Dataset Viewer
_id
stringlengths 24
24
| id
stringlengths 5
121
| author
stringlengths 2
42
| cardData
stringlengths 2
1.07M
โ | disabled
bool 2
classes | gated
null | lastModified
timestamp[ns] | likes
int64 0
7.63k
| trendingScore
float64 -1
160
| private
bool 1
class | sha
stringlengths 40
40
| description
stringlengths 0
6.67k
โ | downloads
int64 0
4.8M
| downloadsAllTime
int64 0
142M
| tags
sequencelengths 1
7.92k
| createdAt
timestamp[ns] | paperswithcode_id
stringclasses 652
values | citation
stringlengths 0
10.7k
โ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67d3479522a51de18affff22 | nvidia/Llama-Nemotron-Post-Training-Dataset-v1 | nvidia | {"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]} | false | null | 2025-03-18T15:56:14 | 160 | 160 | false | ed905e6239c9d191e4c965a403dde07a5383b5eb |
Llama-Nemotron-Post-Training-Dataset-v1 Release
Data Overview
This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIAโs release of Llama-3.3-Nemotron-Super-49B-v1 and Llama-3.1-Nemotron-Nano-8B-v1.
Llama-3.3-Nemotron-Super-49B-v1 is a large language model (LLM) which is a derivative of Metaโs Llama-3.3-70B-Instruct (AKAโฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset-v1. | 2,656 | 2,665 | [
"license:cc-by-4.0",
"size_categories:10M<n<100M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-13T21:01:09 | null | null |
676f70846bf205795346d2be | FreedomIntelligence/medical-o1-reasoning-SFT | FreedomIntelligence | {"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]} | false | null | 2025-02-22T05:15:38 | 517 | 63 | false | 61536c1d80b2c799df6800cc583897b77d2c86d2 |
News
[2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1.
[2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier.
Introduction
This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4oโฆ See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT. | 29,123 | 42,759 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"language:zh",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2412.18925",
"region:us",
"medical",
"biology"
] | 2024-12-28T03:29:08 | null | null |
67d97c4be2b27852325fd8e2 | nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim | nvidia | {"license": "cc-by-4.0"} | false | null | 2025-03-21T15:02:34 | 60 | 60 | false | 9cd48351839af877ff365fa8bf06e1cf9e57d539 |
PhysicalAI-Robotics-GR00T-X-Embodiment-Sim
Github Repo: Isaac GR00T N1
We provide a set of datasets used for post-training of GR00T N1. Each dataset is a collection of trajectories from different robot embodiments and tasks.
Cross-embodied bimanual manipulation: 9k trajectories
Dataset Name
#trajectories
bimanual_panda_gripper.Threading
1000
bimanual_panda_hand.LiftTray
1000
bimanual_panda_gripper.ThreePieceAssembly
1000โฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim. | 4,472 | 4,472 | [
"license:cc-by-4.0",
"region:us"
] | 2025-03-18T13:59:39 | null | null |
67c0cda5c0b7a236a5f070e3 | glaiveai/reasoning-v1-20m | glaiveai | {"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 177249016911, "num_examples": 22199375}], "download_size": 87247205094, "dataset_size": 177249016911}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "size_categories": ["10M<n<100M"]} | false | null | 2025-03-19T13:21:37 | 57 | 55 | false | da6bb3d0ff8fd8ea5abacee8519762ca6aaf367e |
We are excited to release a synthetic reasoning dataset containing 22mil+ general reasoning questions and responses generated using deepseek-ai/DeepSeek-R1-Distill-Llama-70B. While there have been multiple efforts to build open reasoning datasets for math and code tasks, we noticed a lack of large datasets containing reasoning traces for diverse non code/math topics like social and natural sciences, education, creative writing and general conversations, which is why we decided to release thisโฆ See the full description on the dataset page: https://huggingface.co/datasets/glaiveai/reasoning-v1-20m. | 2,077 | 2,077 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-27T20:40:05 | null | null |
67c03fd6b9fe27a2ac49784d | open-r1/codeforces-cots | open-r1 | {"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6719356671, "num_examples": 40665}], "download_size": 2023394671, "dataset_size": 6719356671}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1349328880, "num_examples": 8133}], "download_size": 500182086, "dataset_size": 1349328880}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3738669884, "num_examples": 24490}], "download_size": 1012247387, "dataset_size": 3738669884}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "solutions_w_editorials_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1499075280, "num_examples": 9796}], "download_size": 466078291, "dataset_size": 1499075280}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_decontaminated", "data_files": [{"split": "train", "path": "solutions_decontaminated/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_py_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "solutions_w_editorials_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_py_decontaminated/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"} | false | null | 2025-03-17T11:29:08 | 90 | 51 | false | 5f9671cf3779c3c709bd9f6f61b38ef3f061d5c8 |
Dataset Card for CodeForces-CoTs
Dataset description
CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to five reasoning traces generated by DeepSeek R1. We did not filter the traces for correctness, but found that around 84% of the Python ones pass the public tests.
The dataset consists of several subsets:
solutions: we prompt R1 to solve the problem and produce code.โฆ See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots. | 5,014 | 5,014 | [
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-27T10:35:02 | null | null |
67b32145bac2756ce9a4a0fe | Congliu/Chinese-DeepSeek-R1-Distill-data-110k | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-21T02:18:08 | 572 | 44 | false | 8520b649430617c2be4490f424d251d09d835ed3 |
ไธญๆๅบไบๆปก่กDeepSeek-R1่ธ้ฆๆฐๆฎ้๏ผChinese-Data-Distill-From-R1๏ผ
๐ค Hugging Faceย ย | ย ย ๐ค ModelScope ย ย | ย ย ๐ Github ย ย | ย ย ๐ Blog
ๆณจๆ๏ผๆไพไบ็ดๆฅSFTไฝฟ็จ็็ๆฌ๏ผ็นๅปไธ่ฝฝใๅฐๆฐๆฎไธญ็ๆ่ๅ็ญๆกๆดๅๆoutputๅญๆฎต๏ผๅคง้จๅSFTไปฃ็ ๆกๆถๅๅฏ็ดๆฅ็ดๆฅๅ ่ฝฝ่ฎญ็ปใ
ๆฌๆฐๆฎ้ไธบไธญๆๅผๆบ่ธ้ฆๆปก่กR1็ๆฐๆฎ้๏ผๆฐๆฎ้ไธญไธไป
ๅ
ๅซmathๆฐๆฎ๏ผ่ฟๅ
ๆฌๅคง้็้็จ็ฑปๅๆฐๆฎ๏ผๆปๆฐ้ไธบ110Kใ
ไธบไปไนๅผๆบ่ฟไธชๆฐๆฎ๏ผ
R1็ๆๆๅๅๅผบๅคง๏ผๅนถไธๅบไบR1่ธ้ฆๆฐๆฎSFT็ๅฐๆจกๅไนๅฑ็ฐๅบไบๅผบๅคง็ๆๆ๏ผไฝๆฃ็ดขๅ็ฐ๏ผๅคง้จๅๅผๆบ็R1่ธ้ฆๆฐๆฎ้ๅไธบ่ฑๆๆฐๆฎ้ใ ๅๆถ๏ผR1็ๆฅๅไธญๅฑ็คบ๏ผ่ธ้ฆๆจกๅไธญๅๆถไนไฝฟ็จไบ้จๅ้็จๅบๆฏๆฐๆฎ้ใ
ไธบไบๅธฎๅฉๅคงๅฎถๆดๅฅฝๅฐๅค็ฐR1่ธ้ฆๆจกๅ็ๆๆ๏ผ็นๆญคๅผๆบไธญๆๆฐๆฎ้ใ่ฏฅไธญๆๆฐๆฎ้ไธญ็ๆฐๆฎๅๅธๅฆไธ๏ผ
Math๏ผๅ
ฑ่ฎก36568ไธชๆ ทๆฌ๏ผ
Exam๏ผๅ
ฑ่ฎก2432ไธชๆ ทๆฌ๏ผ
STEM๏ผๅ
ฑ่ฎก12648ไธชๆ ทๆฌ๏ผโฆ See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k. | 8,780 | 9,428 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T11:45:09 | null | null |
679c0b5c32cf4c58bdcba8eb | facebook/natural_reasoning | facebook | {"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]} | false | null | 2025-02-21T06:02:40 | 440 | 37 | false | 99eea5dc6bfa45a925eb42600e81dc90377ba237 | NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response fromโฆ See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning. | 13,663 | 13,663 | [
"task_categories:text-generation",
"language:en",
"license:cc-by-nc-4.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2502.13124",
"region:us"
] | 2025-01-30T23:29:32 | null | null |
67d7eeec9830e5c1e2a8f708 | BytedTsinghua-SIA/DAPO-Math-17k | BytedTsinghua-SIA | {"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math"], "pretty_name": "DAPO-Math-17k", "size_categories": ["1M<n<10M"]} | false | null | 2025-03-18T07:47:04 | 31 | 31 | false | 9f6440001c15da8e7c7516fdbb3d2ce49de711de |
This dataset actually only contains ~17k unique prompts and was duplicated by ~100x by accident.
| 1,269 | 1,269 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"math"
] | 2025-03-17T09:44:12 | null | null |
67aa021ced8d8663d42505cc | open-r1/OpenR1-Math-220k | open-r1 | {"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]} | false | null | 2025-02-18T11:45:27 | 520 | 27 | false | e4e141ec9dea9f8326f4d347be56105859b2bd68 |
OpenR1-Math-220k
Dataset description
OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5.
The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer.
The dataset consists of two splits:โฆ See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k. | 54,489 | 65,803 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T13:41:48 | null | null |
67b20fc10861cec33b3afb8a | Conard/fortune-telling | Conard | {"license": "mit"} | false | null | 2025-02-17T05:13:43 | 81 | 27 | false | 6261fe0d35a75997972bbfcd9828020e340303fb | null | 4,988 | 5,001 | [
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-16T16:18:09 | null | null |
67c122a87c100c8caa21c89d | TIGER-Lab/VisualWebInstruct | TIGER-Lab | {"language": ["en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "visual-question-answering"], "pretty_name": "VisualWebInstruct", "tags": ["math", "science"], "configs": [{"config_name": "example", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "conversation", "data_files": [{"split": "train", "path": "mixed_conversation.parquet"}]}, {"config_name": "visualwebinstruct", "data_files": [{"split": "train", "path": "visualwebinstruct_qa.parquet"}]}]} | false | null | 2025-03-21T07:54:25 | 25 | 22 | false | e060d8237917237f19e1ea592efb4de90aaed171 |
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
VisualWebInstruct is a large-scale, diverse multimodal instruction dataset designed to enhance vision-language models' reasoning capabilities. The dataset contains approximately 900K question-answer (QA) pairs, with 40% consisting of visual QA pairs associated with 163,743 unique images, while the remaining 60% are text-only QA pairs.
