Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
โŒ€
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
7.63k
trendingScore
float64
-1
160
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
โŒ€
downloads
int64
0
4.8M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
paperswithcode_id
stringclasses
652 values
citation
stringlengths
0
10.7k
โŒ€
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset-v1
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-03-18T15:56:14
160
160
false
ed905e6239c9d191e4c965a403dde07a5383b5eb
Llama-Nemotron-Post-Training-Dataset-v1 Release Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIAโ€™s release of Llama-3.3-Nemotron-Super-49B-v1 and Llama-3.1-Nemotron-Nano-8B-v1. Llama-3.3-Nemotron-Super-49B-v1 is a large language model (LLM) which is a derivative of Metaโ€™s Llama-3.3-70B-Instruct (AKAโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset-v1.
2,656
2,665
[ "license:cc-by-4.0", "size_categories:10M<n<100M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-13T21:01:09
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
517
63
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4oโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
29,123
42,759
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67d97c4be2b27852325fd8e2
nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim
nvidia
{"license": "cc-by-4.0"}
false
null
2025-03-21T15:02:34
60
60
false
9cd48351839af877ff365fa8bf06e1cf9e57d539
PhysicalAI-Robotics-GR00T-X-Embodiment-Sim Github Repo: Isaac GR00T N1 We provide a set of datasets used for post-training of GR00T N1. Each dataset is a collection of trajectories from different robot embodiments and tasks. Cross-embodied bimanual manipulation: 9k trajectories Dataset Name #trajectories bimanual_panda_gripper.Threading 1000 bimanual_panda_hand.LiftTray 1000 bimanual_panda_gripper.ThreePieceAssembly 1000โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim.
4,472
4,472
[ "license:cc-by-4.0", "region:us" ]
2025-03-18T13:59:39
null
null
67c0cda5c0b7a236a5f070e3
glaiveai/reasoning-v1-20m
glaiveai
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 177249016911, "num_examples": 22199375}], "download_size": 87247205094, "dataset_size": 177249016911}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "size_categories": ["10M<n<100M"]}
false
null
2025-03-19T13:21:37
57
55
false
da6bb3d0ff8fd8ea5abacee8519762ca6aaf367e
We are excited to release a synthetic reasoning dataset containing 22mil+ general reasoning questions and responses generated using deepseek-ai/DeepSeek-R1-Distill-Llama-70B. While there have been multiple efforts to build open reasoning datasets for math and code tasks, we noticed a lack of large datasets containing reasoning traces for diverse non code/math topics like social and natural sciences, education, creative writing and general conversations, which is why we decided to release thisโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/glaiveai/reasoning-v1-20m.
2,077
2,077
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T20:40:05
null
null
67c03fd6b9fe27a2ac49784d
open-r1/codeforces-cots
open-r1
{"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6719356671, "num_examples": 40665}], "download_size": 2023394671, "dataset_size": 6719356671}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1349328880, "num_examples": 8133}], "download_size": 500182086, "dataset_size": 1349328880}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3738669884, "num_examples": 24490}], "download_size": 1012247387, "dataset_size": 3738669884}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "solutions_w_editorials_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1499075280, "num_examples": 9796}], "download_size": 466078291, "dataset_size": 1499075280}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_decontaminated", "data_files": [{"split": "train", "path": "solutions_decontaminated/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_py_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "solutions_w_editorials_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_py_decontaminated/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-17T11:29:08
90
51
false
5f9671cf3779c3c709bd9f6f61b38ef3f061d5c8
Dataset Card for CodeForces-CoTs Dataset description CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to five reasoning traces generated by DeepSeek R1. We did not filter the traces for correctness, but found that around 84% of the Python ones pass the public tests. The dataset consists of several subsets: solutions: we prompt R1 to solve the problem and produce code.โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots.
5,014
5,014
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T10:35:02
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
572
44
false
8520b649430617c2be4490f424d251d09d835ed3
ไธญๆ–‡ๅŸบไบŽๆปก่ก€DeepSeek-R1่’ธ้ฆๆ•ฐๆฎ้›†๏ผˆChinese-Data-Distill-From-R1๏ผ‰ ๐Ÿค— Hugging Faceย ย  | ย ย ๐Ÿค– ModelScope ย ย  | ย ย ๐Ÿš€ Github ย ย  | ย ย ๐Ÿ“‘ Blog ๆณจๆ„๏ผšๆไพ›ไบ†็›ดๆŽฅSFTไฝฟ็”จ็š„็‰ˆๆœฌ๏ผŒ็‚นๅ‡ปไธ‹่ฝฝใ€‚ๅฐ†ๆ•ฐๆฎไธญ็š„ๆ€่€ƒๅ’Œ็ญ”ๆกˆๆ•ดๅˆๆˆoutputๅญ—ๆฎต๏ผŒๅคง้ƒจๅˆ†SFTไปฃ็ ๆก†ๆžถๅ‡ๅฏ็›ดๆŽฅ็›ดๆŽฅๅŠ ่ฝฝ่ฎญ็ปƒใ€‚ ๆœฌๆ•ฐๆฎ้›†ไธบไธญๆ–‡ๅผ€ๆบ่’ธ้ฆๆปก่ก€R1็š„ๆ•ฐๆฎ้›†๏ผŒๆ•ฐๆฎ้›†ไธญไธไป…ๅŒ…ๅซmathๆ•ฐๆฎ๏ผŒ่ฟ˜ๅŒ…ๆ‹ฌๅคง้‡็š„้€š็”จ็ฑปๅž‹ๆ•ฐๆฎ๏ผŒๆ€ปๆ•ฐ้‡ไธบ110Kใ€‚ ไธบไป€ไนˆๅผ€ๆบ่ฟ™ไธชๆ•ฐๆฎ๏ผŸ R1็š„ๆ•ˆๆžœๅๅˆ†ๅผบๅคง๏ผŒๅนถไธ”ๅŸบไบŽR1่’ธ้ฆๆ•ฐๆฎSFT็š„ๅฐๆจกๅž‹ไนŸๅฑ•็Žฐๅ‡บไบ†ๅผบๅคง็š„ๆ•ˆๆžœ๏ผŒไฝ†ๆฃ€็ดขๅ‘็Žฐ๏ผŒๅคง้ƒจๅˆ†ๅผ€ๆบ็š„R1่’ธ้ฆๆ•ฐๆฎ้›†ๅ‡ไธบ่‹ฑๆ–‡ๆ•ฐๆฎ้›†ใ€‚ ๅŒๆ—ถ๏ผŒR1็š„ๆŠฅๅ‘Šไธญๅฑ•็คบ๏ผŒ่’ธ้ฆๆจกๅž‹ไธญๅŒๆ—ถไนŸไฝฟ็”จไบ†้ƒจๅˆ†้€š็”จๅœบๆ™ฏๆ•ฐๆฎ้›†ใ€‚ ไธบไบ†ๅธฎๅŠฉๅคงๅฎถๆ›ดๅฅฝๅœฐๅค็ŽฐR1่’ธ้ฆๆจกๅž‹็š„ๆ•ˆๆžœ๏ผŒ็‰นๆญคๅผ€ๆบไธญๆ–‡ๆ•ฐๆฎ้›†ใ€‚่ฏฅไธญๆ–‡ๆ•ฐๆฎ้›†ไธญ็š„ๆ•ฐๆฎๅˆ†ๅธƒๅฆ‚ไธ‹๏ผš Math๏ผšๅ…ฑ่ฎก36568ไธชๆ ทๆœฌ๏ผŒ Exam๏ผšๅ…ฑ่ฎก2432ไธชๆ ทๆœฌ๏ผŒ STEM๏ผšๅ…ฑ่ฎก12648ไธชๆ ทๆœฌ๏ผŒโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
8,780
9,428
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
679c0b5c32cf4c58bdcba8eb
facebook/natural_reasoning
facebook
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]}
false
null
2025-02-21T06:02:40
440
37
false
99eea5dc6bfa45a925eb42600e81dc90377ba237
NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response fromโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning.
13,663
13,663
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us" ]
2025-01-30T23:29:32
null
null
67d7eeec9830e5c1e2a8f708
BytedTsinghua-SIA/DAPO-Math-17k
BytedTsinghua-SIA
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math"], "pretty_name": "DAPO-Math-17k", "size_categories": ["1M<n<10M"]}
false
null
2025-03-18T07:47:04
31
31
false
9f6440001c15da8e7c7516fdbb3d2ce49de711de
This dataset actually only contains ~17k unique prompts and was duplicated by ~100x by accident.
1,269
1,269
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "math" ]
2025-03-17T09:44:12
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
520
27
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
54,489
65,803
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67b20fc10861cec33b3afb8a
Conard/fortune-telling
Conard
{"license": "mit"}
false
null
2025-02-17T05:13:43
81
27
false
6261fe0d35a75997972bbfcd9828020e340303fb
null
4,988
5,001
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-16T16:18:09
null
null
67c122a87c100c8caa21c89d
TIGER-Lab/VisualWebInstruct
TIGER-Lab
{"language": ["en"], "license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["question-answering", "visual-question-answering"], "pretty_name": "VisualWebInstruct", "tags": ["math", "science"], "configs": [{"config_name": "example", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "conversation", "data_files": [{"split": "train", "path": "mixed_conversation.parquet"}]}, {"config_name": "visualwebinstruct", "data_files": [{"split": "train", "path": "visualwebinstruct_qa.parquet"}]}]}
false
null
2025-03-21T07:54:25
25
22
false
e060d8237917237f19e1ea592efb4de90aaed171
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search VisualWebInstruct is a large-scale, diverse multimodal instruction dataset designed to enhance vision-language models' reasoning capabilities. The dataset contains approximately 900K question-answer (QA) pairs, with 40% consisting of visual QA pairs associated with 163,743 unique images, while the remaining 60% are text-only QA pairs. Links GitHub Repository Research Paper Project Websiteโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/TIGER-Lab/VisualWebInstruct.
752
772
[ "task_categories:question-answering", "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.10582", "region:us", "math", "science" ]
2025-02-28T02:42:48
null
null
67c5a5ba52976b223005f88b
DropletX/DropletVideo-10M
DropletX
{"license": "cc-by-nc-sa-4.0", "task_categories": ["image-to-video", "text-to-video"], "language": ["en"], "size_categories": ["10M<n<100M"], "extra_gated_prompt": "You agree to not use the data to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Name": "text", "Company/Organization": "text", "E-Mail": "text", "Job title": "text"}}
false
null
2025-03-19T16:15:37
24
21
false
3f5bc6339a46d3b9b2a4469c081b2d37f881d6ee
๐Ÿ” Dataset Note: DropletVideo-1M is the premium subset of DropletVideo-10M, filtered with aesthetic score > 4.51 and image quality score > 7.51. โœˆ๏ธ Introduction The challenge of spatiotemporal consistency has long existed in the field of video generation. We have released the open-source dataset DropletVideo-10M โ€”the world's largest video generation dataset with spatiotemporal consistency. Itโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/DropletX/DropletVideo-10M.
