Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Data processing error: I/O error: Permission denied (os error 13)
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

_id
string
id
string
author
string
cardData
string
disabled
bool
gated
null
lastModified
timestamp[ns]
likes
int64
trendingScore
float64
private
bool
sha
string
description
string
downloads
int64
downloadsAllTime
int64
tags
sequence
createdAt
timestamp[ns]
paperswithcode_id
string
citation
string
68138ea21a0ce2640a9b7b19
nvidia/Nemotron-CrossThink
nvidia
{"license": "cc-by-4.0", "language": ["en"], "size_categories": ["10M<n<100M"], "task_categories": ["question-answering", "text-generation"], "pretty_name": "Nemotron-CrossThink", "dataset_info": {"splits": [{"name": "train_qa", "num_bytes": 353793822, "num_examples": 187496}, {"name": "train_math", "num_bytes": 260680780, "num_examples": 99880}], "download_size": 614474602, "dataset_size": 614474602}, "tags": ["text", "nvidia"], "configs": [{"config_name": "default", "data_files": [{"split": "train_qa", "path": "Data/Nemotron-CrossThink-QA.jsonl"}, {"split": "train_math", "path": "Data/Nemotron-CrossThink-Math.jsonl"}]}]}
false
null
2025-05-01T17:12:10
71
69
false
a4ce9a3b9434c5f231e2cbe30696d9a721c11d69
Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning Author: Syeda Nahida Akter, Shrimai Prabhumoye, Matvei Novikov, Seungju Han, Ying Lin, Evelina Bakhturina, Eric Nyberg, Yejin Choi, Mostofa Patwary, Mohammad Shoeybi, Bryan Catanzaro [Paper][Blog] Dataset Description Nemotron-CrossThink is a multi-domain reinforcement learning (RL) dataset designed to improve general-purpose and mathematical reasoning in large language models (LLMs). The dataset… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Nemotron-CrossThink.
5,539
5,539
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10M<n<100M", "modality:text", "arxiv:2504.13941", "arxiv:2406.20094", "region:us", "text", "nvidia" ]
2025-05-01T15:09:22
null
null
68072cc4cce05035af98207e
nvidia/OpenMathReasoning
nvidia
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["1M<n<10M"], "task_categories": ["question-answering", "text-generation"], "pretty_name": "OpenMathReasoning", "tags": ["math", "nvidia"], "configs": [{"config_name": "default", "data_files": [{"split": "cot", "path": "data/cot-*"}, {"split": "tir", "path": "data/tir-*"}, {"split": "genselect", "path": "data/genselect-*"}]}], "dataset_info": {"features": [{"name": "expected_answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "problem_source", "dtype": "string"}, {"name": "generation_model", "dtype": "string"}, {"name": "pass_rate_72b_tir", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generated_solution", "dtype": "string"}, {"name": "inference_mode", "dtype": "string"}], "splits": [{"name": "cot", "num_bytes": 71638774515, "num_examples": 3201061}, {"name": "tir", "num_bytes": 35467270369, "num_examples": 1703010}, {"name": "genselect", "num_bytes": 6981053721, "num_examples": 565620}], "download_size": 49370957110, "dataset_size": 114087098605}}
false
null
2025-04-24T04:13:32
198
48
false
47ea246374954205b6b9c8a7077b9bb0fd58b11a
OpenMathReasoning OpenMathReasoning is a large-scale math reasoning dataset for training large language models (LLMs). This dataset contains 540K unique mathematical problems sourced from AoPS forums, 3.2M long chain-of-thought (CoT) solutions 1.7M long tool-integrated reasoning (TIR) solutions 566K samples that select the most promising solution out of many candidates (GenSelect) We used Qwen2.5-32B-Instruct to preprocess problems, and DeepSeek-R1 and QwQ-32B to generate… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenMathReasoning.