Links
GitHub Repository
Research Paper
Project Websiteโฆ See the full description on the dataset page: https://huggingface.co/datasets/TIGER-Lab/VisualWebInstruct. | 752 | 772 | [
"task_categories:question-answering",
"task_categories:visual-question-answering",
"language:en",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2503.10582",
"region:us",
"math",
"science"
] | 2025-02-28T02:42:48 | null | null |
67c5a5ba52976b223005f88b | DropletX/DropletVideo-10M | DropletX | {"license": "cc-by-nc-sa-4.0", "task_categories": ["image-to-video", "text-to-video"], "language": ["en"], "size_categories": ["10M<n<100M"], "extra_gated_prompt": "You agree to not use the data to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Name": "text", "Company/Organization": "text", "E-Mail": "text", "Job title": "text"}} | false | null | 2025-03-19T16:15:37 | 24 | 21 | false | 3f5bc6339a46d3b9b2a4469c081b2d37f881d6ee |
๐ Dataset Note:
DropletVideo-1M
is the premium subset of DropletVideo-10M, filtered with aesthetic score > 4.51 and image quality score > 7.51.
โ๏ธ Introduction
The challenge of spatiotemporal consistency has long existed in the field of video generation. We have released the open-source dataset DropletVideo-10M โthe world's largest video generation dataset with spatiotemporal consistency. Itโฆ See the full description on the dataset page: https://huggingface.co/datasets/DropletX/DropletVideo-10M. | 257 | 257 | [
"task_categories:image-to-video",
"task_categories:text-to-video",
"language:en",
"license:cc-by-nc-sa-4.0",
"size_categories:10M<n<100M",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2503.06053",
"region:us"
] | 2025-03-03T12:51:06 | null | null |
67c8270b5999e7df91a854da | yaak-ai/L2D | yaak-ai | {"license": "apache-2.0", "task_categories": ["robotics"], "tags": ["LeRobot"], "configs": [{"config_name": "default", "data_files": "data/*/*.parquet"}]} | false | null | 2025-03-10T18:34:05 | 25 | 20 | false | 49115405b552802c9838d4a4c85a4ed947f901b3 | This dataset was created using LeRobot.
Dataset Structure
meta/info.json:
{
"codebase_version": "v2.1",
"robot_type": "KIA Niro EV 2023",
"total_episodes": 100,
"total_frames": 28519,
"total_tasks": 1,
"total_videos": 700,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 10,
"splits": {
"train": "0:100"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path":โฆ See the full description on the dataset page: https://huggingface.co/datasets/yaak-ai/L2D. | 1,247 | 1,247 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | 2025-03-05T10:27:23 | null | null |
67d967709b5f9bcc5eef92e1 | HuggingFaceTB/stack-edu | HuggingFaceTB | {"dataset_info": [{"config_name": "C", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 1100442974, "num_examples": 5848375}], "download_size": 571816053, "dataset_size": 1100442974}, {"config_name": "CSharp", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 2392066248, "num_examples": 11425016}], "download_size": 1232015539, "dataset_size": 2392066248}, {"config_name": "Cpp", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 3167426435, "num_examples": 16246746}], "download_size": 1632803797, "dataset_size": 3167426435}, {"config_name": "Go", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}, {"name": "detected_licenses_right", "large_list": "large_string"}, {"name": "license_type_right", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 433053889, "num_examples": 1917163}], "download_size": 179388495, "dataset_size": 433053889}, {"config_name": "Java", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 10292427437, "num_examples": 44990158}], "download_size": 5291667797, "dataset_size": 10292427437}, {"config_name": "JavaScript", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 2654326008, "num_examples": 13253431}], "download_size": 1287066511, "dataset_size": 2654326008}, {"config_name": "Markdown", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 4268378053, "num_examples": 20687077}], "download_size": 2058772192, "dataset_size": 4268378053}, {"config_name": "PHP", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 1985843762, "num_examples": 9914497}], "download_size": 983498806, "dataset_size": 1985843762}, {"config_name": "Python", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 4947575770, "num_examples": 25286019}], "download_size": 2500795086, "dataset_size": 4947575770}, {"config_name": "Ruby", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 592832039, "num_examples": 2976874}], "download_size": 284535771, "dataset_size": 592832039}, {"config_name": "Rust", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 227434676, "num_examples": 1135379}], "download_size": 103158397, "dataset_size": 227434676}, {"config_name": "SQL", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 505669712, "num_examples": 2504412}], "download_size": 261176608, "dataset_size": 505669712}, {"config_name": "Shell", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 811611733, "num_examples": 4133547}], "download_size": 394872047, "dataset_size": 811611733}, {"config_name": "Swift", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 529873695, "num_examples": 2454309}], "download_size": 257883733, "dataset_size": 529873695}, {"config_name": "TypeScript", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 904736029, "num_examples": 4290356}], "download_size": 425942502, "dataset_size": 904736029}], "configs": [{"config_name": "C", "data_files": [{"split": "train", "path": "C/train-*"}]}, {"config_name": "CSharp", "data_files": [{"split": "train", "path": "CSharp/train-*"}]}, {"config_name": "Cpp", "data_files": [{"split": "train", "path": "Cpp/train-*"}]}, {"config_name": "Go", "data_files": [{"split": "train", "path": "Go/train-*"}]}, {"config_name": "Java", "data_files": [{"split": "train", "path": "Java/train-*"}]}, {"config_name": "JavaScript", "data_files": [{"split": "train", "path": "JavaScript/train-*"}]}, {"config_name": "Markdown", "data_files": [{"split": "train", "path": "Markdown/train-*"}]}, {"config_name": "PHP", "data_files": [{"split": "train", "path": "PHP/train-*"}]}, {"config_name": "Python", "data_files": [{"split": "train", "path": "Python/train-*"}]}, {"config_name": "Ruby", "data_files": [{"split": "train", "path": "Ruby/train-*"}]}, {"config_name": "Rust", "data_files": [{"split": "train", "path": "Rust/train-*"}]}, {"config_name": "SQL", "data_files": [{"split": "train", "path": "SQL/train-*"}]}, {"config_name": "Shell", "data_files": [{"split": "train", "path": "Shell/train-*"}]}, {"config_name": "Swift", "data_files": [{"split": "train", "path": "Swift/train-*"}]}, {"config_name": "TypeScript", "data_files": [{"split": "train", "path": "TypeScript/train-*"}]}]} | false | null | 2025-03-20T13:51:54 | 20 | 20 | false | eeec5caac5cc3758a18f1d3ba4416837a9ba814c |
๐ป Stack-Edu
Stack-Edu is a 125B token dataset of educational code filtered from The Stack v2, precisely the curated training corpus of StarCoder2 models denoted StarCoder2Data. It is intended for Language Models training.
This dataset was curated using a classifier-based filtering strategy, inspired by ๐ FineWeb-Edu, to retain only the highest-quality educational programming content.
Stack-Edu shows consistent improvement over StarCoder2data on all the programming languages onโฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/stack-edu. | 245 | 245 | [
"size_categories:100M<n<1B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2402.19173",
"arxiv:2502.02737",
"region:us"
] | 2025-03-18T12:30:40 | null | null |
67c5ffdbf2e146eac1f0edb9 | DropletX/DropletVideo-1M | DropletX | {"license": "cc-by-nc-sa-4.0", "task_categories": ["image-to-video", "text-to-video"], "language": ["en"], "size_categories": ["10M<n<100M"], "extra_gated_prompt": "You agree to not use the data to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Name": "text", "Company/Organization": "text", "E-Mail": "text", "Job title": "text"}} | false | null | 2025-03-19T16:16:33 | 19 | 19 | false | c7f9e1e130fe2858a1ecb46d979d474114ca1baa |
๐ Dataset Note:
DropletVideo-1M
is the premium subset of DropletVideo-10M, filtered with aesthetic score > 4.51 and image quality score > 7.51.
โ๏ธ Introduction
The challenge of spatiotemporal consistency has long existed in the field of video generation. We have released the open-source dataset DropletVideo-10M โthe world's largest video generation dataset with spatiotemporal consistency. Itโฆ See the full description on the dataset page: https://huggingface.co/datasets/DropletX/DropletVideo-1M. | 153 | 153 | [
"task_categories:image-to-video",
"task_categories:text-to-video",
"language:en",
"license:cc-by-nc-sa-4.0",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"arxiv:2503.06053",
"region:us"
] | 2025-03-03T19:15:39 | null | null |
67d305619f485955bf117049 | nvidia/HelpSteer3 | nvidia | {"license": "cc-by-4.0", "language": ["en", "zh", "ko", "fr", "es", "ru", "ja", "de", "it", "pt", "pl", "id", "nl", "vi"], "pretty_name": "HelpSteer3", "size_categories": ["10K<n<100K"], "tags": ["human-feedback"], "configs": [{"config_name": "preference", "default": true, "data_files": [{"split": "train", "path": "preference/train.jsonl.gz"}, {"split": "validation", "path": "preference/validation.jsonl.gz"}]}, {"config_name": "feedback", "data_files": [{"split": "train", "path": "feedback/train.jsonl.gz"}, {"split": "validation", "path": "feedback/validation.jsonl.gz"}]}, {"config_name": "edit", "data_files": [{"split": "train", "path": "edit/train.jsonl.gz"}, {"split": "validation", "path": "edit/validation.jsonl.gz"}]}, {"config_name": "edit_quality", "data_files": [{"split": "train", "path": "edit_quality/train.jsonl.gz"}, {"split": "validation", "path": "edit_quality/validation.jsonl.gz"}]}]} | false | null | 2025-03-18T19:51:32 | 19 | 19 | false | 7366103dbb732074dcf866560d2431d0ae8c9b1d |
HelpSteer3
HelpSteer3 is an open-source Helpfulness Dataset (CC-BY-4.0) that supports aligning models to become more helpful in responding to user prompts.
When used to tune Llama 3.3 70B Instruct Models to perform a novel approach to Inference Time Scaling (ITS) for open-ended, general-domain tasks, we achieve as high as 93.4% on Arena Hard, which makes it No. 1 on the benchmark as of 18 Mar 2025.
See details on the paper at https://arxiv.org/abs/2503.04378.