257
257
[ "task_categories:image-to-video", "task_categories:text-to-video", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10M<n<100M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.06053", "region:us" ]
2025-03-03T12:51:06
null
null
67c8270b5999e7df91a854da
yaak-ai/L2D
yaak-ai
{"license": "apache-2.0", "task_categories": ["robotics"], "tags": ["LeRobot"], "configs": [{"config_name": "default", "data_files": "data/*/*.parquet"}]}
false
null
2025-03-10T18:34:05
25
20
false
49115405b552802c9838d4a4c85a4ed947f901b3
This dataset was created using LeRobot. Dataset Structure meta/info.json: { "codebase_version": "v2.1", "robot_type": "KIA Niro EV 2023", "total_episodes": 100, "total_frames": 28519, "total_tasks": 1, "total_videos": 700, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:100" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path":โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/yaak-ai/L2D.
1,247
1,247
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
2025-03-05T10:27:23
null
null
67d967709b5f9bcc5eef92e1
HuggingFaceTB/stack-edu
HuggingFaceTB
{"dataset_info": [{"config_name": "C", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 1100442974, "num_examples": 5848375}], "download_size": 571816053, "dataset_size": 1100442974}, {"config_name": "CSharp", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 2392066248, "num_examples": 11425016}], "download_size": 1232015539, "dataset_size": 2392066248}, {"config_name": "Cpp", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 3167426435, "num_examples": 16246746}], "download_size": 1632803797, "dataset_size": 3167426435}, {"config_name": "Go", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}, {"name": "detected_licenses_right", "large_list": "large_string"}, {"name": "license_type_right", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 433053889, "num_examples": 1917163}], "download_size": 179388495, "dataset_size": 433053889}, {"config_name": "Java", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 10292427437, "num_examples": 44990158}], "download_size": 5291667797, "dataset_size": 10292427437}, {"config_name": "JavaScript", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 2654326008, "num_examples": 13253431}], "download_size": 1287066511, "dataset_size": 2654326008}, {"config_name": "Markdown", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 4268378053, "num_examples": 20687077}], "download_size": 2058772192, "dataset_size": 4268378053}, {"config_name": "PHP", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 1985843762, "num_examples": 9914497}], "download_size": 983498806, "dataset_size": 1985843762}, {"config_name": "Python", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 4947575770, "num_examples": 25286019}], "download_size": 2500795086, "dataset_size": 4947575770}, {"config_name": "Ruby", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 592832039, "num_examples": 2976874}], "download_size": 284535771, "dataset_size": 592832039}, {"config_name": "Rust", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 227434676, "num_examples": 1135379}], "download_size": 103158397, "dataset_size": 227434676}, {"config_name": "SQL", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 505669712, "num_examples": 2504412}], "download_size": 261176608, "dataset_size": 505669712}, {"config_name": "Shell", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 811611733, "num_examples": 4133547}], "download_size": 394872047, "dataset_size": 811611733}, {"config_name": "Swift", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 529873695, "num_examples": 2454309}], "download_size": 257883733, "dataset_size": 529873695}, {"config_name": "TypeScript", "features": [{"name": "blob_id", "dtype": "large_string"}, {"name": "language", "dtype": "large_string"}, {"name": "repo_name", "dtype": "large_string"}, {"name": "path", "dtype": "large_string"}, {"name": "src_encoding", "dtype": "large_string"}, {"name": "length_bytes", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "detected_licenses", "large_list": "large_string"}, {"name": "license_type", "dtype": "large_string"}], "splits": [{"name": "train", "num_bytes": 904736029, "num_examples": 4290356}], "download_size": 425942502, "dataset_size": 904736029}], "configs": [{"config_name": "C", "data_files": [{"split": "train", "path": "C/train-*"}]}, {"config_name": "CSharp", "data_files": [{"split": "train", "path": "CSharp/train-*"}]}, {"config_name": "Cpp", "data_files": [{"split": "train", "path": "Cpp/train-*"}]}, {"config_name": "Go", "data_files": [{"split": "train", "path": "Go/train-*"}]}, {"config_name": "Java", "data_files": [{"split": "train", "path": "Java/train-*"}]}, {"config_name": "JavaScript", "data_files": [{"split": "train", "path": "JavaScript/train-*"}]}, {"config_name": "Markdown", "data_files": [{"split": "train", "path": "Markdown/train-*"}]}, {"config_name": "PHP", "data_files": [{"split": "train", "path": "PHP/train-*"}]}, {"config_name": "Python", "data_files": [{"split": "train", "path": "Python/train-*"}]}, {"config_name": "Ruby", "data_files": [{"split": "train", "path": "Ruby/train-*"}]}, {"config_name": "Rust", "data_files": [{"split": "train", "path": "Rust/train-*"}]}, {"config_name": "SQL", "data_files": [{"split": "train", "path": "SQL/train-*"}]}, {"config_name": "Shell", "data_files": [{"split": "train", "path": "Shell/train-*"}]}, {"config_name": "Swift", "data_files": [{"split": "train", "path": "Swift/train-*"}]}, {"config_name": "TypeScript", "data_files": [{"split": "train", "path": "TypeScript/train-*"}]}]}
false
null
2025-03-20T13:51:54
20
20
false
eeec5caac5cc3758a18f1d3ba4416837a9ba814c
๐Ÿ’ป Stack-Edu Stack-Edu is a 125B token dataset of educational code filtered from The Stack v2, precisely the curated training corpus of StarCoder2 models denoted StarCoder2Data. It is intended for Language Models training. This dataset was curated using a classifier-based filtering strategy, inspired by ๐Ÿ“š FineWeb-Edu, to retain only the highest-quality educational programming content. Stack-Edu shows consistent improvement over StarCoder2data on all the programming languages onโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/stack-edu.
245
245
[ "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.19173", "arxiv:2502.02737", "region:us" ]
2025-03-18T12:30:40
null
null
67c5ffdbf2e146eac1f0edb9
DropletX/DropletVideo-1M
DropletX
{"license": "cc-by-nc-sa-4.0", "task_categories": ["image-to-video", "text-to-video"], "language": ["en"], "size_categories": ["10M<n<100M"], "extra_gated_prompt": "You agree to not use the data to conduct experiments that cause harm to human subjects.", "extra_gated_fields": {"Name": "text", "Company/Organization": "text", "E-Mail": "text", "Job title": "text"}}
false
null
2025-03-19T16:16:33
19
19
false
c7f9e1e130fe2858a1ecb46d979d474114ca1baa
๐Ÿ” Dataset Note: DropletVideo-1M is the premium subset of DropletVideo-10M, filtered with aesthetic score > 4.51 and image quality score > 7.51. โœˆ๏ธ Introduction The challenge of spatiotemporal consistency has long existed in the field of video generation. We have released the open-source dataset DropletVideo-10M โ€”the world's largest video generation dataset with spatiotemporal consistency. Itโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/DropletX/DropletVideo-1M.
153
153
[ "task_categories:image-to-video", "task_categories:text-to-video", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "arxiv:2503.06053", "region:us" ]
2025-03-03T19:15:39
null
null
67d305619f485955bf117049
nvidia/HelpSteer3
nvidia
{"license": "cc-by-4.0", "language": ["en", "zh", "ko", "fr", "es", "ru", "ja", "de", "it", "pt", "pl", "id", "nl", "vi"], "pretty_name": "HelpSteer3", "size_categories": ["10K<n<100K"], "tags": ["human-feedback"], "configs": [{"config_name": "preference", "default": true, "data_files": [{"split": "train", "path": "preference/train.jsonl.gz"}, {"split": "validation", "path": "preference/validation.jsonl.gz"}]}, {"config_name": "feedback", "data_files": [{"split": "train", "path": "feedback/train.jsonl.gz"}, {"split": "validation", "path": "feedback/validation.jsonl.gz"}]}, {"config_name": "edit", "data_files": [{"split": "train", "path": "edit/train.jsonl.gz"}, {"split": "validation", "path": "edit/validation.jsonl.gz"}]}, {"config_name": "edit_quality", "data_files": [{"split": "train", "path": "edit_quality/train.jsonl.gz"}, {"split": "validation", "path": "edit_quality/validation.jsonl.gz"}]}]}
false
null
2025-03-18T19:51:32
19
19
false
7366103dbb732074dcf866560d2431d0ae8c9b1d
HelpSteer3 HelpSteer3 is an open-source Helpfulness Dataset (CC-BY-4.0) that supports aligning models to become more helpful in responding to user prompts. When used to tune Llama 3.3 70B Instruct Models to perform a novel approach to Inference Time Scaling (ITS) for open-ended, general-domain tasks, we achieve as high as 93.4% on Arena Hard, which makes it No. 1 on the benchmark as of 18 Mar 2025. See details on the paper at https://arxiv.org/abs/2503.04378. Models were trainedโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/nvidia/HelpSteer3.
299
299
[ "language:en", "language:zh", "language:ko", "language:fr", "language:es", "language:ru", "language:ja", "language:de", "language:it", "language:pt", "language:pl", "language:id", "language:nl", "language:vi", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.04378", "region:us", "human-feedback" ]
2025-03-13T16:18:41
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,048
17
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
๐Ÿท FineWeb 15 trillion tokens of the finest data the ๐ŸŒ web has to offer What is it? The ๐Ÿท FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the ๐Ÿญ datatrove library, our large scale data processing library. ๐Ÿท FineWeb was originally meant to be a fully open replication of ๐Ÿฆ… RefinedWeb, with a release of the full dataset underโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
289,851
2,277,984
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
67d6cac12e36db434b2be97e
manycore-research/SpatialLM-Testset
manycore-research
{"license": "cc-by-nc-4.0", "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "test.csv"}]}]}
false
null
2025-03-19T15:05:46
17
17
false
3a5c44deac7ac1de370c5341d2748250cbbf52e3
SpatialLM Testset We provide a test set of 107 preprocessed point clouds and their corresponding GT layouts, point clouds are reconstructed from RGB videos using MASt3R-SLAM. SpatialLM-Testset is quite challenging compared to prior clean RGBD scan datasets due to the noises and occlusions in the point clouds reconstructed from monocular RGB videos. Folder Structure Outlines of the dataset files: project-root/ โ”œโ”€โ”€ pcd/*.plyโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/manycore-research/SpatialLM-Testset.
