(b[i] > b[max]) {
max2 = max;
max = i;
}
else if(b[max2] < b[i])
max2 = i;
}
total += b[max] - b[max2];
for(int i = 0; i < n; i++) {
for(int j = 0; j < m; j++) {
if(b[i] > g[j]) {
System.out.println(-1);
return;
}
if(i != max)
total += b[i];
else
total += g[j];
}
}
System.out.println(total);
}
public static String next() throws IOException {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
String line = br.readLine();
if (line == null)
throw new IOException();
tokenizer = new StringTokenizer(line);
}
return tokenizer.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(next());
}
public static long nextLong() throws IOException {
return Long.parseLong(next());
}
public static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
|
n_square
|
565.java
| 0.9 |
import java.io.*;
import java.util.*;
import static java.lang.System.*;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(in));
StringTokenizer st = new StringTokenizer(br.readLine().trim());
int n = Integer.valueOf(st.nextToken());
int k = Integer.valueOf(st.nextToken());
String str = br.readLine().trim();
int [] arr = new int[n];
LL[] adjlist = new LL[n];
for(int i =0 ; i < n; i++){
int x = str.charAt(i) - 'a' + 1;
arr[i] = x;
adjlist[i] = new LL();
}
Arrays.sort(arr);
for(int i =0; i < n; i++){
for(int j = i + 1; j < n; j++){
int a = arr[i];
int b = arr[j];
if((b - a) >= 2){
adjlist[i].add(new Pair(j, arr[j], 1));
}
}
}
LinkedList<Pair> list = new LinkedList<Pair>();
LinkedList<Pair> tmpList = new LinkedList<Pair>();
int ans = Integer.MAX_VALUE;
for(int i = 0; i < n; i++){
list.clear();
list.add(new Pair(i,arr[i],0));
// out.println("---- "+arr[i]);
for(int j = 0; j < k; j++){
tmpList.clear();
while(!list.isEmpty()){
Pair cur = list.removeFirst();
if(j == k-1){
ans = Math.min(cur.val, ans);
}
for(Pair adj : adjlist[cur.idx]){
tmpList.add(new Pair(adj.idx, adj.val + cur.val, cur.val+1));
}
}
// out.println(list.toString());
if(tmpList.size() == 0){
break;
}
else{
list.addAll(tmpList);
}
// out.println(list.toString());
}
}
if(ans == Integer.MAX_VALUE) out.println(-1);
else out.println(ans);
}
public static class LL extends LinkedList<Pair>{}
public static class Pair implements Comparable<Pair>{
int val;
int idx;
int ctr;
public Pair(int a, int b, int c){
idx = a;
val = b;
ctr = c;
}
public int compareTo(Pair p){
if(ctr == p.ctr){
if(val == p.val) return idx - p.idx;
return val - p.val;
}
return p.ctr - ctr;
}
public String toString(){
return val+", ";
}
}
}
|
n_square
|
576.java
| 0.9 |
import java.util.Scanner;
public class Codeforces {
public static Scanner input = new Scanner(System.in);
public static void main(String[] args){
int n,k;
n=input.nextInt();
k=input.nextInt();
String s=input.next();
int[] wtArray=new int[n];
for(int i=0;i<s.length();i++)
wtArray[i]=s.charAt(i)-96;
for(int i=1;i<n;i++)
for(int j=0;j<n-i;j++)
if(wtArray[j]>wtArray[j+1]){
int temp=wtArray[j+1];
wtArray[j+1]=wtArray[j];
wtArray[j]=temp;
}
int sum=wtArray[0];
k--;
int temp=sum;
for(int i=1;k!=0 &&i <n;i++){
if((wtArray[i]-temp)>1){
sum+=wtArray[i];
k--;
temp=wtArray[i];
}
}
if(k!=0)
sum=-1;
System.out.println(sum);
}
}
|
n_square
|
581.java
| 0.9 |
//Atcoder
import java.io.*;
import java.util.*;
public class Main {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
int m = sc.nextInt();
int ans = 0;
int[] a = new int[101];
for(int i=0;i<m;i++) a[sc.nextInt()]++;
for(int i=1;i<=100;i++) {
int y = 0;
for(int x : a) {
y += x / i;
}
if(y >= n) {
ans = i;
}
}
pw.println(ans);
pw.close();
}
}
|
n_square
|
583.java
| 0.9 |
//
// _oo8oo_
// o8888888o
// 88" . "88
// (| -_- |)
// 0\ = /0
// ___/'==='\___
// .' \\| |// '.