Models were trainedโฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/HelpSteer3. | 299 | 299 | [
"language:en",
"language:zh",
"language:ko",
"language:fr",
"language:es",
"language:ru",
"language:ja",
"language:de",
"language:it",
"language:pt",
"language:pl",
"language:id",
"language:nl",
"language:vi",
"license:cc-by-4.0",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2503.04378",
"region:us",
"human-feedback"
] | 2025-03-13T16:18:41 | null | null |
66212f29fb07c3e05ad0432e | HuggingFaceFW/fineweb | HuggingFaceFW | {"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]} | false | null | 2025-01-31T14:10:44 | 2,048 | 17 | false | 0f039043b23fe1d4eed300b504aa4b4a68f1c7ba |
๐ท FineWeb
15 trillion tokens of the finest data the ๐ web has to offer
What is it?
The ๐ท FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the ๐ญ datatrove library, our large scale data processing library.
๐ท FineWeb was originally meant to be a fully open replication of ๐ฆ
RefinedWeb, with a release of the full dataset underโฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb. | 289,851 | 2,277,984 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:10B<n<100B",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2306.01116",
"arxiv:2109.07445",
"arxiv:2406.17557",
"doi:10.57967/hf/2493",
"region:us"
] | 2024-04-18T14:33:13 | null | null |
67d6cac12e36db434b2be97e | manycore-research/SpatialLM-Testset | manycore-research | {"license": "cc-by-nc-4.0", "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "test.csv"}]}]} | false | null | 2025-03-19T15:05:46 | 17 | 17 | false | 3a5c44deac7ac1de370c5341d2748250cbbf52e3 |
SpatialLM Testset
We provide a test set of 107 preprocessed point clouds and their corresponding GT layouts, point clouds are reconstructed from RGB videos using MASt3R-SLAM. SpatialLM-Testset is quite challenging compared to prior clean RGBD scan datasets due to the noises and occlusions in the point clouds reconstructed from monocular RGB videos.
Folder Structure
Outlines of the dataset files:
project-root/
โโโ pcd/*.plyโฆ See the full description on the dataset page: https://huggingface.co/datasets/manycore-research/SpatialLM-Testset. | 1,122 | 1,122 | [
"license:cc-by-nc-4.0",
"size_categories:n<1K",
"format:csv",
"modality:3d",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-16T12:57:37 | null | null |
625552d2b339bb03abe3432d | openai/gsm8k | openai | {"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]} | false | null | 2024-01-04T12:05:15 | 650 | 16 | false | e53f048856ff4f594e959d75785d2c2d37b678ee |
Dataset Card for GSM8K
Dataset Summary
GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning.
These problems take between 2 and 8 steps to solve.
Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ โ รรท) to reach theโฆ See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k. | 346,976 | 4,158,772 | [
"task_categories:text2text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2110.14168",
"region:us",
"math-word-problems"
] | 2022-04-12T10:22:10 | gsm8k | null |
67dabea523ec1d597d1e0012 | MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT | MaziyarPanahi | null | false | null | 2025-03-19T14:19:33 | 16 | 16 | false | eb68620950785989802be1a80760ba34533a8f1d |
Llama-Nemotron-Post-Training-Dataset-v1 in ShareGPT Format
This dataset is a conversion of NVIDIA's Llama-Nemotron-Post-Training-Dataset-v1
into the ShareGPT format while preserving the original splits and columns.
Format
Each example contains all original fields plus a messages array:
{
"input": "original input text",
"output": "original output text",
... (other original columns) ...,
"messages": [
{"role": "user", "content": "User message"},
{"role":โฆ See the full description on the dataset page: https://huggingface.co/datasets/MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT. | 337 | 337 | [
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-19T12:55:01 | null | null |
67cba813ef7ed9b8e2a948c7 | canopylabs/zac-sample-dataset | canopylabs | {"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}], "splits": [{"name": "train", "num_bytes": 13147142.424794896, "num_examples": 20}], "download_size": 10349037, "dataset_size": 13147142.424794896}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-03-08T02:14:46 | 15 | 15 | false | 5464e5b186dab0d49049eca0b28774ad9371fc89 | null | 277 | 277 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-08T02:14:43 | null | null |
67cbdbee416daf2ed9475ea4 | SmallDoge/SmallThoughts | SmallDoge | {"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "system_prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 207497599, "num_examples": 50000}, {"name": "test", "num_bytes": 4533192, "num_examples": 1000}], "download_size": 82841801, "dataset_size": 212030791}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["biology", "code", "chemistry", "synthetic"], "size_categories": ["10K<n<100K"]} | false | null | 2025-03-14T13:21:53 | 42 | 15 | false | e7b425e9e659c3827af4c89cbe10e080fea3f038 |
SmallThoughts
Open synthetic reasoning dataset, covering math, science, code, and puzzles.
To address the issue of the existing DeepSeek R1 distilled data being too long, this dataset constrains the reasoning trajectory to be more precise and concise while retaining the reflective nature.
We also open-sourced the pipeline code for distilled data here, with just one command you can generate your own dataset.
How to use
You can loadโฆ See the full description on the dataset page: https://huggingface.co/datasets/SmallDoge/SmallThoughts. | 3,801 | 3,801 | [
"task_categories:question-answering",
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"biology",
"code",
"chemistry",
"synthetic"
] | 2025-03-08T05:55:58 | null | null |
67ce2fb269ac5540794d0bf6 | CharlieDreemur/OpenManus-RL | CharlieDreemur | {"language": ["en"], "tags": ["sft", "instruction-tuning", "conversational-ai"], "license": "apache-2.0", "task_categories": ["text-generation"], "pretty_name": "OpenManusRL", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "role", "dtype": "string"}, {"name": "content", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 277895199, "num_examples": 48927}], "download_size": 73312767, "dataset_size": 277895199}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2025-03-15T01:29:38 | 36 | 15 | false | b102de3f0a2e40221fc923ed9f34756251fc666c |
Dataset Card for OpenManusRL
Dataset Description
Overview
๐ป [Github Repo]
OpenManusRL combines agent trajectories from AgentInstruct, Agent-FLAN and AgentTraj-L(AgentGym) with features:
๐ ReAct Framework - Reasoning-Acting integration
๐ง Structured Training - Separate format/reasoning learning
๐ซ Anti-Hallucination - Negative samples + environment grounding
๐ 6 Domains - OS, DB, Web, KG, Household, E-commerce
Dataset Overview
Sourceโฆ See the full description on the dataset page: https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL. | 1,241 | 1,241 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2310.12823",
"arxiv:2403.12881",
"arxiv:2406.04151",
"region:us",
"sft",
"instruction-tuning",
"conversational-ai"
] | 2025-03-10T00:17:54 | null | null |
66a145d28f0d2327e07fc119 | cfahlgren1/hub-stats | cfahlgren1 | {"license": "apache-2.0", "configs": [{"config_name": "models", "data_files": "models.parquet"}, {"config_name": "datasets", "data_files": "datasets.parquet"}, {"config_name": "spaces", "data_files": "spaces.parquet"}, {"config_name": "posts", "data_files": "posts.parquet"}, {"config_name": "papers", "data_files": "daily_papers.parquet"}]} | false | null | 2025-03-20T23:40:59 | 39 | 14 | false | 3d2e26d6322f9b0961cf72141cd7019acb53ebc6 |
NEW Changes Feb 27th
Added new fields on the models split: downloadsAllTime, safetensors, gguf
Added new field on the datasets split: downloadsAllTime
Added new split: papers which is all of the Daily Papers
Updated Daily
| 7,811 | 16,992 | [
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-07-24T18:20:02 | null | null |
67abc2c2d6edf5606aa5c0d7 | facebook/collaborative_agent_bench | facebook | {"license": "other", "extra_gated_prompt": "## License", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "I accept the terms and conditions": "checkbox", "geo": "ip_location"}, "extra_gated_description": "SWEET-RL Research License and Acceptable Use Policy", "extra_gated_button_content": "I Accept Self-taught Evaluator Research License and AUP"} | false | null | 2025-03-20T04:17:14 | 14 | 14 | false | cf3526da25989b53f105fe9b74c1174a3e19c548 | This dataset is released as part of SWEET-RL: Training Multi-Turn LLM Agents on
Collaborative Reasoning Tasks research project.
Please refer to our project materials here for training and evaluation details.
Citation
If you use data, model, or code from this work, please cite with the following BibTex entry:
@misc{zhou2025sweetrltrainingmultiturnllm,
title={SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks},
author={Yifei Zhou and Song Jiang andโฆ See the full description on the dataset page: https://huggingface.co/datasets/facebook/collaborative_agent_bench. | 10 | 10 | [
"license:other",
"arxiv:2503.15478",
"region:us"
] | 2025-02-11T21:36:02 | null | null |
63990f21cc50af73d29ecfa3 | fka/awesome-chatgpt-prompts | fka | {"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]} | false | null | 2025-01-06T00:02:53 | 7,634 | 13 | false | 68ba7694e23014788dcc8ab5afe613824f45a05c | ๐ง Awesome ChatGPT Prompts [CSV dataset]
This is a Dataset Repository of Awesome ChatGPT Prompts
View All Prompts on GitHub
License
CC-0
| 12,400 | 136,198 | [
"task_categories:question-answering",
"license:cc0-1.0",
"size_categories:n<1K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"ChatGPT"
] | 2022-12-13T23:47:45 | null | null |
6532270e829e1dc2f293d6b8 | gaia-benchmark/GAIA | gaia-benchmark | {"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}} | false | null | 2025-02-13T08:36:12 | 272 | 12 | false | 897f2dfbb5c952b5c3c1509e648381f9c7b70316 |
GAIA dataset
GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc).
We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format.