1,122
1,122
[ "license:cc-by-nc-4.0", "size_categories:n<1K", "format:csv", "modality:3d", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-16T12:57:37
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
650
16
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ โˆ’ ร—รท) to reach theโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
346,976
4,158,772
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67dabea523ec1d597d1e0012
MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT
MaziyarPanahi
null
false
null
2025-03-19T14:19:33
16
16
false
eb68620950785989802be1a80760ba34533a8f1d
Llama-Nemotron-Post-Training-Dataset-v1 in ShareGPT Format This dataset is a conversion of NVIDIA's Llama-Nemotron-Post-Training-Dataset-v1 into the ShareGPT format while preserving the original splits and columns. Format Each example contains all original fields plus a messages array: { "input": "original input text", "output": "original output text", ... (other original columns) ..., "messages": [ {"role": "user", "content": "User message"}, {"role":โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/MaziyarPanahi/Llama-Nemotron-Post-Training-Dataset-v1-ShareGPT.
337
337
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-19T12:55:01
null
null
67cba813ef7ed9b8e2a948c7
canopylabs/zac-sample-dataset
canopylabs
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "audio", "dtype": {"audio": {"sampling_rate": 48000}}}], "splits": [{"name": "train", "num_bytes": 13147142.424794896, "num_examples": 20}], "download_size": 10349037, "dataset_size": 13147142.424794896}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-08T02:14:46
15
15
false
5464e5b186dab0d49049eca0b28774ad9371fc89
null
277
277
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-08T02:14:43
null
null
67cbdbee416daf2ed9475ea4
SmallDoge/SmallThoughts
SmallDoge
{"dataset_info": {"features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "system_prompt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 207497599, "num_examples": 50000}, {"name": "test", "num_bytes": 4533192, "num_examples": 1000}], "download_size": 82841801, "dataset_size": 212030791}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["biology", "code", "chemistry", "synthetic"], "size_categories": ["10K<n<100K"]}
false
null
2025-03-14T13:21:53
42
15
false
e7b425e9e659c3827af4c89cbe10e080fea3f038
SmallThoughts Open synthetic reasoning dataset, covering math, science, code, and puzzles. To address the issue of the existing DeepSeek R1 distilled data being too long, this dataset constrains the reasoning trajectory to be more precise and concise while retaining the reflective nature. We also open-sourced the pipeline code for distilled data here, with just one command you can generate your own dataset. How to use You can loadโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/SmallDoge/SmallThoughts.
3,801
3,801
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "biology", "code", "chemistry", "synthetic" ]
2025-03-08T05:55:58
null
null
67ce2fb269ac5540794d0bf6
CharlieDreemur/OpenManus-RL
CharlieDreemur
{"language": ["en"], "tags": ["sft", "instruction-tuning", "conversational-ai"], "license": "apache-2.0", "task_categories": ["text-generation"], "pretty_name": "OpenManusRL", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "role", "dtype": "string"}, {"name": "content", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 277895199, "num_examples": 48927}], "download_size": 73312767, "dataset_size": 277895199}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-15T01:29:38
36
15
false
b102de3f0a2e40221fc923ed9f34756251fc666c
Dataset Card for OpenManusRL Dataset Description Overview ๐Ÿ’ป [Github Repo] OpenManusRL combines agent trajectories from AgentInstruct, Agent-FLAN and AgentTraj-L(AgentGym) with features: ๐Ÿ” ReAct Framework - Reasoning-Acting integration ๐Ÿง  Structured Training - Separate format/reasoning learning ๐Ÿšซ Anti-Hallucination - Negative samples + environment grounding ๐ŸŒ 6 Domains - OS, DB, Web, KG, Household, E-commerce Dataset Overview Sourceโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/CharlieDreemur/OpenManus-RL.
1,241
1,241
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2310.12823", "arxiv:2403.12881", "arxiv:2406.04151", "region:us", "sft", "instruction-tuning", "conversational-ai" ]
2025-03-10T00:17:54
null
null
66a145d28f0d2327e07fc119
cfahlgren1/hub-stats
cfahlgren1
{"license": "apache-2.0", "configs": [{"config_name": "models", "data_files": "models.parquet"}, {"config_name": "datasets", "data_files": "datasets.parquet"}, {"config_name": "spaces", "data_files": "spaces.parquet"}, {"config_name": "posts", "data_files": "posts.parquet"}, {"config_name": "papers", "data_files": "daily_papers.parquet"}]}
false
null
2025-03-20T23:40:59
39
14
false
3d2e26d6322f9b0961cf72141cd7019acb53ebc6
NEW Changes Feb 27th Added new fields on the models split: downloadsAllTime, safetensors, gguf Added new field on the datasets split: downloadsAllTime Added new split: papers which is all of the Daily Papers Updated Daily
7,811
16,992
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-24T18:20:02
null
null
67abc2c2d6edf5606aa5c0d7
facebook/collaborative_agent_bench
facebook
{"license": "other", "extra_gated_prompt": "## License", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "I accept the terms and conditions": "checkbox", "geo": "ip_location"}, "extra_gated_description": "SWEET-RL Research License and Acceptable Use Policy", "extra_gated_button_content": "I Accept Self-taught Evaluator Research License and AUP"}
false
null
2025-03-20T04:17:14
14
14
false
cf3526da25989b53f105fe9b74c1174a3e19c548
This dataset is released as part of SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks research project. Please refer to our project materials here for training and evaluation details. Citation If you use data, model, or code from this work, please cite with the following BibTex entry: @misc{zhou2025sweetrltrainingmultiturnllm, title={SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks}, author={Yifei Zhou and Song Jiang andโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/facebook/collaborative_agent_bench.
10
10
[ "license:other", "arxiv:2503.15478", "region:us" ]
2025-02-11T21:36:02
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,634
13
false
68ba7694e23014788dcc8ab5afe613824f45a05c
๐Ÿง  Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
12,400
136,198
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
null
2025-02-13T08:36:12
272
12
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. Itโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
9,693
33,774
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
67b3495a2f3994b7d95dde92
Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-19T13:24:55
148
12
false
263435dc9a8cc822449b6f3531794486f8141be6
ไธญๆ–‡ๅŸบไบŽๆปก่ก€DeepSeek-R1่’ธ้ฆๆ•ฐๆฎ้›†๏ผˆChinese-Data-Distill-From-R1๏ผ‰ ๐Ÿค— Hugging Faceย ย  | ย ย ๐Ÿค– ModelScope ย ย  | ย ย ๐Ÿš€ Github ย ย  | ย ย ๐Ÿ“‘ Blog ๆณจๆ„๏ผš่ฏฅ็‰ˆๆœฌไธบ๏ผŒๅฏไปฅ็›ดๆŽฅSFTไฝฟ็”จ็š„็‰ˆๆœฌ๏ผŒๅฐ†ๅŽŸๅง‹ๆ•ฐๆฎไธญ็š„ๆ€่€ƒๅ’Œ็ญ”ๆกˆๆ•ดๅˆๆˆoutputๅญ—ๆฎต๏ผŒๅคง้ƒจๅˆ†SFTไปฃ็ ๆก†ๆžถๅ‡ๅฏ็›ดๆŽฅ็›ดๆŽฅๅŠ ่ฝฝ่ฎญ็ปƒใ€‚ ๆœฌๆ•ฐๆฎ้›†ไธบไธญๆ–‡ๅผ€ๆบ่’ธ้ฆๆปก่ก€R1็š„ๆ•ฐๆฎ้›†๏ผŒๆ•ฐๆฎ้›†ไธญไธไป…ๅŒ…ๅซmathๆ•ฐๆฎ๏ผŒ่ฟ˜ๅŒ…ๆ‹ฌๅคง้‡็š„้€š็”จ็ฑปๅž‹ๆ•ฐๆฎ๏ผŒๆ€ปๆ•ฐ้‡ไธบ110Kใ€‚ ไธบไป€ไนˆๅผ€ๆบ่ฟ™ไธชๆ•ฐๆฎ๏ผŸ R1็š„ๆ•ˆๆžœๅๅˆ†ๅผบๅคง๏ผŒๅนถไธ”ๅŸบไบŽR1่’ธ้ฆๆ•ฐๆฎSFT็š„ๅฐๆจกๅž‹ไนŸๅฑ•็Žฐๅ‡บไบ†ๅผบๅคง็š„ๆ•ˆๆžœ๏ผŒไฝ†ๆฃ€็ดขๅ‘็Žฐ๏ผŒๅคง้ƒจๅˆ†ๅผ€ๆบ็š„R1่’ธ้ฆๆ•ฐๆฎ้›†ๅ‡ไธบ่‹ฑๆ–‡ๆ•ฐๆฎ้›†ใ€‚ ๅŒๆ—ถ๏ผŒR1็š„ๆŠฅๅ‘Šไธญๅฑ•็คบ๏ผŒ่’ธ้ฆๆจกๅž‹ไธญๅŒๆ—ถไนŸไฝฟ็”จไบ†้ƒจๅˆ†้€š็”จๅœบๆ™ฏๆ•ฐๆฎ้›†ใ€‚ ไธบไบ†ๅธฎๅŠฉๅคงๅฎถๆ›ดๅฅฝๅœฐๅค็ŽฐR1่’ธ้ฆๆจกๅž‹็š„ๆ•ˆๆžœ๏ผŒ็‰นๆญคๅผ€ๆบไธญๆ–‡ๆ•ฐๆฎ้›†ใ€‚่ฏฅไธญๆ–‡ๆ•ฐๆฎ้›†ไธญ็š„ๆ•ฐๆฎๅˆ†ๅธƒๅฆ‚ไธ‹๏ผš Math๏ผšๅ…ฑ่ฎก36568ไธชๆ ทๆœฌ๏ผŒ Exam๏ผšๅ…ฑ่ฎก2432ไธชๆ ทๆœฌ๏ผŒ STEM๏ผšๅ…ฑ่ฎก12648ไธชๆ ทๆœฌ๏ผŒโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k-SFT.
5,314
5,612
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T14:36:10
null
null
67cd6c25b770987b3f80af97
a-m-team/AM-DeepSeek-R1-Distilled-1.4M
a-m-team
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"]}
false
null
2025-03-10T18:31:04
24
12
false
b3447a25c09f5b67817c0ea01a1d4844fba68884
AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of high-quality and challenging reasoning problems. These problems are collected from numerous open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination. All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone rigorous verification: mathematical problems are validated through answer checking, code problems viaโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M.