// / \\||| : |||// \
// / _||||| -:- |||||_ \
// | | \\\ - /// | |
// | \_| ''\---/'' |_/ |
// \ .-\__ '-' __/-. /
// ___'. .' /--.--\ '. .'___
// ."" '< '.___\_<|>_/___.' >' "".
// | | : `- \`.:`\ _ /`:.`/ -` : | |
// \ \ `-. \_ __\ /__ _/ .-` / /
// =====`-.____`.___ \_____/ ___.`____.-`=====
// `=---=`
//
//
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// 佛祖保佑 永不宕机/永无bug
//
import java.util.*;
public class G {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n, m;
n = in.nextInt();
m = in.nextInt();
int[] a = new int[m];
for (int i = 0; i < m; i++) {
a[i] = in.nextInt();
}
Arrays.sort(a);
HashMap<Integer, Integer> map = new HashMap<>(200);
for (int i : a) {
Integer t = map.get(i);
if (t == null) {
map.put(i, 1);
} else {
map.put(i, t + 1);
}
}
ArrayList<Food> list = new ArrayList<>(100);
Iterator<Map.Entry<Integer, Integer>> it = map.entrySet().iterator();
while (it.hasNext()) {
Map.Entry<Integer, Integer> en = it.next();
list.add(new Food(en.getKey(), en.getValue()));
}
list.sort(Comparator.comparingInt(o -> o.num));
int min, max;
min = 1;
max = list.get(list.size() - 1).num;
int res = 0;
for (int i = min; i <= max; i++) {
int t = 0;
for (Food food : list) {
int gaven = food.num / i;
if (gaven >= 1) {
t += gaven;
if (t >= n) {
res = Math.max(res, i);
break;
}
}
}
}
System.out.println(res);
// System.out.println(Arrays.toString(list.toArray()));
// if (list.size() < n) {
// System.out.println(0);
// } else {
// System.out.println(list.get(n - 1).num);
// }
}
}
class Food {
int id;
int num;
public Food(int id, int num) {
this.id = id;
this.num = num;
}
@Override
public String toString() {
return "Food{" +
"id=" + id +
", num=" + num +
'}';
}
}
|
n_square
|
585.java
| 0.9 |
import java.io.*;
import java.util.*;
public class Solution{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String args[] ) {
FastReader sc = new FastReader();
int n = sc.nextInt();
int m = sc.nextInt();
int[] arr = new int[105];
for(int i=0;i<m;i++){
int a = sc.nextInt();
arr[a]++;
}
for(int i=1;i<=1000;i++){
int sum=0;
for(int a:arr){
if(a!=0){
sum+=(a/i);
}
}
if(sum<n){
System.out.println(i-1);
return;
}
}
}
}
|
n_square
|
587.java
| 0.9 |
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
Solution ss = new Solution();
ss.test(sc);
}
void test(Scanner sc){
int LEN = sc.nextInt();
int[] a = new int[LEN];
int[] b = new int[LEN];
for (int i = 0; i < b.length; i++) {
a[i] = sc.nextInt();
}
for (int i = 0; i < b.length; i++) {
b[i] = sc.nextInt();
}
Arrays.sort(a);
Arrays.sort(b);
int ia=0, ib=0;
while(ia<LEN && a[ia]==0) ia++;
while(ib<LEN && b[ib]==0) ib++;
if(ib==LEN){
System.out.println("Yes");
return;
}
if(ia==LEN){
System.out.println("No");
return;
}
boolean out = true;
while(ia<LEN && ib<LEN){
if(a[ia]==b[ib]){
ia++;
ib++;
}else{
if(a[ia]>b[ib]){
while(ib<LEN && b[ib]!=a[ia]){
ib++;
}
if(ib==LEN){
out=false;
break;
}
}
}
}
if(out){
System.out.println("Yes");
}else{
System.out.println("No");
}
}
}
|
n_square
|
592.java
| 0.9 |
import java.util.*;
import java.lang.*;
import java.io.*;
public class TestClass {
// function for finding size of set
public static int set_size(int[] a, int N){
HashSet <Integer> newset = new HashSet <Integer>();