Data and leaderboard
GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. Itโฆ See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA. | 9,693 | 33,774 | [
"language:en",
"arxiv:2311.12983",
"region:us"
] | 2023-10-20T07:06:54 | null | |
67b3495a2f3994b7d95dde92 | Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT | Congliu | {"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]} | false | null | 2025-02-19T13:24:55 | 148 | 12 | false | 263435dc9a8cc822449b6f3531794486f8141be6 |
ไธญๆๅบไบๆปก่กDeepSeek-R1่ธ้ฆๆฐๆฎ้๏ผChinese-Data-Distill-From-R1๏ผ
๐ค Hugging Faceย ย | ย ย ๐ค ModelScope ย ย | ย ย ๐ Github ย ย | ย ย ๐ Blog
ๆณจๆ๏ผ่ฏฅ็ๆฌไธบ๏ผๅฏไปฅ็ดๆฅSFTไฝฟ็จ็็ๆฌ๏ผๅฐๅๅงๆฐๆฎไธญ็ๆ่ๅ็ญๆกๆดๅๆoutputๅญๆฎต๏ผๅคง้จๅSFTไปฃ็ ๆกๆถๅๅฏ็ดๆฅ็ดๆฅๅ ่ฝฝ่ฎญ็ปใ
ๆฌๆฐๆฎ้ไธบไธญๆๅผๆบ่ธ้ฆๆปก่กR1็ๆฐๆฎ้๏ผๆฐๆฎ้ไธญไธไป
ๅ
ๅซmathๆฐๆฎ๏ผ่ฟๅ
ๆฌๅคง้็้็จ็ฑปๅๆฐๆฎ๏ผๆปๆฐ้ไธบ110Kใ
ไธบไปไนๅผๆบ่ฟไธชๆฐๆฎ๏ผ
R1็ๆๆๅๅๅผบๅคง๏ผๅนถไธๅบไบR1่ธ้ฆๆฐๆฎSFT็ๅฐๆจกๅไนๅฑ็ฐๅบไบๅผบๅคง็ๆๆ๏ผไฝๆฃ็ดขๅ็ฐ๏ผๅคง้จๅๅผๆบ็R1่ธ้ฆๆฐๆฎ้ๅไธบ่ฑๆๆฐๆฎ้ใ ๅๆถ๏ผR1็ๆฅๅไธญๅฑ็คบ๏ผ่ธ้ฆๆจกๅไธญๅๆถไนไฝฟ็จไบ้จๅ้็จๅบๆฏๆฐๆฎ้ใ
ไธบไบๅธฎๅฉๅคงๅฎถๆดๅฅฝๅฐๅค็ฐR1่ธ้ฆๆจกๅ็ๆๆ๏ผ็นๆญคๅผๆบไธญๆๆฐๆฎ้ใ่ฏฅไธญๆๆฐๆฎ้ไธญ็ๆฐๆฎๅๅธๅฆไธ๏ผ
Math๏ผๅ
ฑ่ฎก36568ไธชๆ ทๆฌ๏ผ
Exam๏ผๅ
ฑ่ฎก2432ไธชๆ ทๆฌ๏ผ
STEM๏ผๅ
ฑ่ฎก12648ไธชๆ ทๆฌ๏ผโฆ See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT. | 5,314 | 5,612 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"task_categories:question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-17T14:36:10 | null | null |
67cd6c25b770987b3f80af97 | a-m-team/AM-DeepSeek-R1-Distilled-1.4M | a-m-team | {"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"]} | false | null | 2025-03-10T18:31:04 | 24 | 12 | false | b3447a25c09f5b67817c0ea01a1d4844fba68884 | AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of
high-quality and challenging reasoning problems. These problems are collected from numerous
open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination.
All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone
rigorous verification: mathematical problems are validated through answer checking, code
problems viaโฆ See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M. | 720 | 720 | [
"task_categories:text-generation",
"language:zh",
"language:en",
"license:cc-by-nc-4.0",
"size_categories:1M<n<10M",
"region:us",
"code",
"math",
"reasoning",
"thinking",
"deepseek-r1",
"distill"
] | 2025-03-09T10:23:33 | null | null |
67d421a66af8d6a03083eb69 | GeneralReasoning/GeneralThought-430K | GeneralReasoning | {"language": ["en"], "license": "mit"} | false | null | 2025-03-14T13:04:04 | 20 | 12 | false | 9f2b46abdf8e3ba2faf650541242d4bd8ac22892 |
GeneralThought-430K
Thought wants to be free
Open reasoning data from the General Reasoning resource for March 14 2025.
The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Previewand DeepScaleR-1.5B-Preview. We also include final answers from o3-mini-2025-01-31โฆ See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-430K. | 630 | 630 | [
"language:en",
"license:mit",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-03-14T12:31:34 | null | null |
67a557ba9330ead027242110 | simplescaling/s1K-1.1 | simplescaling | {"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}, {"name": "gemini_grade", "dtype": "string"}, {"name": "gemini_grade_reason", "dtype": "string"}, {"name": "deepseek_grade", "dtype": "string"}, {"name": "deepseek_grade_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48313304, "num_examples": 1000}], "download_size": 22323185, "dataset_size": 48313304}, "tags": ["curator"]} | false | null | 2025-02-27T18:09:26 | 99 | 10 | false | 96c411f1fe4c49d20f0e2a1565f61e1a28b0b84d |
Dataset Card for s1K
Dataset Summary
s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance.
Usage
# pip install -q datasets
from datasets import load_dataset
ds = load_dataset("simplescaling/s1K-1.1")["train"]
ds[0]
Dataset Structure
Data Instances
An example looks as follows:
{
'solution': '1. **Rewrite the function usingโฆ See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-1.1. | 7,380 | 9,112 | [
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2501.19393",
"region:us",
"curator"
] | 2025-02-07T00:45:46 | null | null |
621ffdd236468d709f182a80 | allenai/c4 | allenai | {"pretty_name": "C4", "annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "he", "hi", "hmn", "ht", "hu", "hy", "id", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu"], "language_bcp47": ["bg-Latn", "el-Latn", "hi-Latn", "ja-Latn", "ru-Latn", "zh-Latn"], "license": ["odc-by"], "multilinguality": ["multilingual"], "size_categories": ["n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "1M<n<10M", "10M<n<100M", "100M<n<1B", "1B<n<10B"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "paperswithcode_id": "c4", "dataset_info": [{"config_name": "en", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 828589180707, "num_examples": 364868892}, {"name": "validation", "num_bytes": 825767266, "num_examples": 364608}], "download_size": 326778635540, "dataset_size": 1657178361414}, {"config_name": "en.noblocklist", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1029628201361, "num_examples": 393391519}, {"name": "validation", "num_bytes": 1025606012, "num_examples": 393226}], "download_size": 406611392434, "dataset_size": 2059256402722}, {"config_name": "realnewslike", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 38165657946, "num_examples": 13799838}, {"name": "validation", "num_bytes": 37875873, "num_examples": 13863}], "download_size": 15419740744, "dataset_size": 76331315892}, {"config_name": "en.noclean", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6715509699938, "num_examples": 1063805381}, {"name": "validation", "num_bytes": 6706356913, "num_examples": 1065029}], "download_size": 2430376268625, "dataset_size": 6722216056851}], "configs": [{"config_name": "en", "data_files": [{"split": "train", "path": "en/c4-train.*.json.gz"}, {"split": "validation", "path": "en/c4-validation.*.json.gz"}]}, {"config_name": "en.noblocklist", "data_files": [{"split": "train", "path": "en.noblocklist/c4-train.*.json.gz"}, {"split": "validation", "path": "en.noblocklist/c4-validation.*.json.gz"}]}, {"config_name": "en.noclean", "data_files": [{"split": "train", "path": "en.noclean/c4-train.*.json.gz"}, {"split": "validation", "path": "en.noclean/c4-validation.*.json.gz"}]}, {"config_name": "realnewslike", "data_files": [{"split": "train", "path": "realnewslike/c4-train.*.json.gz"}, {"split": "validation", "path": "realnewslike/c4-validation.*.json.gz"}]}, {"config_name": "multilingual", "data_files": [{"split": "train", "path": ["multilingual/c4-af.*.json.gz", "multilingual/c4-am.*.json.gz", "multilingual/c4-ar.*.json.gz", "multilingual/c4-az.*.json.gz", "multilingual/c4-be.*.json.gz", "multilingual/c4-bg.*.json.gz", "multilingual/c4-bg-Latn.*.json.gz", "multilingual/c4-bn.*.json.gz", "multilingual/c4-ca.*.json.gz", "multilingual/c4-ceb.*.json.gz", "multilingual/c4-co.*.json.gz", "multilingual/c4-cs.*.json.gz", "multilingual/c4-cy.*.json.gz", "multilingual/c4-da.*.json.gz", "multilingual/c4-de.*.json.gz", "multilingual/c4-el.*.json.gz", "multilingual/c4-el-Latn.*.json.gz", "multilingual/c4-en.*.json.gz", "multilingual/c4-eo.*.json.gz", "multilingual/c4-es.*.json.gz", "multilingual/c4-et.*.json.gz", "multilingual/c4-eu.*.json.gz", "multilingual/c4-fa.*.json.gz", "multilingual/c4-fi.*.json.gz", "multilingual/c4-fil.*.json.gz", "multilingual/c4-fr.*.json.gz", "multilingual/c4-fy.*.json.gz", "multilingual/c4-ga.*.json.gz", "multilingual/c4-gd.*.json.gz", "multilingual/c4-gl.*.json.gz", "multilingual/c4-gu.*.json.gz", "multilingual/c4-ha.*.json.gz", "multilingual/c4-haw.*.json.gz", "multilingual/c4-hi.*.json.gz", "multilingual/c4-hi-Latn.*.json.gz", "multilingual/c4-hmn.*.json.gz", "multilingual/c4-ht.*.json.gz", "multilingual/c4-hu.*.json.gz", "multilingual/c4-hy.*.json.gz", "multilingual/c4-id.*.json.gz", "multilingual/c4-ig.*.json.gz", "multilingual/c4-is.*.json.gz", "multilingual/c4-it.*.json.gz", "multilingual/c4-iw.*.json.gz", "multilingual/c4-ja.*.json.gz", "multilingual/c4-ja-Latn.*.json.gz", "multilingual/c4-jv.*.json.gz", "multilingual/c4-ka.*.json.gz", "multilingual/c4-kk.*.json.gz", "multilingual/c4-km.*.json.gz", "multilingual/c4-kn.*.json.gz", "multilingual/c4-ko.*.json.gz", "multilingual/c4-ku.*.json.gz", "multilingual/c4-ky.*.json.gz", "multilingual/c4-la.*.json.gz", "multilingual/c4-lb.*.json.gz", "multilingual/c4-lo.*.json.gz", "multilingual/c4-lt.*.json.gz", "multilingual/c4-lv.*.json.gz", "multilingual/c4-mg.*.json.gz", "multilingual/c4-mi.*.json.gz", "multilingual/c4-mk.*.json.gz", "multilingual/c4-ml.*.json.gz", "multilingual/c4-mn.*.json.gz", "multilingual/c4-mr.*.json.gz", "multilingual/c4-ms.*.json.gz", "multilingual/c4-mt.*.json.gz", "multilingual/c4-my.*.json.gz", "multilingual/c4-ne.*.json.gz", "multilingual/c4-nl.*.json.gz", "multilingual/c4-no.*.json.gz", "multilingual/c4-ny.*.json.gz", "multilingual/c4-pa.*.json.gz", "multilingual/c4-pl.*.json.gz", "multilingual/c4-ps.*.json.gz", "multilingual/c4-pt.*.json.gz", "multilingual/c4-ro.*.json.gz", "multilingual/c4-ru.*.json.gz", "multilingual/c4-ru-Latn.*.json.gz", "multilingual/c4-sd.*.json.gz", "multilingual/c4-si.*.json.gz", "multilingual/c4-sk.*.json.gz", "multilingual/c4-sl.*.json.gz", "multilingual/c4-sm.*.json.gz", "multilingual/c4-sn.*.json.gz", "multilingual/c4-so.*.json.gz", "multilingual/c4-sq.*.json.gz", "multilingual/c4-sr.*.json.gz", "multilingual/c4-st.*.json.gz", "multilingual/c4-su.*.json.gz", "multilingual/c4-sv.*.json.gz", "multilingual/c4-sw.*.json.gz", "multilingual/c4-ta.*.json.gz", "multilingual/c4-te.*.json.gz", "multilingual/c4-tg.*.json.gz", "multilingual/c4-th.*.json.gz", "multilingual/c4-tr.*.json.gz", "multilingual/c4-uk.*.json.gz", "multilingual/c4-und.*.json.gz", "multilingual/c4-ur.*.json.gz", "multilingual/c4-uz.*.json.gz", "multilingual/c4-vi.*.json.gz", "multilingual/c4-xh.*.json.gz", "multilingual/c4-yi.*.json.gz", "multilingual/c4-yo.*.json.gz", "multilingual/c4-zh.*.json.gz", "multilingual/c4-zh-Latn.*.json.gz", "multilingual/c4-zu.*.json.gz"]}, {"split": "validation", "path": ["multilingual/c4-af-validation.*.json.gz", "multilingual/c4-am-validation.*.json.gz", "multilingual/c4-ar-validation.*.json.gz", "multilingual/c4-az-validation.*.json.gz", "multilingual/c4-be-validation.*.json.gz", "multilingual/c4-bg-validation.*.json.gz", "multilingual/c4-bg-Latn-validation.*.json.gz", "multilingual/c4-bn-validation.*.json.gz", "multilingual/c4-ca-validation.*.json.gz", "multilingual/c4-ceb-validation.*.json.gz", "multilingual/c4-co-validation.*.json.gz", "multilingual/c4-cs-validation.*.json.gz", "multilingual/c4-cy-validation.*.json.gz", "multilingual/c4-da-validation.*.json.gz", "multilingual/c4-de-validation.*.json.gz", "multilingual/c4-el-validation.*.json.gz", "multilingual/c4-el-Latn-validation.*.json.gz", "multilingual/c4-en-validation.*.json.gz", "multilingual/c4-eo-validation.*.json.gz", "multilingual/c4-es-validation.