720
720
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "region:us", "code", "math", "reasoning", "thinking", "deepseek-r1", "distill" ]
2025-03-09T10:23:33
null
null
67d421a66af8d6a03083eb69
GeneralReasoning/GeneralThought-430K
GeneralReasoning
{"language": ["en"], "license": "mit"}
false
null
2025-03-14T13:04:04
20
12
false
9f2b46abdf8e3ba2faf650541242d4bd8ac22892
GeneralThought-430K Thought wants to be free Open reasoning data from the General Reasoning resource for March 14 2025. The dataset contains questions, reference answers, reasoning traces, final answers and other metadata from several popular reasoning models including DeepSeek-R1, DeepSeek-R1-Zero, OpenThoughts-32B, LIMO, deepseek-r1-distill-llama-70b, DeepHermes-3-Llama-3-8B-Previewand DeepScaleR-1.5B-Preview. We also include final answers from o3-mini-2025-01-31โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/GeneralReasoning/GeneralThought-430K.
630
630
[ "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-14T12:31:34
null
null
67a557ba9330ead027242110
simplescaling/s1K-1.1
simplescaling
{"language": "en", "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "gemini_thinking_trajectory", "dtype": "string"}, {"name": "gemini_attempt", "dtype": "string"}, {"name": "deepseek_thinking_trajectory", "dtype": "string"}, {"name": "deepseek_attempt", "dtype": "string"}, {"name": "gemini_grade", "dtype": "string"}, {"name": "gemini_grade_reason", "dtype": "string"}, {"name": "deepseek_grade", "dtype": "string"}, {"name": "deepseek_grade_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 48313304, "num_examples": 1000}], "download_size": 22323185, "dataset_size": 48313304}, "tags": ["curator"]}
false
null
2025-02-27T18:09:26
99
10
false
96c411f1fe4c49d20f0e2a1565f61e1a28b0b84d
Dataset Card for s1K Dataset Summary s1K-1.1 consists of the same 1,000 questions as in s1K but with traces instead generated by DeepSeek r1. We find that these traces lead to much better performance. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K-1.1")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite the function usingโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K-1.1.
7,380
9,112
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us", "curator" ]
2025-02-07T00:45:46
null
null
621ffdd236468d709f182a80
allenai/c4
allenai
{"pretty_name": "C4", "annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "he", "hi", "hmn", "ht", "hu", "hy", "id", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu"], "language_bcp47": ["bg-Latn", "el-Latn", "hi-Latn", "ja-Latn", "ru-Latn", "zh-Latn"], "license": ["odc-by"], "multilinguality": ["multilingual"], "size_categories": ["n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "1M<n<10M", "10M<n<100M", "100M<n<1B", "1B<n<10B"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "paperswithcode_id": "c4", "dataset_info": [{"config_name": "en", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 828589180707, "num_examples": 364868892}, {"name": "validation", "num_bytes": 825767266, "num_examples": 364608}], "download_size": 326778635540, "dataset_size": 1657178361414}, {"config_name": "en.noblocklist", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1029628201361, "num_examples": 393391519}, {"name": "validation", "num_bytes": 1025606012, "num_examples": 393226}], "download_size": 406611392434, "dataset_size": 2059256402722}, {"config_name": "realnewslike", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 38165657946, "num_examples": 13799838}, {"name": "validation", "num_bytes": 37875873, "num_examples": 13863}], "download_size": 15419740744, "dataset_size": 76331315892}, {"config_name": "en.noclean", "features": [{"name": "text", "dtype": "string"}, {"name": "timestamp", "dtype": "string"}, {"name": "url", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6715509699938, "num_examples": 1063805381}, {"name": "validation", "num_bytes": 6706356913, "num_examples": 1065029}], "download_size": 2430376268625, "dataset_size": 6722216056851}], "configs": [{"config_name": "en", "data_files": [{"split": "train", "path": "en/c4-train.*.json.gz"}, {"split": "validation", "path": "en/c4-validation.*.json.gz"}]}, {"config_name": "en.noblocklist", "data_files": [{"split": "train", "path": "en.noblocklist/c4-train.*.json.gz"}, {"split": "validation", "path": "en.noblocklist/c4-validation.*.json.gz"}]}, {"config_name": "en.noclean", "data_files": [{"split": "train", "path": "en.noclean/c4-train.*.json.gz"}, {"split": "validation", "path": "en.noclean/c4-validation.*.json.gz"}]}, {"config_name": "realnewslike", "data_files": [{"split": "train", "path": "realnewslike/c4-train.*.json.gz"}, {"split": "validation", "path": "realnewslike/c4-validation.*.json.gz"}]}, {"config_name": "multilingual", "data_files": [{"split": "train", "path": ["multilingual/c4-af.*.json.gz", "multilingual/c4-am.*.json.gz", "multilingual/c4-ar.*.json.gz", "multilingual/c4-az.*.json.gz", "multilingual/c4-be.*.json.gz", "multilingual/c4-bg.*.json.gz", "multilingual/c4-bg-Latn.*.json.gz", "multilingual/c4-bn.*.json.gz", "multilingual/c4-ca.*.json.gz", "multilingual/c4-ceb.*.json.gz", "multilingual/c4-co.*.json.gz", "multilingual/c4-cs.*.json.gz", "multilingual/c4-cy.*.json.gz", "multilingual/c4-da.*.json.gz", "multilingual/c4-de.*.json.gz", "multilingual/c4-el.*.json.gz", "multilingual/c4-el-Latn.*.json.gz", "multilingual/c4-en.*.json.gz", "multilingual/c4-eo.*.json.gz", "multilingual/c4-es.*.json.gz", "multilingual/c4-et.*.json.gz", "multilingual/c4-eu.*.json.gz", "multilingual/c4-fa.*.json.gz", "multilingual/c4-fi.*.json.gz", "multilingual/c4-fil.*.json.gz", "multilingual/c4-fr.*.json.gz", "multilingual/c4-fy.*.json.gz", "multilingual/c4-ga.*.json.gz", "multilingual/c4-gd.*.json.gz", "multilingual/c4-gl.*.json.gz", "multilingual/c4-gu.*.json.gz", "multilingual/c4-ha.*.json.gz", "multilingual/c4-haw.*.json.gz", "multilingual/c4-hi.*.json.gz", "multilingual/c4-hi-Latn.*.json.gz", "multilingual/c4-hmn.*.json.gz", "multilingual/c4-ht.*.json.gz", "multilingual/c4-hu.*.json.gz", "multilingual/c4-hy.*.json.gz", "multilingual/c4-id.*.json.gz", "multilingual/c4-ig.*.json.gz", "multilingual/c4-is.*.json.gz", "multilingual/c4-it.*.json.gz", "multilingual/c4-iw.*.json.gz", "multilingual/c4-ja.*.json.gz", "multilingual/c4-ja-Latn.*.json.gz", "multilingual/c4-jv.*.json.gz", "multilingual/c4-ka.*.json.gz", "multilingual/c4-kk.*.json.gz", "multilingual/c4-km.*.json.gz", "multilingual/c4-kn.*.json.gz", "multilingual/c4-ko.*.json.gz", "multilingual/c4-ku.*.json.gz", "multilingual/c4-ky.*.json.gz", "multilingual/c4-la.*.json.gz", "multilingual/c4-lb.*.json.gz", "multilingual/c4-lo.*.json.gz", "multilingual/c4-lt.*.json.gz", "multilingual/c4-lv.*.json.gz", "multilingual/c4-mg.*.json.gz", "multilingual/c4-mi.*.json.gz", "multilingual/c4-mk.*.json.gz", "multilingual/c4-ml.*.json.gz", "multilingual/c4-mn.*.json.gz", "multilingual/c4-mr.*.json.gz", "multilingual/c4-ms.*.json.gz", "multilingual/c4-mt.*.json.gz", "multilingual/c4-my.*.json.gz", "multilingual/c4-ne.*.json.gz", "multilingual/c4-nl.*.json.gz", "multilingual/c4-no.*.json.gz", "multilingual/c4-ny.*.json.gz", "multilingual/c4-pa.*.json.gz", "multilingual/c4-pl.*.json.gz", "multilingual/c4-ps.*.json.gz", "multilingual/c4-pt.*.json.gz", "multilingual/c4-ro.*.json.gz", "multilingual/c4-ru.*.json.gz", "multilingual/c4-ru-Latn.*.json.gz", "multilingual/c4-sd.*.json.gz", "multilingual/c4-si.*.json.gz", "multilingual/c4-sk.*.json.gz", "multilingual/c4-sl.*.json.gz", "multilingual/c4-sm.*.json.gz", "multilingual/c4-sn.*.json.gz", "multilingual/c4-so.*.json.gz", "multilingual/c4-sq.*.json.gz", "multilingual/c4-sr.*.json.gz", "multilingual/c4-st.*.json.gz", "multilingual/c4-su.*.json.gz", "multilingual/c4-sv.*.json.gz", "multilingual/c4-sw.*.json.gz", "multilingual/c4-ta.*.json.gz", "multilingual/c4-te.*.json.gz", "multilingual/c4-tg.*.json.gz", "multilingual/c4-th.*.json.gz", "multilingual/c4-tr.*.json.gz", "multilingual/c4-uk.*.json.gz", "multilingual/c4-und.*.json.gz", "multilingual/c4-ur.*.json.gz", "multilingual/c4-uz.*.json.gz", "multilingual/c4-vi.*.json.gz", "multilingual/c4-xh.*.json.gz", "multilingual/c4-yi.*.json.gz", "multilingual/c4-yo.*.json.gz", "multilingual/c4-zh.*.json.gz", "multilingual/c4-zh-Latn.*.json.gz", "multilingual/c4-zu.*.json.gz"]}, {"split": "validation", "path": ["multilingual/c4-af-validation.*.json.gz", "multilingual/c4-am-validation.*.json.gz", "multilingual/c4-ar-validation.*.json.gz", "multilingual/c4-az-validation.*.json.gz", "multilingual/c4-be-validation.*.json.gz", "multilingual/c4-bg-validation.*.json.gz", "multilingual/c4-bg-Latn-validation.*.json.gz", "multilingual/c4-bn-validation.*.json.gz", "multilingual/c4-ca-validation.*.json.gz", "multilingual/c4-ceb-validation.*.json.gz", "multilingual/c4-co-validation.*.json.gz", "multilingual/c4-cs-validation.*.json.gz", "multilingual/c4-cy-validation.*.json.gz", "multilingual/c4-da-validation.*.json.gz", "multilingual/c4-de-validation.*.json.gz", "multilingual/c4-el-validation.*.json.gz", "multilingual/c4-el-Latn-validation.*.json.gz", "multilingual/c4-en-validation.*.json.gz", "multilingual/c4-eo-validation.*.json.gz", "multilingual/c4-es-validation.*.json.gz", "multilingual/c4-et-validation.*.json.gz", "multilingual/c4-eu-validation.*.json.gz", "multilingual/c4-fa-validation.*.json.gz", "multilingual/c4-fi-validation.*.json.gz", "multilingual/c4-fil-validation.*.json.gz", "multilingual/c4-fr-validation.*.json.gz", "multilingual/c4-fy-validation.*.json.gz", "multilingual/c4-ga-validation.*.json.gz", "multilingual/c4-gd-validation.*.json.gz", "multilingual/c4-gl-validation.*.json.gz", "multilingual/c4-gu-validation.*.json.gz", "multilingual/c4-ha-validation.*.json.gz", "multilingual/c4-haw-validation.*.json.gz", "multilingual/c4-hi-validation.*.json.gz", "multilingual/c4-hi-Latn-validation.*.json.gz", "multilingual/c4-hmn-validation.*.json.gz", "multilingual/c4-ht-validation.*.json.gz", "multilingual/c4-hu-validation.*.json.gz", "multilingual/c4-hy-validation.*.json.gz", "multilingual/c4-id-validation.*.json.gz", "multilingual/c4-ig-validation.*.json.gz", "multilingual/c4-is-validation.*.json.gz", "multilingual/c4-it-validation.*.json.gz", "multilingual/c4-iw-validation.*.json.gz", "multilingual/c4-ja-validation.*.json.gz", "multilingual/c4-ja-Latn-validation.*.json.gz", "multilingual/c4-jv-validation.*.json.gz", "multilingual/c4-ka-validation.*.json.gz", "multilingual/c4-kk-validation.*.json.gz", "multilingual/c4-km-validation.