30,057
30,057
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.16891", "region:us", "math", "nvidia" ]
2025-04-22T05:44:36
null
null
680a774a49e5373a4f68ffea
rajpurkarlab/ReXGradient-160K
rajpurkarlab
{"title": "ReXGradient-160K Dataset", "license": "other", "license_name": "rexgradient", "extra_gated_prompt": "## ReXGradient-160K Non-Commercial Data Access and Use Agreement\n\nBy accessing the ReXGradient-160K Data Repository, as hosted by President and Fellows of Harvard College on behalf of Harvard Medical School (\"Harvard\"), you (\"YOU\" or \"YOUR\") agree to the following terms of this agreement (\"Agreement\"):\n\n1. Acceptance of this Agreement\n\nBy downloading or otherwise accessing the data available from the ReXGradient-160K Data Repository (\"Data\"), which Data is available for non-commercial research and non-clinical purposes only, YOU (i) accept and agree to the terms of this Agreement, and (ii) further acknowledge that YOU may have an obligation to confirm that YOUR use of the Data under these terms is consistent with YOUR obligations to YOUR institution.\n\n2. Attribution\n\nData made available via the ReXGradient-160K Data Repository was provided to Harvard by Gradient Health. YOU agree to recognize (i) the ReXGradient-160K Data Repository and (ii) the contribution of Gradient Health as the source of the Data in all written, visual, or oral public disclosures concerning YOUR research using the Data, as appropriate in accordance with scholarly standards. \n\n3. Use of the Data\n\nUse of the Data is subject to YOUR compliance with all of the terms and conditions of this Agreement. No commercial use of the Data is permitted.\n\nRepresentations and Covenants:\n\nA. YOU represent and covenant that:\n\n1. YOU are not bound by any pre-existing legal obligations or other applicable laws that prevent YOU from downloading or using the Data;\n2. YOU will access and use the Data in compliance with all applicable laws, rules, and regulations, as well as all professional and ethical standards applicable to scientific research and YOUR research project, including without limitation, all applicable requirements pertaining to human subjects research and animal research;\n3. YOU agree not to use the Data in connection with the diagnosis or treatment of human subjects.\n4. YOU agree to establish appropriate administrative, technical, and physical safeguards to prevent unauthorized use of or access to the Data and comply with any other requirements relating to safeguarding of the Data that the ReXGradient-160K Data Repository may require from time to time;\n5. YOU will only use and download that portion of the Data that is necessary for use in YOUR research project; downloading of the entire ReXGradient-160K Data Repository or portions beyond what is needed for YOUR research project is strictly prohibited. YOU will only share the Data with those authorized employees, fellows, students and agents who have a need to access such Data for purposes of working on YOUR research project, and whose obligations of use are consistent with the terms of this Agreement.\n6. YOU will retain control over the Data YOU access and download.\n7. YOU will not, and will not permit any third party to, at any time, directly or indirectly: (i) disclose, distribute, release, sublicense, sell, rent, lease, loan, or otherwise grant access to the Data to any third party, except other users expressly authorized by Harvard to access and use the Data; (ii) publish or display any compilation or directory of the Data; or (iii) knowingly use the Data in any manner or for any purpose that infringes, misappropriates, or otherwise violates any intellectual property right or other right of any person, or that violates any applicable law.