*.json.gz", "multilingual/c4-et-validation.*.json.gz", "multilingual/c4-eu-validation.*.json.gz", "multilingual/c4-fa-validation.*.json.gz", "multilingual/c4-fi-validation.*.json.gz", "multilingual/c4-fil-validation.*.json.gz", "multilingual/c4-fr-validation.*.json.gz", "multilingual/c4-fy-validation.*.json.gz", "multilingual/c4-ga-validation.*.json.gz", "multilingual/c4-gd-validation.*.json.gz", "multilingual/c4-gl-validation.*.json.gz", "multilingual/c4-gu-validation.*.json.gz", "multilingual/c4-ha-validation.*.json.gz", "multilingual/c4-haw-validation.*.json.gz", "multilingual/c4-hi-validation.*.json.gz", "multilingual/c4-hi-Latn-validation.*.json.gz", "multilingual/c4-hmn-validation.*.json.gz", "multilingual/c4-ht-validation.*.json.gz", "multilingual/c4-hu-validation.*.json.gz", "multilingual/c4-hy-validation.*.json.gz", "multilingual/c4-id-validation.*.json.gz", "multilingual/c4-ig-validation.*.json.gz", "multilingual/c4-is-validation.*.json.gz", "multilingual/c4-it-validation.*.json.gz", "multilingual/c4-iw-validation.*.json.gz", "multilingual/c4-ja-validation.*.json.gz", "multilingual/c4-ja-Latn-validation.*.json.gz", "multilingual/c4-jv-validation.*.json.gz", "multilingual/c4-ka-validation.*.json.gz", "multilingual/c4-kk-validation.*.json.gz", "multilingual/c4-km-validation.*.json.gz", "multilingual/c4-kn-validation.*.json.gz", "multilingual/c4-ko-validation.*.json.gz", "multilingual/c4-ku-validation.*.json.gz", "multilingual/c4-ky-validation.*.json.gz", "multilingual/c4-la-validation.*.json.gz", "multilingual/c4-lb-validation.*.json.gz", "multilingual/c4-lo-validation.*.json.gz", "multilingual/c4-lt-validation.*.json.gz", "multilingual/c4-lv-validation.*.json.gz", "multilingual/c4-mg-validation.*.json.gz", "multilingual/c4-mi-validation.*.json.gz", "multilingual/c4-mk-validation.*.json.gz", "multilingual/c4-ml-validation.*.json.gz", "multilingual/c4-mn-validation.*.json.gz", "multilingual/c4-mr-validation.*.json.gz", "multilingual/c4-ms-validation.*.json.gz", "multilingual/c4-mt-validation.*.json.gz", "multilingual/c4-my-validation.*.json.gz", "multilingual/c4-ne-validation.*.json.gz", "multilingual/c4-nl-validation.*.json.gz", "multilingual/c4-no-validation.*.json.gz", "multilingual/c4-ny-validation.*.json.gz", "multilingual/c4-pa-validation.*.json.gz", "multilingual/c4-pl-validation.*.json.gz", "multilingual/c4-ps-validation.*.json.gz", "multilingual/c4-pt-validation.*.json.gz", "multilingual/c4-ro-validation.*.json.gz", "multilingual/c4-ru-validation.*.json.gz", "multilingual/c4-ru-Latn-validation.*.json.gz", "multilingual/c4-sd-validation.*.json.gz", "multilingual/c4-si-validation.*.json.gz", "multilingual/c4-sk-validation.*.json.gz", "multilingual/c4-sl-validation.*.json.gz", "multilingual/c4-sm-validation.*.json.gz", "multilingual/c4-sn-validation.*.json.gz", "multilingual/c4-so-validation.*.json.gz", "multilingual/c4-sq-validation.*.json.gz", "multilingual/c4-sr-validation.*.json.gz", "multilingual/c4-st-validation.*.json.gz", "multilingual/c4-su-validation.*.json.gz", "multilingual/c4-sv-validation.*.json.gz", "multilingual/c4-sw-validation.*.json.gz", "multilingual/c4-ta-validation.*.json.gz", "multilingual/c4-te-validation.*.json.gz", "multilingual/c4-tg-validation.*.json.gz", "multilingual/c4-th-validation.*.json.gz", "multilingual/c4-tr-validation.*.json.gz", "multilingual/c4-uk-validation.*.json.gz", "multilingual/c4-und-validation.*.json.gz", "multilingual/c4-ur-validation.*.json.gz", "multilingual/c4-uz-validation.*.json.gz", "multilingual/c4-vi-validation.*.json.gz", "multilingual/c4-xh-validation.*.json.gz", "multilingual/c4-yi-validation.*.json.gz", "multilingual/c4-yo-validation.*.json.gz", "multilingual/c4-zh-validation.*.json.gz", "multilingual/c4-zh-Latn-validation.*.json.gz", "multilingual/c4-zu-validation.*.json.gz"]}]}, {"config_name": "af", "data_files": [{"split": "train", "path": "multilingual/c4-af.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-af-validation.*.json.gz"}]}, {"config_name": "am", "data_files": [{"split": "train", "path": "multilingual/c4-am.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-am-validation.*.json.gz"}]}, {"config_name": "ar", "data_files": [{"split": "train", "path": "multilingual/c4-ar.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ar-validation.*.json.gz"}]}, {"config_name": "az", "data_files": [{"split": "train", "path": "multilingual/c4-az.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-az-validation.*.json.gz"}]}, {"config_name": "be", "data_files": [{"split": "train", "path": "multilingual/c4-be.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-be-validation.*.json.gz"}]}, {"config_name": "bg", "data_files": [{"split": "train", "path": "multilingual/c4-bg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bg-validation.*.json.gz"}]}, {"config_name": "bg-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-bg-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bg-Latn-validation.*.json.gz"}]}, {"config_name": "bn", "data_files": [{"split": "train", "path": "multilingual/c4-bn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bn-validation.*.json.gz"}]}, {"config_name": "ca", "data_files": [{"split": "train", "path": "multilingual/c4-ca.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ca-validation.*.json.gz"}]}, {"config_name": "ceb", "data_files": [{"split": "train", "path": "multilingual/c4-ceb.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ceb-validation.*.json.gz"}]}, {"config_name": "co", "data_files": [{"split": "train", "path": "multilingual/c4-co.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-co-validation.*.json.gz"}]}, {"config_name": "cs", "data_files": [{"split": "train", "path": "multilingual/c4-cs.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-cs-validation.*.json.gz"}]}, {"config_name": "cy", "data_files": [{"split": "train", "path": "multilingual/c4-cy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-cy-validation.*.json.gz"}]}, {"config_name": "da", "data_files": [{"split": "train", "path": "multilingual/c4-da.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-da-validation.*.json.gz"}]}, {"config_name": "de", "data_files": [{"split": "train", "path": "multilingual/c4-de.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-de-validation.*.json.gz"}]}, {"config_name": "el", "data_files": [{"split": "train", "path": "multilingual/c4-el.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-el-validation.*.json.gz"}]}, {"config_name": "el-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-el-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-el-Latn-validation.*.json.gz"}]}, {"config_name": "en-multi", "data_files": [{"split": "train", "path": "multilingual/c4-en.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-en-validation.*.json.gz"}]}, {"config_name": "eo", "data_files": [{"split": "train", "path": "multilingual/c4-eo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-eo-validation.*.json.gz"}]}, {"config_name": "es", "data_files": [{"split": "train", "path": "multilingual/c4-es.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-es-validation.*.json.gz"}]}, {"config_name": "et", "data_files": [{"split": "train", "path": "multilingual/c4-et.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-et-validation.*.json.gz"}]}, {"config_name": "eu", "data_files": [{"split": "train", "path": "multilingual/c4-eu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-eu-validation.*.json.gz"}]}, {"config_name": "fa", "data_files": [{"split": "train", "path": "multilingual/c4-fa.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fa-validation.*.json.gz"}]}, {"config_name": "fi", "data_files": [{"split": "train", "path": "multilingual/c4-fi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fi-validation.*.json.gz"}]}, {"config_name": "fil", "data_files": [{"split": "train", "path": "multilingual/c4-fil.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fil-validation.*.json.gz"}]}, {"config_name": "fr", "data_files": [{"split": "train", "path": "multilingual/c4-fr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fr-validation.*.json.gz"}]}, {"config_name": "fy", "data_files": [{"split": "train", "path": "multilingual/c4-fy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fy-validation.*.json.gz"}]}, {"config_name": "ga", "data_files": [{"split": "train", "path": "multilingual/c4-ga.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ga-validation.*.json.gz"}]}, {"config_name": "gd", "data_files": [{"split": "train", "path": "multilingual/c4-gd.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gd-validation.*.json.gz"}]}, {"config_name": "gl", "data_files": [{"split": "train", "path": "multilingual/c4-gl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gl-validation.*.json.gz"}]}, {"config_name": "gu", "data_files": [{"split": "train", "path": "multilingual/c4-gu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gu-validation.*.json.gz"}]}, {"config_name": "ha", "data_files": [{"split": "train", "path": "multilingual/c4-ha.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ha-validation.*.json.gz"}]}, {"config_name": "haw", "data_files": [{"split": "train", "path": "multilingual/c4-haw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-haw-validation.*.json.gz"}]}, {"config_name": "hi", "data_files": [{"split": "train", "path": "multilingual/c4-hi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hi-validation.*.json.gz"}]}, {"config_name": "hi-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-hi-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hi-Latn-validation.*.json.gz"}]}, {"config_name": "hmn", "data_files": [{"split": "train", "path": "multilingual/c4-hmn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hmn-validation.*.json.gz"}]}, {"config_name": "ht", "data_files": [{"split": "train", "path": "multilingual/c4-ht.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ht-validation.*.json.gz"}]}, {"config_name": "hu", "data_files": [{"split": "train", "path": "multilingual/c4-hu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hu-validation.*.json.gz"}]}, {"config_name": "hy", "data_files": [{"split": "train", "path": "multilingual/c4-hy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hy-validation.*.json.gz"}]}, {"config_name": "id", "data_files": [{"split": "train", "path": "multilingual/c4-id.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-id-validation.*.json.gz"}]}, {"config_name": "ig", "data_files": [{"split": "train", "path": "multilingual/c4-ig.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ig-validation.*.json.gz"}]}, {"config_name": "is", "data_files": [{"split": "train", "path": "multilingual/c4-is.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-is-validation.*.json.gz"}]}, {"config_name": "it", "data_files": [{"split": "train", "path": "multilingual/c4-it.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-it-validation.