*.json.gz", "multilingual/c4-kn-validation.*.json.gz", "multilingual/c4-ko-validation.*.json.gz", "multilingual/c4-ku-validation.*.json.gz", "multilingual/c4-ky-validation.*.json.gz", "multilingual/c4-la-validation.*.json.gz", "multilingual/c4-lb-validation.*.json.gz", "multilingual/c4-lo-validation.*.json.gz", "multilingual/c4-lt-validation.*.json.gz", "multilingual/c4-lv-validation.*.json.gz", "multilingual/c4-mg-validation.*.json.gz", "multilingual/c4-mi-validation.*.json.gz", "multilingual/c4-mk-validation.*.json.gz", "multilingual/c4-ml-validation.*.json.gz", "multilingual/c4-mn-validation.*.json.gz", "multilingual/c4-mr-validation.*.json.gz", "multilingual/c4-ms-validation.*.json.gz", "multilingual/c4-mt-validation.*.json.gz", "multilingual/c4-my-validation.*.json.gz", "multilingual/c4-ne-validation.*.json.gz", "multilingual/c4-nl-validation.*.json.gz", "multilingual/c4-no-validation.*.json.gz", "multilingual/c4-ny-validation.*.json.gz", "multilingual/c4-pa-validation.*.json.gz", "multilingual/c4-pl-validation.*.json.gz", "multilingual/c4-ps-validation.*.json.gz", "multilingual/c4-pt-validation.*.json.gz", "multilingual/c4-ro-validation.*.json.gz", "multilingual/c4-ru-validation.*.json.gz", "multilingual/c4-ru-Latn-validation.*.json.gz", "multilingual/c4-sd-validation.*.json.gz", "multilingual/c4-si-validation.*.json.gz", "multilingual/c4-sk-validation.*.json.gz", "multilingual/c4-sl-validation.*.json.gz", "multilingual/c4-sm-validation.*.json.gz", "multilingual/c4-sn-validation.*.json.gz", "multilingual/c4-so-validation.*.json.gz", "multilingual/c4-sq-validation.*.json.gz", "multilingual/c4-sr-validation.*.json.gz", "multilingual/c4-st-validation.*.json.gz", "multilingual/c4-su-validation.*.json.gz", "multilingual/c4-sv-validation.*.json.gz", "multilingual/c4-sw-validation.*.json.gz", "multilingual/c4-ta-validation.*.json.gz", "multilingual/c4-te-validation.*.json.gz", "multilingual/c4-tg-validation.*.json.gz", "multilingual/c4-th-validation.*.json.gz", "multilingual/c4-tr-validation.*.json.gz", "multilingual/c4-uk-validation.*.json.gz", "multilingual/c4-und-validation.*.json.gz", "multilingual/c4-ur-validation.*.json.gz", "multilingual/c4-uz-validation.*.json.gz", "multilingual/c4-vi-validation.*.json.gz", "multilingual/c4-xh-validation.*.json.gz", "multilingual/c4-yi-validation.*.json.gz", "multilingual/c4-yo-validation.*.json.gz", "multilingual/c4-zh-validation.*.json.gz", "multilingual/c4-zh-Latn-validation.*.json.gz", "multilingual/c4-zu-validation.*.json.gz"]}]}, {"config_name": "af", "data_files": [{"split": "train", "path": "multilingual/c4-af.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-af-validation.*.json.gz"}]}, {"config_name": "am", "data_files": [{"split": "train", "path": "multilingual/c4-am.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-am-validation.*.json.gz"}]}, {"config_name": "ar", "data_files": [{"split": "train", "path": "multilingual/c4-ar.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ar-validation.*.json.gz"}]}, {"config_name": "az", "data_files": [{"split": "train", "path": "multilingual/c4-az.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-az-validation.*.json.gz"}]}, {"config_name": "be", "data_files": [{"split": "train", "path": "multilingual/c4-be.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-be-validation.*.json.gz"}]}, {"config_name": "bg", "data_files": [{"split": "train", "path": "multilingual/c4-bg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bg-validation.*.json.gz"}]}, {"config_name": "bg-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-bg-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bg-Latn-validation.*.json.gz"}]}, {"config_name": "bn", "data_files": [{"split": "train", "path": "multilingual/c4-bn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-bn-validation.*.json.gz"}]}, {"config_name": "ca", "data_files": [{"split": "train", "path": "multilingual/c4-ca.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ca-validation.*.json.gz"}]}, {"config_name": "ceb", "data_files": [{"split": "train", "path": "multilingual/c4-ceb.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ceb-validation.*.json.gz"}]}, {"config_name": "co", "data_files": [{"split": "train", "path": "multilingual/c4-co.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-co-validation.*.json.gz"}]}, {"config_name": "cs", "data_files": [{"split": "train", "path": "multilingual/c4-cs.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-cs-validation.*.json.gz"}]}, {"config_name": "cy", "data_files": [{"split": "train", "path": "multilingual/c4-cy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-cy-validation.*.json.gz"}]}, {"config_name": "da", "data_files": [{"split": "train", "path": "multilingual/c4-da.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-da-validation.*.json.gz"}]}, {"config_name": "de", "data_files": [{"split": "train", "path": "multilingual/c4-de.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-de-validation.*.json.gz"}]}, {"config_name": "el", "data_files": [{"split": "train", "path": "multilingual/c4-el.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-el-validation.*.json.gz"}]}, {"config_name": "el-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-el-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-el-Latn-validation.*.json.gz"}]}, {"config_name": "en-multi", "data_files": [{"split": "train", "path": "multilingual/c4-en.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-en-validation.*.json.gz"}]}, {"config_name": "eo", "data_files": [{"split": "train", "path": "multilingual/c4-eo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-eo-validation.*.json.gz"}]}, {"config_name": "es", "data_files": [{"split": "train", "path": "multilingual/c4-es.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-es-validation.*.json.gz"}]}, {"config_name": "et", "data_files": [{"split": "train", "path": "multilingual/c4-et.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-et-validation.*.json.gz"}]}, {"config_name": "eu", "data_files": [{"split": "train", "path": "multilingual/c4-eu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-eu-validation.*.json.gz"}]}, {"config_name": "fa", "data_files": [{"split": "train", "path": "multilingual/c4-fa.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fa-validation.*.json.gz"}]}, {"config_name": "fi", "data_files": [{"split": "train", "path": "multilingual/c4-fi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fi-validation.*.json.gz"}]}, {"config_name": "fil", "data_files": [{"split": "train", "path": "multilingual/c4-fil.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fil-validation.*.json.gz"}]}, {"config_name": "fr", "data_files": [{"split": "train", "path": "multilingual/c4-fr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fr-validation.*.json.gz"}]}, {"config_name": "fy", "data_files": [{"split": "train", "path": "multilingual/c4-fy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-fy-validation.*.json.gz"}]}, {"config_name": "ga", "data_files": [{"split": "train", "path": "multilingual/c4-ga.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ga-validation.*.json.gz"}]}, {"config_name": "gd", "data_files": [{"split": "train", "path": "multilingual/c4-gd.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gd-validation.*.json.gz"}]}, {"config_name": "gl", "data_files": [{"split": "train", "path": "multilingual/c4-gl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gl-validation.*.json.gz"}]}, {"config_name": "gu", "data_files": [{"split": "train", "path": "multilingual/c4-gu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-gu-validation.*.json.gz"}]}, {"config_name": "ha", "data_files": [{"split": "train", "path": "multilingual/c4-ha.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ha-validation.*.json.gz"}]}, {"config_name": "haw", "data_files": [{"split": "train", "path": "multilingual/c4-haw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-haw-validation.*.json.gz"}]}, {"config_name": "hi", "data_files": [{"split": "train", "path": "multilingual/c4-hi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hi-validation.*.json.gz"}]}, {"config_name": "hi-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-hi-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hi-Latn-validation.*.json.gz"}]}, {"config_name": "hmn", "data_files": [{"split": "train", "path": "multilingual/c4-hmn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hmn-validation.*.json.gz"}]}, {"config_name": "ht", "data_files": [{"split": "train", "path": "multilingual/c4-ht.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ht-validation.*.json.gz"}]}, {"config_name": "hu", "data_files": [{"split": "train", "path": "multilingual/c4-hu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hu-validation.*.json.gz"}]}, {"config_name": "hy", "data_files": [{"split": "train", "path": "multilingual/c4-hy.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-hy-validation.*.json.gz"}]}, {"config_name": "id", "data_files": [{"split": "train", "path": "multilingual/c4-id.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-id-validation.*.json.gz"}]}, {"config_name": "ig", "data_files": [{"split": "train", "path": "multilingual/c4-ig.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ig-validation.*.json.gz"}]}, {"config_name": "is", "data_files": [{"split": "train", "path": "multilingual/c4-is.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-is-validation.*.json.gz"}]}, {"config_name": "it", "data_files": [{"split": "train", "path": "multilingual/c4-it.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-it-validation.*.json.gz"}]}, {"config_name": "iw", "data_files": [{"split": "train", "path": "multilingual/c4-iw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-iw-validation.*.json.gz"}]}, {"config_name": "ja", "data_files": [{"split": "train", "path": "multilingual/c4-ja.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ja-validation.*.json.gz"}]}, {"config_name": "ja-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-ja-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ja-Latn-validation.*.json.gz"}]}, {"config_name": "jv", "data_files": [{"split": "train", "path": "multilingual/c4-jv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-jv-validation.*.json.gz"}]}, {"config_name": "ka", "data_files": [{"split": "train", "path": "multilingual/c4-ka.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ka-validation.