music_genre / README.md
admin
add cite
5422cbf
|
raw
history blame
6.59 kB
---
license: cc-by-nc-nd-4.0
task_categories:
- audio-classification
- image-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Music Genre Dataset
size_categories:
- 10K<n<100K
dataset_info:
- config_name: eval
features:
- name: mel
dtype: image
- name: cqt
dtype: image
- name: chroma
dtype: image
- name: fst_level_label
dtype:
class_label:
names:
'0': Classic
'1': Non_classic
- name: sec_level_label
dtype:
class_label:
names:
'0': Symphony
'1': Opera
'2': Solo
'3': Chamber
'4': Pop
'5': Dance_and_house
'6': Indie
'7': Soul_or_RnB
'8': Rock
- name: thr_level_label
dtype:
class_label:
names:
'0': Symphony
'1': Opera
'2': Solo
'3': Chamber
'4': Pop_vocal_ballad
'5': Adult_contemporary
'6': Teen_pop
'7': Contemporary_dance_pop
'8': Dance_pop
'9': Classic_indie_pop
'10': Chamber_cabaret_and_art_pop
'11': Soul_or_RnB
'12': Adult_alternative_rock
'13': Uplifting_anthemic_rock
'14': Soft_rock
'15': Acoustic_pop
splits:
- name: train
num_bytes: 19661943
num_examples: 29100
- name: validation
num_bytes: 2453757
num_examples: 3637
- name: test
num_bytes: 2456508
num_examples: 3638
download_size: 4436653005
dataset_size: 24572208
configs:
- config_name: eval
data_files:
- split: train
path: eval/train/data-*.arrow
- split: validation
path: eval/validation/data-*.arrow
- split: test
path: eval/test/data-*.arrow
---
# Dataset Card for Music Genre
The Default dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.
## Dataset Structure
<style>
.genres td {
vertical-align: middle !important;
text-align: center;
}
.genres th {
text-align: center;
}
</style>
### Eval Subset
<table class="genres">
<tr>
<th>mel</th>
<th>cqt</th>
<th>chroma</th>
<th>fst_level_label (2-class)</th>
<th>sec_level_label (9-class)</th>
<th>thr_level_label (16-class)</th>
</tr>
<tr>
<td>.jpg, 11.4s, 48000Hz</td>
<td>.jpg, 11.4s, 48000Hz</td>
<td>.jpg, 11.4s, 48000Hz</td>
<td>1_Classic / 2_Non_classic</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
<td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
</tr>
</table>
### Data Instances
.zip(.jpg)
### Data Fields
```txt
1_Classic
3_Symphony
4_Opera
5_Solo
6_Chamber
2_Non_classic
7_Pop
12_Pop_vocal_ballad
13_Adult_contemporary
14_Teen_pop
8_Dance_and_house
15_Contemporary_dance_pop
16_Dance_pop
9_Indie
17_Classic_indie_pop
18_Chamber_cabaret_and_art_pop
10_Soul_or_RnB
11_Rock
19_Adult_alternative_rock
20_Uplifting_anthemic_rock
21_Soft_rock
22_Acoustic_pop
```
![](https://www.modelscope.cn/datasets/ccmusic-database/music_genre/resolve/master/data/genre.png)
### Data Splits
| Splits | Eval |
| :-------------: | :---: |
| train(80%) | 29100 |
| validation(10%) | 3637 |
| test(10%) | 3638 |
| total | 36375 |
## Dataset Description
### Dataset Summary
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.
### Supported Tasks and Leaderboards
Audio classification
### Languages
Multilingual
## Usage
### Eval Subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/music_genre", name="eval")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/music_genre
cd music_genre
```
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/music_genre>
## Dataset Creation
### Curation Rationale
Promoting the development of AI in the music industry
### Source Data
#### Initial Data Collection and Normalization
Zhaorui Liu, Monan Zhou
#### Who are the source language producers?
Composers of the songs in the dataset
### Annotations
#### Annotation process
Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total.
#### Who are the annotators?
Students from CCMUSIC
### Personal and Sensitive Information
Due to copyright issues with the original music, only spectrograms are provided in the dataset.
## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry
### Discussion of Biases
Most are English songs
### Other Known Limitations
Samples are not balanced enough
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
<https://huggingface.co/ccmusic-database/music_genre>
### Citation Information
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Zhaorui Liu and Zijin Li},
title = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
month = nov,
year = 2021,
publisher = {Zenodo},
version = {1.1},
doi = {10.5281/zenodo.5676893},
url = {https://doi.org/10.5281/zenodo.5676893}
}
```
### Contributions
Provide a dataset for music genre classification