*.json.gz"}]}, {"config_name": "iw", "data_files": [{"split": "train", "path": "multilingual/c4-iw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-iw-validation.*.json.gz"}]}, {"config_name": "ja", "data_files": [{"split": "train", "path": "multilingual/c4-ja.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ja-validation.*.json.gz"}]}, {"config_name": "ja-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-ja-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ja-Latn-validation.*.json.gz"}]}, {"config_name": "jv", "data_files": [{"split": "train", "path": "multilingual/c4-jv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-jv-validation.*.json.gz"}]}, {"config_name": "ka", "data_files": [{"split": "train", "path": "multilingual/c4-ka.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ka-validation.*.json.gz"}]}, {"config_name": "kk", "data_files": [{"split": "train", "path": "multilingual/c4-kk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-kk-validation.*.json.gz"}]}, {"config_name": "km", "data_files": [{"split": "train", "path": "multilingual/c4-km.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-km-validation.*.json.gz"}]}, {"config_name": "kn", "data_files": [{"split": "train", "path": "multilingual/c4-kn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-kn-validation.*.json.gz"}]}, {"config_name": "ko", "data_files": [{"split": "train", "path": "multilingual/c4-ko.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ko-validation.*.json.gz"}]}, {"config_name": "ku", "data_files": [{"split": "train", "path": "multilingual/c4-ku.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ku-validation.*.json.gz"}]}, {"config_name": "ky", "data_files": [{"split": "train", "path": "multilingual/c4-ky.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ky-validation.*.json.gz"}]}, {"config_name": "la", "data_files": [{"split": "train", "path": "multilingual/c4-la.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-la-validation.*.json.gz"}]}, {"config_name": "lb", "data_files": [{"split": "train", "path": "multilingual/c4-lb.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lb-validation.*.json.gz"}]}, {"config_name": "lo", "data_files": [{"split": "train", "path": "multilingual/c4-lo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lo-validation.*.json.gz"}]}, {"config_name": "lt", "data_files": [{"split": "train", "path": "multilingual/c4-lt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lt-validation.*.json.gz"}]}, {"config_name": "lv", "data_files": [{"split": "train", "path": "multilingual/c4-lv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lv-validation.*.json.gz"}]}, {"config_name": "mg", "data_files": [{"split": "train", "path": "multilingual/c4-mg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mg-validation.*.json.gz"}]}, {"config_name": "mi", "data_files": [{"split": "train", "path": "multilingual/c4-mi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mi-validation.*.json.gz"}]}, {"config_name": "mk", "data_files": [{"split": "train", "path": "multilingual/c4-mk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mk-validation.*.json.gz"}]}, {"config_name": "ml", "data_files": [{"split": "train", "path": "multilingual/c4-ml.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ml-validation.*.json.gz"}]}, {"config_name": "mn", "data_files": [{"split": "train", "path": "multilingual/c4-mn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mn-validation.*.json.gz"}]}, {"config_name": "mr", "data_files": [{"split": "train", "path": "multilingual/c4-mr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mr-validation.*.json.gz"}]}, {"config_name": "ms", "data_files": [{"split": "train", "path": "multilingual/c4-ms.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ms-validation.*.json.gz"}]}, {"config_name": "mt", "data_files": [{"split": "train", "path": "multilingual/c4-mt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mt-validation.*.json.gz"}]}, {"config_name": "my", "data_files": [{"split": "train", "path": "multilingual/c4-my.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-my-validation.*.json.gz"}]}, {"config_name": "ne", "data_files": [{"split": "train", "path": "multilingual/c4-ne.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ne-validation.*.json.gz"}]}, {"config_name": "nl", "data_files": [{"split": "train", "path": "multilingual/c4-nl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-nl-validation.*.json.gz"}]}, {"config_name": "no", "data_files": [{"split": "train", "path": "multilingual/c4-no.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-no-validation.*.json.gz"}]}, {"config_name": "ny", "data_files": [{"split": "train", "path": "multilingual/c4-ny.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ny-validation.*.json.gz"}]}, {"config_name": "pa", "data_files": [{"split": "train", "path": "multilingual/c4-pa.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pa-validation.*.json.gz"}]}, {"config_name": "pl", "data_files": [{"split": "train", "path": "multilingual/c4-pl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pl-validation.*.json.gz"}]}, {"config_name": "ps", "data_files": [{"split": "train", "path": "multilingual/c4-ps.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ps-validation.*.json.gz"}]}, {"config_name": "pt", "data_files": [{"split": "train", "path": "multilingual/c4-pt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pt-validation.*.json.gz"}]}, {"config_name": "ro", "data_files": [{"split": "train", "path": "multilingual/c4-ro.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ro-validation.*.json.gz"}]}, {"config_name": "ru", "data_files": [{"split": "train", "path": "multilingual/c4-ru.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ru-validation.*.json.gz"}]}, {"config_name": "ru-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-ru-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ru-Latn-validation.*.json.gz"}]}, {"config_name": "sd", "data_files": [{"split": "train", "path": "multilingual/c4-sd.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sd-validation.*.json.gz"}]}, {"config_name": "si", "data_files": [{"split": "train", "path": "multilingual/c4-si.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-si-validation.*.json.gz"}]}, {"config_name": "sk", "data_files": [{"split": "train", "path": "multilingual/c4-sk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sk-validation.*.json.gz"}]}, {"config_name": "sl", "data_files": [{"split": "train", "path": "multilingual/c4-sl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sl-validation.*.json.gz"}]}, {"config_name": "sm", "data_files": [{"split": "train", "path": "multilingual/c4-sm.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sm-validation.*.json.gz"}]}, {"config_name": "sn", "data_files": [{"split": "train", "path": "multilingual/c4-sn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sn-validation.*.json.gz"}]}, {"config_name": "so", "data_files": [{"split": "train", "path": "multilingual/c4-so.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-so-validation.*.json.gz"}]}, {"config_name": "sq", "data_files": [{"split": "train", "path": "multilingual/c4-sq.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sq-validation.*.json.gz"}]}, {"config_name": "sr", "data_files": [{"split": "train", "path": "multilingual/c4-sr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sr-validation.*.json.gz"}]}, {"config_name": "st", "data_files": [{"split": "train", "path": "multilingual/c4-st.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-st-validation.*.json.gz"}]}, {"config_name": "su", "data_files": [{"split": "train", "path": "multilingual/c4-su.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-su-validation.*.json.gz"}]}, {"config_name": "sv", "data_files": [{"split": "train", "path": "multilingual/c4-sv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sv-validation.*.json.gz"}]}, {"config_name": "sw", "data_files": [{"split": "train", "path": "multilingual/c4-sw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sw-validation.*.json.gz"}]}, {"config_name": "ta", "data_files": [{"split": "train", "path": "multilingual/c4-ta.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ta-validation.*.json.gz"}]}, {"config_name": "te", "data_files": [{"split": "train", "path": "multilingual/c4-te.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-te-validation.*.json.gz"}]}, {"config_name": "tg", "data_files": [{"split": "train", "path": "multilingual/c4-tg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-tg-validation.*.json.gz"}]}, {"config_name": "th", "data_files": [{"split": "train", "path": "multilingual/c4-th.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-th-validation.*.json.gz"}]}, {"config_name": "tr", "data_files": [{"split": "train", "path": "multilingual/c4-tr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-tr-validation.*.json.gz"}]}, {"config_name": "uk", "data_files": [{"split": "train", "path": "multilingual/c4-uk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-uk-validation.*.json.gz"}]}, {"config_name": "und", "data_files": [{"split": "train", "path": "multilingual/c4-und.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-und-validation.*.json.gz"}]}, {"config_name": "ur", "data_files": [{"split": "train", "path": "multilingual/c4-ur.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ur-validation.*.json.gz"}]}, {"config_name": "uz", "data_files": [{"split": "train", "path": "multilingual/c4-uz.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-uz-validation.*.json.gz"}]}, {"config_name": "vi", "data_files": [{"split": "train", "path": "multilingual/c4-vi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-vi-validation.*.json.gz"}]}, {"config_name": "xh", "data_files": [{"split": "train", "path": "multilingual/c4-xh.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-xh-validation.*.json.gz"}]}, {"config_name": "yi", "data_files": [{"split": "train", "path": "multilingual/c4-yi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-yi-validation.*.json.gz"}]}, {"config_name": "yo", "data_files": [{"split": "train", "path": "multilingual/c4-yo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-yo-validation.*.json.gz"}]}, {"config_name": "zh", "data_files": [{"split": "train", "path": "multilingual/c4-zh.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zh-validation.*.json.gz"}]}, {"config_name": "zh-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-zh-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zh-Latn-validation.*.json.gz"}]}, {"config_name": "zu", "data_files": [{"split": "train", "path": "multilingual/c4-zu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zu-validation.*.json.gz"}]}]} | false | null | 2024-01-09T19:14:03 | 390 | 9 | false | 1588ec454efa1a09f29cd18ddd04fe05fc8653a2 |
C4
Dataset Summary
A colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org".