*.json.gz"}]}, {"config_name": "kk", "data_files": [{"split": "train", "path": "multilingual/c4-kk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-kk-validation.*.json.gz"}]}, {"config_name": "km", "data_files": [{"split": "train", "path": "multilingual/c4-km.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-km-validation.*.json.gz"}]}, {"config_name": "kn", "data_files": [{"split": "train", "path": "multilingual/c4-kn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-kn-validation.*.json.gz"}]}, {"config_name": "ko", "data_files": [{"split": "train", "path": "multilingual/c4-ko.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ko-validation.*.json.gz"}]}, {"config_name": "ku", "data_files": [{"split": "train", "path": "multilingual/c4-ku.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ku-validation.*.json.gz"}]}, {"config_name": "ky", "data_files": [{"split": "train", "path": "multilingual/c4-ky.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ky-validation.*.json.gz"}]}, {"config_name": "la", "data_files": [{"split": "train", "path": "multilingual/c4-la.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-la-validation.*.json.gz"}]}, {"config_name": "lb", "data_files": [{"split": "train", "path": "multilingual/c4-lb.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lb-validation.*.json.gz"}]}, {"config_name": "lo", "data_files": [{"split": "train", "path": "multilingual/c4-lo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lo-validation.*.json.gz"}]}, {"config_name": "lt", "data_files": [{"split": "train", "path": "multilingual/c4-lt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lt-validation.*.json.gz"}]}, {"config_name": "lv", "data_files": [{"split": "train", "path": "multilingual/c4-lv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-lv-validation.*.json.gz"}]}, {"config_name": "mg", "data_files": [{"split": "train", "path": "multilingual/c4-mg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mg-validation.*.json.gz"}]}, {"config_name": "mi", "data_files": [{"split": "train", "path": "multilingual/c4-mi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mi-validation.*.json.gz"}]}, {"config_name": "mk", "data_files": [{"split": "train", "path": "multilingual/c4-mk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mk-validation.*.json.gz"}]}, {"config_name": "ml", "data_files": [{"split": "train", "path": "multilingual/c4-ml.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ml-validation.*.json.gz"}]}, {"config_name": "mn", "data_files": [{"split": "train", "path": "multilingual/c4-mn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mn-validation.*.json.gz"}]}, {"config_name": "mr", "data_files": [{"split": "train", "path": "multilingual/c4-mr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mr-validation.*.json.gz"}]}, {"config_name": "ms", "data_files": [{"split": "train", "path": "multilingual/c4-ms.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ms-validation.*.json.gz"}]}, {"config_name": "mt", "data_files": [{"split": "train", "path": "multilingual/c4-mt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-mt-validation.*.json.gz"}]}, {"config_name": "my", "data_files": [{"split": "train", "path": "multilingual/c4-my.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-my-validation.*.json.gz"}]}, {"config_name": "ne", "data_files": [{"split": "train", "path": "multilingual/c4-ne.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ne-validation.*.json.gz"}]}, {"config_name": "nl", "data_files": [{"split": "train", "path": "multilingual/c4-nl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-nl-validation.*.json.gz"}]}, {"config_name": "no", "data_files": [{"split": "train", "path": "multilingual/c4-no.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-no-validation.*.json.gz"}]}, {"config_name": "ny", "data_files": [{"split": "train", "path": "multilingual/c4-ny.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ny-validation.*.json.gz"}]}, {"config_name": "pa", "data_files": [{"split": "train", "path": "multilingual/c4-pa.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pa-validation.*.json.gz"}]}, {"config_name": "pl", "data_files": [{"split": "train", "path": "multilingual/c4-pl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pl-validation.*.json.gz"}]}, {"config_name": "ps", "data_files": [{"split": "train", "path": "multilingual/c4-ps.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ps-validation.*.json.gz"}]}, {"config_name": "pt", "data_files": [{"split": "train", "path": "multilingual/c4-pt.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-pt-validation.*.json.gz"}]}, {"config_name": "ro", "data_files": [{"split": "train", "path": "multilingual/c4-ro.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ro-validation.*.json.gz"}]}, {"config_name": "ru", "data_files": [{"split": "train", "path": "multilingual/c4-ru.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ru-validation.*.json.gz"}]}, {"config_name": "ru-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-ru-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ru-Latn-validation.*.json.gz"}]}, {"config_name": "sd", "data_files": [{"split": "train", "path": "multilingual/c4-sd.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sd-validation.*.json.gz"}]}, {"config_name": "si", "data_files": [{"split": "train", "path": "multilingual/c4-si.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-si-validation.*.json.gz"}]}, {"config_name": "sk", "data_files": [{"split": "train", "path": "multilingual/c4-sk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sk-validation.*.json.gz"}]}, {"config_name": "sl", "data_files": [{"split": "train", "path": "multilingual/c4-sl.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sl-validation.*.json.gz"}]}, {"config_name": "sm", "data_files": [{"split": "train", "path": "multilingual/c4-sm.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sm-validation.*.json.gz"}]}, {"config_name": "sn", "data_files": [{"split": "train", "path": "multilingual/c4-sn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sn-validation.*.json.gz"}]}, {"config_name": "so", "data_files": [{"split": "train", "path": "multilingual/c4-so.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-so-validation.*.json.gz"}]}, {"config_name": "sq", "data_files": [{"split": "train", "path": "multilingual/c4-sq.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sq-validation.*.json.gz"}]}, {"config_name": "sr", "data_files": [{"split": "train", "path": "multilingual/c4-sr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sr-validation.*.json.gz"}]}, {"config_name": "st", "data_files": [{"split": "train", "path": "multilingual/c4-st.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-st-validation.*.json.gz"}]}, {"config_name": "su", "data_files": [{"split": "train", "path": "multilingual/c4-su.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-su-validation.*.json.gz"}]}, {"config_name": "sv", "data_files": [{"split": "train", "path": "multilingual/c4-sv.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sv-validation.*.json.gz"}]}, {"config_name": "sw", "data_files": [{"split": "train", "path": "multilingual/c4-sw.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-sw-validation.*.json.gz"}]}, {"config_name": "ta", "data_files": [{"split": "train", "path": "multilingual/c4-ta.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ta-validation.*.json.gz"}]}, {"config_name": "te", "data_files": [{"split": "train", "path": "multilingual/c4-te.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-te-validation.*.json.gz"}]}, {"config_name": "tg", "data_files": [{"split": "train", "path": "multilingual/c4-tg.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-tg-validation.*.json.gz"}]}, {"config_name": "th", "data_files": [{"split": "train", "path": "multilingual/c4-th.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-th-validation.*.json.gz"}]}, {"config_name": "tr", "data_files": [{"split": "train", "path": "multilingual/c4-tr.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-tr-validation.*.json.gz"}]}, {"config_name": "uk", "data_files": [{"split": "train", "path": "multilingual/c4-uk.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-uk-validation.*.json.gz"}]}, {"config_name": "und", "data_files": [{"split": "train", "path": "multilingual/c4-und.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-und-validation.*.json.gz"}]}, {"config_name": "ur", "data_files": [{"split": "train", "path": "multilingual/c4-ur.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-ur-validation.*.json.gz"}]}, {"config_name": "uz", "data_files": [{"split": "train", "path": "multilingual/c4-uz.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-uz-validation.*.json.gz"}]}, {"config_name": "vi", "data_files": [{"split": "train", "path": "multilingual/c4-vi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-vi-validation.*.json.gz"}]}, {"config_name": "xh", "data_files": [{"split": "train", "path": "multilingual/c4-xh.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-xh-validation.*.json.gz"}]}, {"config_name": "yi", "data_files": [{"split": "train", "path": "multilingual/c4-yi.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-yi-validation.*.json.gz"}]}, {"config_name": "yo", "data_files": [{"split": "train", "path": "multilingual/c4-yo.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-yo-validation.*.json.gz"}]}, {"config_name": "zh", "data_files": [{"split": "train", "path": "multilingual/c4-zh.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zh-validation.*.json.gz"}]}, {"config_name": "zh-Latn", "data_files": [{"split": "train", "path": "multilingual/c4-zh-Latn.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zh-Latn-validation.*.json.gz"}]}, {"config_name": "zu", "data_files": [{"split": "train", "path": "multilingual/c4-zu.*.json.gz"}, {"split": "validation", "path": "multilingual/c4-zu-validation.*.json.gz"}]}]}
false
null
2024-01-09T19:14:03
390
9
false
1588ec454efa1a09f29cd18ddd04fe05fc8653a2
C4 Dataset Summary A colossal, cleaned version of Common Crawl's web crawl corpus. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's C4 dataset We prepared five variants of the data: en, en.noclean, en.noblocklist, realnewslike, and multilingual (mC4). For reference, these are the sizes of the variants: en: 305GB en.noclean: 2.3TB en.noblocklist: 380GB realnewslike: 15GB multilingual (mC4): 9.7TB (108 subsets, oneโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/allenai/c4.