int i=0;
while(i<N){
newset.add(a[i++]);
}
int v = newset.size();
return v;
}
public static void main(String args[] ) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tk = new StringTokenizer(br.readLine());
int N = Integer.parseInt(tk.nextToken());
int x = Integer.parseInt(tk.nextToken());
int[] a = new int[N];
int[] b = new int[N];
StringTokenizer tb = new StringTokenizer(br.readLine());
for(int i=0; i<N; i++){
a[i] = Integer.parseInt(tb.nextToken());
}
if(set_size(a, N) < N){
System.out.print("0");
System.exit(0);
}
int num=0;
while(num++<4){
for(int i=0; i<N; i++){
if((a[i]&x) == a[i])
continue;
else{
for(int j=0; j<N; j++){
if(i==j){
b[i] = (a[i]&x);
}
else{
b[j] = a[j];
}
}
int s = set_size(b, N);
if(s<N){
System.out.print(num);
System.exit(0);
}
}
}
for(int i=0; i<N; i++)
a[i] = b[i];
}
System.out.print("-1");
System.exit(0);
}
}
|
n_square
|
595.java
| 0.9 |
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class Cr500 {
public static void main(String args[]) {
Scanner scanner = new Scanner(System.in);
int n, x, status = -1;
Set<Integer> a = new HashSet<>(), bitA = new HashSet<>();
ArrayList<Integer> al = new ArrayList<>(), bl = new ArrayList<>();
n = scanner.nextInt();
x = scanner.nextInt();
for(int i = 0; i < n; i++) {
int v;
if(!a.add(v = scanner.nextInt())) {
System.out.println(0);
return;
}
if(!bitA.add(v & x)) {
status = 2;
}
al.add(v);
bl.add(v & x);
}
if(contains(al, bl)) {
System.out.println(1);
return;
}
System.out.println(status);
}
private static boolean contains(ArrayList<Integer> a, ArrayList<Integer> b) {
for(int i = 0; i < a.size(); i++) {
int v1 = a.get(i);
for(int j = 0; j < b.size(); j++) {
int v2 = b.get(j);
if(i != j && v1 == v2) {
return true;
}
}
}
return false;
}
}
|
n_square
|
596.java
| 0.9 |
import java.util.*;
public class B {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int x = scanner.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = scanner.nextInt();
}
Arrays.sort(a);
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add(a[i]);
}
for (int i = 0; i < n - 1; i++) {
if (a[i] == a[i + 1]) {
System.out.println(0);
return;
}
}
for (int i = n - 1; i > 0; i--) {
if ((a[i] & x) == (a[i - 1] & x) && !list.contains(x)) {
System.out.println(2);
return;
} else if (list.contains(x) && a[i] > x && (a[i] & x) == x) {
System.out.println(1);
return;
}
}
System.out.println(-1);
}
}
|
n_square
|
598.java
| 0.9 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int[] v = new int[n];
int[] ans = new int[n];
long s = 0;
int t;
for(int i=0; i<n;i++) {
v[i] = in.nextInt();
s+=v[i];
}
for(int i=0; i<n-1;i++) {
for (int j = i + 1; j < n; j++) {
if (v[j] > v[i]) {
t = v[i];
v[i] = v[j];
v[j] = t;
}
}
}
for(int i=0; i<n-1; i++){
if(v[i] > v[i+1]){
ans[i] = v[i]-v[i+1];
}
if(v[i] == v[i+1] && v[i]!=1){
ans[i]=1;
v[i+1]--;
}
if(v[i] < v[i+1]){
ans[i]=1;
v[i+1] = v[i]-1;
if(v[i+1] == 0){
v[i+1] = 1;
}
}
if(v[i] == 0 || v[i] == 1){
ans[i] = 1;
v[i] = 1;
}
}
if (v[n-1] > 1){
ans[n-1] = v[n-1];
}
else{
ans[n-1] = 1;
}
for (int i=0; i<n; i++){
s-=ans[i];
}
System.out.print(s);
}
}
|
n_square
|
608.java
| 0.9 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.