This is the processed version of Google's C4 dataset
We prepared five variants of the data: en, en.noclean, en.noblocklist, realnewslike, and multilingual (mC4).
For reference, these are the sizes of the variants:
en: 305GB
en.noclean: 2.3TB
en.noblocklist: 380GB
realnewslike: 15GB
multilingual (mC4): 9.7TB (108 subsets, oneโฆ See the full description on the dataset page: https://huggingface.co/datasets/allenai/c4. | 408,564 | 5,320,428 | [
"task_categories:text-generation",
"task_categories:fill-mask",
"task_ids:language-modeling",
"task_ids:masked-language-modeling",
"annotations_creators:no-annotation",
"language_creators:found",
"multilinguality:multilingual",
"source_datasets:original",
"language:af",
"language:am",
"language:ar",
"language:az",
"language:be",
"language:bg",
"language:bn",
"language:ca",
"language:ceb",
"language:co",
"language:cs",
"language:cy",
"language:da",
"language:de",
"language:el",
"language:en",
"language:eo",
"language:es",
"language:et",
"language:eu",
"language:fa",
"language:fi",
"language:fil",
"language:fr",
"language:fy",
"language:ga",
"language:gd",
"language:gl",
"language:gu",
"language:ha",
"language:haw",
"language:he",
"language:hi",
"language:hmn",
"language:ht",
"language:hu",
"language:hy",
"language:id",
"language:ig",
"language:is",
"language:it",
"language:iw",
"language:ja",
"language:jv",
"language:ka",
"language:kk",
"language:km",
"language:kn",
"language:ko",
"language:ku",
"language:ky",
"language:la",
"language:lb",
"language:lo",
"language:lt",
"language:lv",
"language:mg",
"language:mi",
"language:mk",
"language:ml",
"language:mn",
"language:mr",
"language:ms",
"language:mt",
"language:my",
"language:ne",
"language:nl",
"language:no",
"language:ny",
"language:pa",
"language:pl",
"language:ps",
"language:pt",
"language:ro",
"language:ru",
"language:sd",
"language:si",
"language:sk",
"language:sl",
"language:sm",
"language:sn",
"language:so",
"language:sq",
"language:sr",
"language:st",
"language:su",
"language:sv",
"language:sw",
"language:ta",
"language:te",
"language:tg",
"language:th",
"language:tr",
"language:uk",
"language:und",
"language:ur",
"language:uz",
"language:vi",
"language:xh",
"language:yi",
"language:yo",
"language:zh",
"language:zu",
"license:odc-by",
"size_categories:10B<n<100B",
"modality:text",
"arxiv:1910.10683",
"region:us"
] | 2022-03-02T23:29:22 | c4 | null |
649444227853dd12c3bbadd8 | Amod/mental_health_counseling_conversations | Amod | {"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]} | false | null | 2024-04-05T08:30:03 | 333 | 9 | false | 4672e03c7f1a7b2215eb4302b83ca50449ce2553 |
Amod/mental_health_counseling_conversations
Dataset Summary
This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice.
Supported Tasks and Leaderboards
Theโฆ See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations. | 4,998 | 62,357 | [
"task_categories:text-generation",
"task_categories:question-answering",
"language:en",
"license:openrail",
"size_categories:1K<n<10K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/1581",
"region:us",
"medical"
] | 2023-06-22T12:52:50 | null | null |
66fcfe8ac529fcdfbd3696f4 | SylvanL/Traditional-Chinese-Medicine-Dataset-SFT | SylvanL | {"license": "apache-2.0", "task_categories": ["table-question-answering"], "language": ["zh"], "tags": ["medical"], "size_categories": ["1B<n<10B"]} | false | null | 2024-10-26T10:47:40 | 66 | 9 | false | 5ba2abbea72d757a1fd70a683193452c35b36f83 |
ๅฏๅค็บณไป๏ผๅๅพท็ฒพๆฏ
ๆฐๆฎไป็ป
้็ฝ็ปๆฅๆบ็้ซ่ดจ้ไธญๅปๆฐๆฎ้-ๆไปคๅพฎ่ฐ
High-Quality Traditional Chinese Medicine Dataset from Non-Internet Sources - SFT/IFT
่ฏฅๆฐๆฎ้็ป่ฟๅคง้ไบบๅๅ่ตๆบ็ๆๅ
ฅ็ฒพๅฟๆๅปบ๏ผไปฅๅ
ฑๅปบLLM้ซ่ดจ้ไธญๆ็คพๅบไธบๅทฑไปปใ
ๅ
ๅซ็บฆ1GB็ไธญๅปๅไธช้ขๅไธดๅบๆกไพใๅๅฎถๅ
ธ็ฑใๅปๅญฆ็พ็ง๏ผๅ่ฏ่งฃ้็ญไผ่ดจ้ฎ็ญๅ
ๅฎน๏ผๆถต็ๅ
จ้ข๏ผ้
ๆฏๅ่กกใ
ๆฐๆฎ้ไธป่ฆ็ฑ้็ฝ็ปๆฅๆบ็ๅ
้จๆฐๆฎๆๆ๏ผๅนถ99%ไธบ็ฎไฝไธญๆๅ
ๅฎน๏ผๅ
ๅฎน่ดจ้ไผๅผ๏ผไฟกๆฏๅฏๅบฆๅฏ่งใ
่ฏฅๆฐๆฎ้็ๆฐๆฎๆบไธSylvanL/Traditional-Chinese-Medicine-Dataset-Pretrainไธญ็ๅ
ๅฎนๅญๅจไธๅฎๅ
ณ่๏ผไฝไธ้ซๅบฆ้ๅ ใ
ๅจไบ่
็ๆๅปบ่ฟ็จไธญ๏ผๅญๅจ็ไธๅฎ็ๅพชๅบๆธ่ฟไธไบไธบ่กฅๅ
็้ป่พ.
่ฏฅๆฐๆฎ้ๅฏไปฅ็ฌ็ซไฝฟ็จ๏ผไฝๅปบ่ฎฎๅ
ไฝฟ็จ้
ๅฅ็้ข่ฎญ็ปๆฐๆฎ้ๅฏนๆจกๅ่ฟ่ก็ปง็ปญ้ข่ฎญ็ปๅ๏ผๅไฝฟ็จ่ฏฅๆฐๆฎ้่ฟ่ก่ฟไธๆญฅ็ๆไปคๅพฎ่ฐใโฆ See the full description on the dataset page: https://huggingface.co/datasets/SylvanL/Traditional-Chinese-Medicine-Dataset-SFT. | 1,964 | 3,789 | [
"task_categories:table-question-answering",
"language:zh",
"license:apache-2.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us",
"medical"
] | 2024-10-02T08:04:26 | null | null |
666513f121aa69e38699e6d3 | UCSC-VLAA/MedTrinity-25M | UCSC-VLAA | {"language": ["en"], "size_categories": ["10M<n<100M"], "task_categories": ["question-answering"], "dataset_info": [{"config_name": "25M_full", "features": [{"name": "id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "caption", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25234102586, "num_examples": 24760560}], "download_size": 7353330306, "dataset_size": 25234102586}, {"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "id", "dtype": "string"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4781050841.25, "num_examples": 161630}], "download_size": 8300138103, "dataset_size": 4781050841.25}], "configs": [{"config_name": "25M_full", "data_files": [{"split": "train", "path": "25M_full/train-*"}]}, {"config_name": "25M_demo", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["medical"]} | false | null | 2024-10-11T00:47:43 | 133 | 8 | false | 89e5c684794e5c4cc1af9e8f1a7798af7c937dbf |
Tutorial of using Medtrinity-25M
MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), includingโฆ See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedTrinity-25M. | 2,545 | 9,704 | [
"task_categories:question-answering",
"language:en",
"size_categories:10M<n<100M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2408.02900",
"region:us",
"medical"
] | 2024-06-09T02:31:13 | null | null |
67954a35c16b74e280f72f15 | ServiceNow-AI/R1-Distill-SFT | ServiceNow-AI | {"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]} | false | null | 2025-02-08T22:46:58 | 282 | 8 | false | 16e851e107d928b9069dcce428a2d3d7154e5353 |
๐ ๐ฆ๐๐๐ ๐น๐ฎ๐ฏ - ๐ฅ๐ญ-๐๐ถ๐๐๐ถ๐น๐น-๐ฆ๐๐ง Dataset
Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue ๐ค and others at Hugging Face announced today that they are - ๐ผ๐ฝ๐ฒ๐ป๐น๐ ๐ฟ๐ฒ๐ฝ๐ฟ๐ผ๐ฑ๐๐ฐ๐ถ๐ป๐ด ๐ฅ๐ญ ๐ฅ
We at ๐ฆ๐๐๐ ๐น๐ฎ๐ฏ (ServiceNow Language Models) have been cooking up something as well.
Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community.
๐๐ผ๐ผ๐ธ๐บ๐ฎ๐ฟ๐ธ this page!
KEY DETAILS:
โ๏ธ Distilledโฆ See the full description on the dataset page: https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT. | 4,026 | 10,669 | [
"license:cc-by-nc-sa-4.0",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-01-25T20:31:49 | null | null |
67a404bc8c6d42c5ec097433 | Anthropic/EconomicIndex | Anthropic | {"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]} | false | null | 2025-02-10T19:28:32 | 198 | 8 | false | 218b35116baa43c55beffe61f243bd81f5f84cf8 |
Overview
This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below.
Please see our blog post and paper for further visualizations and complete analysis.