408,564
5,320,428
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:af", "language:am", "language:ar", "language:az", "language:be", "language:bg", "language:bn", "language:ca", "language:ceb", "language:co", "language:cs", "language:cy", "language:da", "language:de", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fil", "language:fr", "language:fy", "language:ga", "language:gd", "language:gl", "language:gu", "language:ha", "language:haw", "language:he", "language:hi", "language:hmn", "language:ht", "language:hu", "language:hy", "language:id", "language:ig", "language:is", "language:it", "language:iw", "language:ja", "language:jv", "language:ka", "language:kk", "language:km", "language:kn", "language:ko", "language:ku", "language:ky", "language:la", "language:lb", "language:lo", "language:lt", "language:lv", "language:mg", "language:mi", "language:mk", "language:ml", "language:mn", "language:mr", "language:ms", "language:mt", "language:my", "language:ne", "language:nl", "language:no", "language:ny", "language:pa", "language:pl", "language:ps", "language:pt", "language:ro", "language:ru", "language:sd", "language:si", "language:sk", "language:sl", "language:sm", "language:sn", "language:so", "language:sq", "language:sr", "language:st", "language:su", "language:sv", "language:sw", "language:ta", "language:te", "language:tg", "language:th", "language:tr", "language:uk", "language:und", "language:ur", "language:uz", "language:vi", "language:xh", "language:yi", "language:yo", "language:zh", "language:zu", "license:odc-by", "size_categories:10B<n<100B", "modality:text", "arxiv:1910.10683", "region:us" ]
2022-03-02T23:29:22
c4
null
649444227853dd12c3bbadd8
Amod/mental_health_counseling_conversations
Amod
{"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]}
false
null
2024-04-05T08:30:03
333
9
false
4672e03c7f1a7b2215eb4302b83ca50449ce2553
Amod/mental_health_counseling_conversations Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. Supported Tasks and Leaderboards Theโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations.
4,998
62,357
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
2023-06-22T12:52:50
null
null
66fcfe8ac529fcdfbd3696f4
SylvanL/Traditional-Chinese-Medicine-Dataset-SFT
SylvanL
{"license": "apache-2.0", "task_categories": ["table-question-answering"], "language": ["zh"], "tags": ["medical"], "size_categories": ["1B<n<10B"]}
false
null
2024-10-26T10:47:40
66
9
false
5ba2abbea72d757a1fd70a683193452c35b36f83
ๅฏๅค็บณไปŠ๏ผŒๅŽšๅพท็ฒพๆœฏ ๆ•ฐๆฎไป‹็ป ้ž็ฝ‘็ปœๆฅๆบ็š„้ซ˜่ดจ้‡ไธญๅŒปๆ•ฐๆฎ้›†-ๆŒ‡ไปคๅพฎ่ฐƒ High-Quality Traditional Chinese Medicine Dataset from Non-Internet Sources - SFT/IFT ่ฏฅๆ•ฐๆฎ้›†็ป่ฟ‡ๅคง้‡ไบบๅŠ›ๅ’Œ่ต„ๆบ็š„ๆŠ•ๅ…ฅ็ฒพๅฟƒๆž„ๅปบ๏ผŒไปฅๅ…ฑๅปบLLM้ซ˜่ดจ้‡ไธญๆ–‡็คพๅŒบไธบๅทฑไปปใ€‚ ๅŒ…ๅซ็บฆ1GB็š„ไธญๅŒปๅ„ไธช้ข†ๅŸŸไธดๅบŠๆกˆไพ‹ใ€ๅๅฎถๅ…ธ็ฑใ€ๅŒปๅญฆ็™พ็ง‘๏ผŒๅ่ฏ่งฃ้‡Š็ญ‰ไผ˜่ดจ้—ฎ็ญ”ๅ†…ๅฎน๏ผŒๆถต็›–ๅ…จ้ข๏ผŒ้…ๆฏ”ๅ‡่กกใ€‚ ๆ•ฐๆฎ้›†ไธป่ฆ็”ฑ้ž็ฝ‘็ปœๆฅๆบ็š„ๅ†…้ƒจๆ•ฐๆฎๆž„ๆˆ๏ผŒๅนถ99%ไธบ็ฎ€ไฝ“ไธญๆ–‡ๅ†…ๅฎน๏ผŒๅ†…ๅฎน่ดจ้‡ไผ˜ๅผ‚๏ผŒไฟกๆฏๅฏ†ๅบฆๅฏ่ง‚ใ€‚ ่ฏฅๆ•ฐๆฎ้›†็š„ๆ•ฐๆฎๆบไธŽSylvanL/Traditional-Chinese-Medicine-Dataset-Pretrainไธญ็š„ๅ†…ๅฎนๅญ˜ๅœจไธ€ๅฎšๅ…ณ่”๏ผŒไฝ†ไธ้ซ˜ๅบฆ้‡ๅ ใ€‚ ๅœจไบŒ่€…็š„ๆž„ๅปบ่ฟ‡็จ‹ไธญ๏ผŒๅญ˜ๅœจ็€ไธ€ๅฎš็š„ๅพชๅบๆธ่ฟ›ไธŽไบ’ไธบ่กฅๅ……็š„้€ป่พ‘. ่ฏฅๆ•ฐๆฎ้›†ๅฏไปฅ็‹ฌ็ซ‹ไฝฟ็”จ๏ผŒไฝ†ๅปบ่ฎฎๅ…ˆไฝฟ็”จ้…ๅฅ—็š„้ข„่ฎญ็ปƒๆ•ฐๆฎ้›†ๅฏนๆจกๅž‹่ฟ›่กŒ็ปง็ปญ้ข„่ฎญ็ปƒๅŽ๏ผŒๅ†ไฝฟ็”จ่ฏฅๆ•ฐๆฎ้›†่ฟ›่กŒ่ฟ›ไธ€ๆญฅ็š„ๆŒ‡ไปคๅพฎ่ฐƒใ€‚โ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/SylvanL/Traditional-Chinese-Medicine-Dataset-SFT.
1,964
3,789
[ "task_categories:table-question-answering", "language:zh", "license:apache-2.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "medical" ]
2024-10-02T08:04:26
null
null
666513f121aa69e38699e6d3
UCSC-VLAA/MedTrinity-25M
UCSC-VLAA
{"language": ["en"], "size_categories": ["10M<n<100M"], "task_categories": ["question-answering"], "dataset_info": [{"config_name": "25M_full", "features": [{"name": "id", "dtype": "string"}, {"name": "file_name", "dtype": "string"}, {"name": "caption", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 25234102586, "num_examples": 24760560}], "download_size": 7353330306, "dataset_size": 25234102586}, {"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "id", "dtype": "string"}, {"name": "caption", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4781050841.25, "num_examples": 161630}], "download_size": 8300138103, "dataset_size": 4781050841.25}], "configs": [{"config_name": "25M_full", "data_files": [{"split": "train", "path": "25M_full/train-*"}]}, {"config_name": "25M_demo", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["medical"]}
false
null
2024-10-11T00:47:43
133
8
false
89e5c684794e5c4cc1af9e8f1a7798af7c937dbf
Tutorial of using Medtrinity-25M MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), includingโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/UCSC-VLAA/MedTrinity-25M.
2,545
9,704
[ "task_categories:question-answering", "language:en", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2408.02900", "region:us", "medical" ]
2024-06-09T02:31:13
null
null
67954a35c16b74e280f72f15
ServiceNow-AI/R1-Distill-SFT
ServiceNow-AI
{"license": "cc-by-nc-sa-4.0", "configs": [{"config_name": "v0", "data_files": [{"split": "train", "path": "v0/train-*"}]}, {"config_name": "v1", "data_files": [{"split": "train", "path": "v1/train-*"}]}], "dataset_info": [{"config_name": "v0", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 1279431141, "num_examples": 171647}], "download_size": 554111459, "dataset_size": 1279431141}, {"config_name": "v1", "features": [{"name": "id", "dtype": "string"}, {"name": "reannotated_assistant_content", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "reannotated_messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "source_dataset", "dtype": "string"}, {"name": "verified", "dtype": "null"}, {"name": "quality_metrics", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 25783989151, "num_examples": 1679162}], "download_size": 11128580062, "dataset_size": 25783989151}]}
false
null
2025-02-08T22:46:58
282
8
false
16e851e107d928b9069dcce428a2d3d7154e5353
๐Ÿ”‰ ๐—ฆ๐—Ÿ๐—”๐—  ๐—น๐—ฎ๐—ฏ - ๐—ฅ๐Ÿญ-๐——๐—ถ๐˜€๐˜๐—ถ๐—น๐—น-๐—ฆ๐—™๐—ง Dataset Lewis Tunstall, Ed Beeching, Loubna Ben Allal, Clem Delangue ๐Ÿค— and others at Hugging Face announced today that they are - ๐—ผ๐—ฝ๐—ฒ๐—ป๐—น๐˜† ๐—ฟ๐—ฒ๐—ฝ๐—ฟ๐—ผ๐—ฑ๐˜‚๐—ฐ๐—ถ๐—ป๐—ด ๐—ฅ๐Ÿญ ๐Ÿ”ฅ We at ๐—ฆ๐—Ÿ๐—”๐—  ๐—น๐—ฎ๐—ฏ (ServiceNow Language Models) have been cooking up something as well. Inspired by Open-r1, we have decided to open source the data stage-by-stage to support the open source community. ๐—•๐—ผ๐—ผ๐—ธ๐—บ๐—ฎ๐—ฟ๐—ธ this page! KEY DETAILS: โš—๏ธ Distilledโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/ServiceNow-AI/R1-Distill-SFT.
4,026
10,669
[ "license:cc-by-nc-sa-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-25T20:31:49
null
null
67a404bc8c6d42c5ec097433
Anthropic/EconomicIndex
Anthropic
{"license": "mit", "pretty_name": "EconomicIndex", "tags": ["text"], "viewer": true, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "onet_task_mappings.csv"}]}]}
false
null
2025-02-10T19:28:32
198
8
false
218b35116baa43c55beffe61f243bd81f5f84cf8
Overview This directory contains O*NET task mapping and automation vs. augmentation data from "Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations." The data and provided analysis are described below. Please see our blog post and paper for further visualizations and complete analysis. Data SOC_Structure.csv - Standard Occupational Classification (SOC) system hierarchy from the U.S. Department of Labor O*NET databaseโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/EconomicIndex.