Data
SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET databaseโฆ See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/EconomicIndex. | 2,892 | 7,942 | [
"license:mit",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"text"
] | 2025-02-06T00:39:24 | null | null |
67bc34742281367a6b4a5bb7 | jmhb/microvqa | jmhb | {"language": ["en"], "license": "cc-by-sa-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["visual-question-answering", "multiple-choice"], "pretty_name": "MicroVQA", "dataset_info": {"features": [{"name": "key_question", "dtype": "int64"}, {"name": "key_image", "dtype": "int64"}, {"name": "images_list", "sequence": "image"}, {"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "correct_index", "dtype": "int64"}, {"name": "correct_answer", "dtype": "string"}, {"name": "question_0", "dtype": "string"}, {"name": "answer_0", "dtype": "string"}, {"name": "comments_0", "dtype": "string"}, {"name": "incorrect_answer_0", "dtype": "string"}, {"name": "question_1", "dtype": "string"}, {"name": "choices_1", "sequence": "string"}, {"name": "correct_index_1", "dtype": "int64"}, {"name": "question_2", "dtype": "string"}, {"name": "choices_2", "sequence": "string"}, {"name": "correct_index_2", "dtype": "int64"}, {"name": "question_3", "dtype": "string"}, {"name": "choices_3", "sequence": "string"}, {"name": "correct_index_3", "dtype": "int64"}, {"name": "task", "dtype": "int64"}, {"name": "task_str", "dtype": "string"}, {"name": "context_image_generation", "dtype": "string"}, {"name": "context_motivation", "dtype": "string"}, {"name": "images_source", "dtype": "string"}, {"name": "image_caption", "dtype": "string"}, {"name": "key_person", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2354666072.188, "num_examples": 1042}], "download_size": 462156805, "dataset_size": 2354666072.188}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["biology", "biomedical", "microscopy", "pathology", "vision-language", "question-answering", "scientific-research"]} | false | null | 2025-03-18T17:04:39 | 11 | 8 | false | e50938e2fd7299310896df749f74b5f6cc528ca5 | MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research (CVPR 2025)
๐ Homepage / blog โข
๐ arXiv โข
๐ค HF Dataset โข
๐ป Code โข
๐ CC-BY-SA-4.0
MicroVQA is expert-curated benchmark for multimodal reasoning for microscopy-based scientific research, proposed in the paper MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research.
Paper abstract
Scientific research demands sophisticated reasoning over multimodalโฆ See the full description on the dataset page: https://huggingface.co/datasets/jmhb/microvqa. | 766 | 766 | [
"task_categories:visual-question-answering",
"task_categories:multiple-choice",
"language:en",
"license:cc-by-sa-4.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2503.13399",
"region:us",
"biology",
"biomedical",
"microscopy",
"pathology",
"vision-language",
"question-answering",
"scientific-research"
] | 2025-02-24T08:57:24 | null | null |
67c248d12a6f7c1f2a448ee4 | KodCode/KodCode-V1 | KodCode | {"language": ["en"], "license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "version", "dtype": "string"}, {"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "trials", "struct": [{"name": "trial_gpt4o_0", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_1", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_2", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_3", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_4", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_5", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_6", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_7", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_8", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_9", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}]}, {"name": "chosen_trial", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "benchmark_similarity", "dtype": "float64"}, {"name": "benchmark_instruction", "dtype": "string"}, {"name": "benchmark_task_id", "dtype": "string"}, {"name": "filter_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7436730246, "num_examples": 484097}, {"name": "use_with_caution", "num_bytes": 59623008, "num_examples": 3335}], "download_size": 2642644096, "dataset_size": 7496353254}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}], "tags": ["code"], "size_categories": ["100K<n<1M"]} | false | null | 2025-03-17T07:56:27 | 76 | 8 | false | 97d81f0695ddd7c5c02bfe16436db9a17a4a21e5 |
๐ฑ KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning.
๐ธ๏ธโฆ See the full description on the dataset page: https://huggingface.co/datasets/KodCode/KodCode-V1. | 3,874 | 3,874 | [
"language:en",
"license:cc-by-nc-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2503.02951",
"region:us",
"code"
] | 2025-02-28T23:37:53 | null | null |
6664c00380c533842fb0c680 | lmg-anon/vntl-leaderboard | lmg-anon | {"language": ["en", "ja"], "tags": ["benchmark", "leaderboard"], "task_categories": ["translation"], "pretty_name": "vntl-leaderboard", "size_categories": ["n<1K"], "configs": [{"config_name": "leaderboard", "data_files": "leaderboard.jsonl"}]} | false | null | 2025-01-02T16:34:32 | 34 | 7 | false | cf3d232d77458394857dbf8411de95fd3a894aef |
VNTL Leaderboard
The VNTL leaderboard ranks Large Language Models (LLMs) based on their performance in translating Japanese Visual Novels into English. Please be aware that the current results are preliminary and subject to change as new models are evaluated, or changes are done in the evaluation script.
Comparison with Established Translation Tools
For comparison, this table shows the scores for established translation tools. These include both widely availableโฆ See the full description on the dataset page: https://huggingface.co/datasets/lmg-anon/vntl-leaderboard. | 3,518 | 8,332 | [
"task_categories:translation",
"language:en",
"language:ja",
"size_categories:n<1K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"benchmark",
"leaderboard"
] | 2024-06-08T20:33:07 | null | null |
66a53dc7d40a13036c5f2ebe | mlabonne/FineTome-100k | mlabonne | {"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "source", "dtype": "string"}, {"name": "score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 239650960.7474458, "num_examples": 100000}], "download_size": 116531415, "dataset_size": 239650960.7474458}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]} | false | null | 2024-07-29T09:52:30 | 182 | 7 | false | c2343c1372ff31f51aa21248db18bffa3193efdb |
FineTome-100k
The FineTome dataset is a subset of arcee-ai/The-Tome (without arcee-ai/qwen2-72b-magpie-en), re-filtered using HuggingFaceFW/fineweb-edu-classifier.
It was made for my article "Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth".
| 16,517 | 79,582 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-07-27T18:34:47 | null | null |
67374c18c32c765810f748f6 | HuggingFaceH4/MATH-500 | HuggingFaceH4 | {"task_categories": ["text-generation"], "language": ["en"], "pretty_name": "MATH-500"} | false | null | 2024-11-15T13:36:00 | 132 | 7 | false | ff5b20257d8185524591543f8ff5993951537bb8 |
Dataset Card for MATH-500
This dataset contains a subset of 500 problems from the MATH benchmark that OpenAI created in their Let's Verify Step by Step paper. See their GitHub repo for the source file: https://github.com/openai/prm800k/tree/main?tab=readme-ov-file#math-splits
| 57,939 | 97,688 | [
"task_categories:text-generation",
"language:en",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2024-11-15T13:26:48 | null | null |
67aa648e91e6f5eb545e854e | allenai/olmOCR-mix-0225 | allenai | {"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]} | false | null | 2025-02-25T09:36:14 | 97 | 7 | false | a602926844ed47c43439627fd16d3de45b39e494 |
olmOCR-mix-0225
olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special
prompting strategy that preserves any born-digital content from each page.
This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline.
Quick links:
๐ Paper
๐ค Model
๐ ๏ธ Code
๐ฎ Demo
Data Mix
Table 1: Training set composition by source
Source
Uniqueโฆ See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225. | 5,283 | 5,285 | [
"license:odc-by",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | 2025-02-10T20:41:50 | null | null |
67cf999e2d0993b445bfd594 | Gen-Verse/WideRange4D | Gen-Verse | {"task_categories": ["image-to-video"], "tags": ["4d-reconstruction", "gaussian-splatting"], "license": "unknown"} | false | null | 2025-03-21T11:22:37 | 7 | 7 | false | c747d56214a46fe41ba42acc412b324ef58e5466 |
WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes
Ling Yang1*, Kaixin Zhu1*, Juanxi Tian1*, Bohan Zeng1*, Mingbao Lin3, Hongjuan Pei2, Wentao Zhang1โก, Shuicheng Yan3โก
1 Peking University โ 2 University of the Chinese Academy of Sciences โ 3 National University of Singapore
* Equal Contributions. โก Corresponding Author.
Example
Github Page
arXiv Paper
@article{yang2025widerange4d,
title={WideRange4D: Enabling High-Qualityโฆ See the full description on the dataset page: https://huggingface.co/datasets/Gen-Verse/WideRange4D. | 3,493 | 3,493 | [
"task_categories:image-to-video",
"license:unknown",
"size_categories:10K<n<100K",
"modality:video",
"library:datasets",
"library:mlcroissant",
"arxiv:2503.13435",
"region:us",
"4d-reconstruction",
"gaussian-splatting"
] | 2025-03-11T02:02:06 | null | null |
67d9fd082ad0bffeb5bbc771 | HuggingFaceTB/issues-kaggle-notebooks | HuggingFaceTB | {"dataset_info": [{"config_name": "issues", "features": [{"name": "repo_name", "dtype": "string"}, {"name": "issue_id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 30986711842, "num_examples": 15549682}], "download_size": 16370074732, "dataset_size": 30986711842}, {"config_name": "kaggle", "features": [{"name": "file_id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5209133899, "num_examples": 580195}], "download_size": 2222724371, "dataset_size": 5209133899}], "configs": [{"config_name": "issues", "data_files": [{"split": "train", "path": "issues/train-*"}]}, {"config_name": "kaggle", "data_files": [{"split": "train", "path": "kaggle/train-*"}]}]} | false | null | 2025-03-19T20:00:18 | 7 | 7 | false | ef882ad1ed8274340e8fc9bac087c903f2f75396 |
GitHub Issues & Kaggle Notebooks
Description
GitHub Issues & Kaggle Notebooks is a collection of two code datasets intended for language models training, they are sourced from GitHub issues and notebooks in Kaggle platform. These datasets are a modified part of the StarCoder2 model training corpus, precisely the bigcode/StarCoder2-Extras dataset. We reformat the samples to remove StarCoder2's special tokens and use natural text to delimit comments in issues and displayโฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/issues-kaggle-notebooks. | 62 | 62 | [
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2402.19173",
"region:us"
] | 2025-03-18T23:08:56 | null | null |
End of preview. Expand
in Data Studio

NEW Changes Feb 27th
Added new fields on the
models
split:downloadsAllTime
,safetensors
,gguf
Added new field on the
datasets
split:downloadsAllTime
Added new split:
papers
which is all of the Daily Papers
Updated Daily
- Downloads last month
- 7,595
Data Sourcing report
powered
by
Spawning.aiNo elements in this dataset have been identified as either opted-out, or opted-in, by their creator.