2,892
7,942
[ "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "text" ]
2025-02-06T00:39:24
null
null
67bc34742281367a6b4a5bb7
jmhb/microvqa
jmhb
{"language": ["en"], "license": "cc-by-sa-4.0", "size_categories": ["1K<n<10K"], "task_categories": ["visual-question-answering", "multiple-choice"], "pretty_name": "MicroVQA", "dataset_info": {"features": [{"name": "key_question", "dtype": "int64"}, {"name": "key_image", "dtype": "int64"}, {"name": "images_list", "sequence": "image"}, {"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "correct_index", "dtype": "int64"}, {"name": "correct_answer", "dtype": "string"}, {"name": "question_0", "dtype": "string"}, {"name": "answer_0", "dtype": "string"}, {"name": "comments_0", "dtype": "string"}, {"name": "incorrect_answer_0", "dtype": "string"}, {"name": "question_1", "dtype": "string"}, {"name": "choices_1", "sequence": "string"}, {"name": "correct_index_1", "dtype": "int64"}, {"name": "question_2", "dtype": "string"}, {"name": "choices_2", "sequence": "string"}, {"name": "correct_index_2", "dtype": "int64"}, {"name": "question_3", "dtype": "string"}, {"name": "choices_3", "sequence": "string"}, {"name": "correct_index_3", "dtype": "int64"}, {"name": "task", "dtype": "int64"}, {"name": "task_str", "dtype": "string"}, {"name": "context_image_generation", "dtype": "string"}, {"name": "context_motivation", "dtype": "string"}, {"name": "images_source", "dtype": "string"}, {"name": "image_caption", "dtype": "string"}, {"name": "key_person", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2354666072.188, "num_examples": 1042}], "download_size": 462156805, "dataset_size": 2354666072.188}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["biology", "biomedical", "microscopy", "pathology", "vision-language", "question-answering", "scientific-research"]}
false
null
2025-03-18T17:04:39
11
8
false
e50938e2fd7299310896df749f74b5f6cc528ca5
MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research (CVPR 2025) ๐ŸŒ Homepage / blog โ€ข ๐Ÿ“ arXiv โ€ข ๐Ÿค— HF Dataset โ€ข ๐Ÿ’ป Code โ€ข ๐Ÿ› CC-BY-SA-4.0 MicroVQA is expert-curated benchmark for multimodal reasoning for microscopy-based scientific research, proposed in the paper MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research. Paper abstract Scientific research demands sophisticated reasoning over multimodalโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/jmhb/microvqa.
766
766
[ "task_categories:visual-question-answering", "task_categories:multiple-choice", "language:en", "license:cc-by-sa-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.13399", "region:us", "biology", "biomedical", "microscopy", "pathology", "vision-language", "question-answering", "scientific-research" ]
2025-02-24T08:57:24
null
null
67c248d12a6f7c1f2a448ee4
KodCode/KodCode-V1
KodCode
{"language": ["en"], "license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "version", "dtype": "string"}, {"name": "style", "dtype": "string"}, {"name": "subset", "dtype": "string"}, {"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "test", "dtype": "string"}, {"name": "test_info", "list": [{"name": "docstring", "dtype": "string"}, {"name": "function_declaration", "dtype": "string"}, {"name": "function_name", "dtype": "string"}, {"name": "parameter_list", "dtype": "string"}]}, {"name": "gpt_pass_sequence", "sequence": "int64"}, {"name": "gpt_pass_trial_num", "dtype": "int64"}, {"name": "gpt_difficulty", "dtype": "string"}, {"name": "gpt_pass_percentage", "dtype": "float64"}, {"name": "trials", "struct": [{"name": "trial_gpt4o_0", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_1", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_2", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_3", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_4", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_5", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_6", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_7", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_8", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}, {"name": "trial_gpt4o_9", "struct": [{"name": "file_source", "dtype": "string"}, {"name": "solution_code", "dtype": "string"}, {"name": "test_code", "dtype": "string"}, {"name": "test_coverage", "dtype": "float64"}, {"name": "test_result", "dtype": "string"}]}]}, {"name": "chosen_trial", "dtype": "string"}, {"name": "metadata", "struct": [{"name": "original_instruction", "dtype": "string"}, {"name": "prompt_id", "dtype": "string"}, {"name": "row_id", "dtype": "int64"}, {"name": "seed_ids", "dtype": "string"}]}, {"name": "benchmark_similarity", "dtype": "float64"}, {"name": "benchmark_instruction", "dtype": "string"}, {"name": "benchmark_task_id", "dtype": "string"}, {"name": "filter_reason", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 7436730246, "num_examples": 484097}, {"name": "use_with_caution", "num_bytes": 59623008, "num_examples": 3335}], "download_size": 2642644096, "dataset_size": 7496353254}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "use_with_caution", "path": "data/use_with_caution-*"}]}], "tags": ["code"], "size_categories": ["100K<n<1M"]}
false
null
2025-03-17T07:56:27
76
8
false
97d81f0695ddd7c5c02bfe16436db9a17a4a21e5
๐Ÿฑ KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding KodCode is the largest fully-synthetic open-source dataset providing verifiable solutions and tests for coding tasks. It contains 12 distinct subsets spanning various domains (from algorithmic to package-specific knowledge) and difficulty levels (from basic coding exercises to interview and competitive programming challenges). KodCode is designed for both supervised fine-tuning (SFT) and RL tuning. ๐Ÿ•ธ๏ธโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/KodCode/KodCode-V1.
3,874
3,874
[ "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.02951", "region:us", "code" ]
2025-02-28T23:37:53
null
null
6664c00380c533842fb0c680
lmg-anon/vntl-leaderboard
lmg-anon
{"language": ["en", "ja"], "tags": ["benchmark", "leaderboard"], "task_categories": ["translation"], "pretty_name": "vntl-leaderboard", "size_categories": ["n<1K"], "configs": [{"config_name": "leaderboard", "data_files": "leaderboard.jsonl"}]}
false
null
2025-01-02T16:34:32
34
7
false
cf3d232d77458394857dbf8411de95fd3a894aef
VNTL Leaderboard The VNTL leaderboard ranks Large Language Models (LLMs) based on their performance in translating Japanese Visual Novels into English. Please be aware that the current results are preliminary and subject to change as new models are evaluated, or changes are done in the evaluation script. Comparison with Established Translation Tools For comparison, this table shows the scores for established translation tools. These include both widely availableโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/lmg-anon/vntl-leaderboard.
3,518
8,332
[ "task_categories:translation", "language:en", "language:ja", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "benchmark", "leaderboard" ]
2024-06-08T20:33:07
null
null
66a53dc7d40a13036c5f2ebe
mlabonne/FineTome-100k
mlabonne
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "source", "dtype": "string"}, {"name": "score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 239650960.7474458, "num_examples": 100000}], "download_size": 116531415, "dataset_size": 239650960.7474458}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-07-29T09:52:30
182
7
false
c2343c1372ff31f51aa21248db18bffa3193efdb
FineTome-100k The FineTome dataset is a subset of arcee-ai/The-Tome (without arcee-ai/qwen2-72b-magpie-en), re-filtered using HuggingFaceFW/fineweb-edu-classifier. It was made for my article "Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth".
16,517
79,582
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-27T18:34:47
null
null
67374c18c32c765810f748f6
HuggingFaceH4/MATH-500
HuggingFaceH4
{"task_categories": ["text-generation"], "language": ["en"], "pretty_name": "MATH-500"}
false
null
2024-11-15T13:36:00
132
7
false
ff5b20257d8185524591543f8ff5993951537bb8
Dataset Card for MATH-500 This dataset contains a subset of 500 problems from the MATH benchmark that OpenAI created in their Let's Verify Step by Step paper. See their GitHub repo for the source file: https://github.com/openai/prm800k/tree/main?tab=readme-ov-file#math-splits
57,939
97,688
[ "task_categories:text-generation", "language:en", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-15T13:26:48
null
null
67aa648e91e6f5eb545e854e
allenai/olmOCR-mix-0225
allenai
{"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]}
false
null
2025-02-25T09:36:14
97
7
false
a602926844ed47c43439627fd16d3de45b39e494
olmOCR-mix-0225 olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special prompting strategy that preserves any born-digital content from each page. This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline. Quick links: ๐Ÿ“ƒ Paper ๐Ÿค— Model ๐Ÿ› ๏ธ Code ๐ŸŽฎ Demo Data Mix Table 1: Training set composition by source Source Uniqueโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225.
5,283
5,285
[ "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T20:41:50
null
null
67cf999e2d0993b445bfd594
Gen-Verse/WideRange4D
Gen-Verse
{"task_categories": ["image-to-video"], "tags": ["4d-reconstruction", "gaussian-splatting"], "license": "unknown"}
false
null
2025-03-21T11:22:37
7
7
false
c747d56214a46fe41ba42acc412b324ef58e5466
WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes Ling Yang1*, Kaixin Zhu1*, Juanxi Tian1*, Bohan Zeng1*, Mingbao Lin3, Hongjuan Pei2, Wentao Zhang1โ€ก, Shuicheng Yan3โ€ก 1 Peking University โ€ƒ 2 University of the Chinese Academy of Sciences โ€ƒ 3 National University of Singapore * Equal Contributions. โ€ก Corresponding Author. Example Github Page arXiv Paper @article{yang2025widerange4d, title={WideRange4D: Enabling High-Qualityโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/Gen-Verse/WideRange4D.
3,493
3,493
[ "task_categories:image-to-video", "license:unknown", "size_categories:10K<n<100K", "modality:video", "library:datasets", "library:mlcroissant", "arxiv:2503.13435", "region:us", "4d-reconstruction", "gaussian-splatting" ]
2025-03-11T02:02:06
null
null
67d9fd082ad0bffeb5bbc771
HuggingFaceTB/issues-kaggle-notebooks
HuggingFaceTB
{"dataset_info": [{"config_name": "issues", "features": [{"name": "repo_name", "dtype": "string"}, {"name": "issue_id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 30986711842, "num_examples": 15549682}], "download_size": 16370074732, "dataset_size": 30986711842}, {"config_name": "kaggle", "features": [{"name": "file_id", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5209133899, "num_examples": 580195}], "download_size": 2222724371, "dataset_size": 5209133899}], "configs": [{"config_name": "issues", "data_files": [{"split": "train", "path": "issues/train-*"}]}, {"config_name": "kaggle", "data_files": [{"split": "train", "path": "kaggle/train-*"}]}]}
false
null
2025-03-19T20:00:18
7
7
false
ef882ad1ed8274340e8fc9bac087c903f2f75396
GitHub Issues & Kaggle Notebooks Description GitHub Issues & Kaggle Notebooks is a collection of two code datasets intended for language models training, they are sourced from GitHub issues and notebooks in Kaggle platform. These datasets are a modified part of the StarCoder2 model training corpus, precisely the bigcode/StarCoder2-Extras dataset. We reformat the samples to remove StarCoder2's special tokens and use natural text to delimit comments in issues and displayโ€ฆ See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/issues-kaggle-notebooks.
62
62
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2402.19173", "region:us" ]
2025-03-18T23:08:56
null
null
End of preview. Expand in Data Studio

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
7,595

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 11