\n8. YOU will use the Data only for scientific research purposes and shall not use the Data for any commercial or clinical activities; \n9. YOU will regularly check the ReXGradient-160K Data Repository for any updates to Data pertinent to YOUR research project, and will only use the updated version of such Data, and will promptly destroy all outdated Data in YOUR possession; and\n10. YOU shall not use the Data except as authorized under this Agreement. \n\nB. YOU further covenant that YOU will not:\n\n1. obtain information from the Data that results in YOU or any third party(ies) directly or indirectly identifying any research subjects with the aid of other information acquired elsewhere;\n2. produce connections or links among the information included in Harvard's datasets (including information in the Data), or between the information included in Harvard's datasets (including information in the Data) and other third-party information that could be used to identify any individuals or organizations, not limited to research subjects;\n3. extract information from the Data that could aid YOU in gaining knowledge about or obtaining any means of contacting any subjects already known to YOU; or\n4. use the Data, either alone or in concert with any other information, to make any effort to identify or contact individuals who are or may be the sources of Data.\n\n4. Disclaimer\n\nTHE DATA IS PROVIDED \"AS IS\" AND \"AS AVAILABLE\" AND WITH ALL FAULTS AND DEFECTS. HARVARD MAKES NO, AND HEREBY DISCLAIMS ALL, REPRESENTATIONS AND WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE DATA WILL NOT INFRINGE OR VIOLATE ANY PATENT, COPYRIGHT, TRADEMARK OR OTHER THIRD PARTY RIGHT, AND ANY WARRANTIES IMPLIED BY ANY COURSE OF PERFORMANCE OR DEALING.\n\nWITHOUT LIMITING THE FOREGOING, HARVARD MAKES NO WARRANTY AS TO THE ACCURACY, COMPLETENESS, RELIABILITY, ORIGINALITY, AVAILABILITY, OR SECURITY OF THE DATA, THAT THE DATA WILL MEET YOUR REQUIREMENTS OR PROVIDE PARTICULAR BENEFITS, OR THAT THE DATA AND ANY RELATED FILES WILL BE FREE FROM DEFECTS, ERRORS, VIRUSES OR OTHER HARMFUL COMPONENTS. YOUR USE OF THE DATA IS SOLELY AT YOUR OWN RISK.\n\n5. Limitation of Liability\n\nIN NO EVENT SHALL HARVARD BE LIABLE UNDER CONTRACT, TORT, STRICT LIABILITY, NEGLIGENCE OR ANY OTHER LEGAL THEORY WITH RESPECT TO THE DATA (I) FOR ANY DIRECT DAMAGES, OR (II) FOR ANY LOST PROFITS OR SPECIAL, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER.\n\n6. Liability\n\nExcept to the extent prohibited by law, YOU assume all liability for damages which may arise from YOUR use, storage, download, disclosure, or disposal of the Data. Harvard will not be liable to YOU or any other person or entity for any loss, claim, liability, or demand made by YOU, or made against YOU by any other party, or otherwise relating to or arising in connection with the use of the Data by YOU, except to the extent permitted by law when caused by the gross negligence or willful misconduct of Harvard. No indemnification for any loss, claim, damage, or liability is intended or provided by either party under this Agreement.\n\n7. Governing Law; Venue\n\nThis Agreement shall be governed by and interpreted in accordance with the laws of the Commonwealth of Massachusetts (excluding the conflict of laws and rules thereof). All disputes under this Agreement will be resolved in the applicable state or federal courts of Massachusetts. YOU consent to the jurisdiction of such courts and waive any jurisdictional or venue defenses otherwise available.\n\n8. Integration and Severability\n\nThis Agreement represents the entire agreement between YOU and Harvard with respect to the subject matter hereof, and supersedes all prior or contemporaneous representations or understandings (whether oral, written or electronic) between YOU and Harvard with respect to the subject matter hereof. If any provision of this Agreement is or becomes invalid or is ruled invalid by any court of competent jurisdiction or is deemed unenforceable, it is the intention of the parties that the remainder of this Agreement shall not be affected.\n\n9. Reporting Requirement\n\nShould YOU (i) inadvertently receive identifiable information or otherwise identify a subject, or (ii) become aware of any use or disclosure of the Data not provided for or permitted by this Agreement, YOU shall immediately notify Harvard via email to [[email protected]](mailto:[email protected]) with **\"ReXGradient-160K\" in the subject line**, and follow Harvard's reasonable written instructions, which may include return or destruction of Data.\n\n10. Ownership\n\nHarvard shall retain ownership of any rights it may have in the Data, and YOU do not obtain any rights in the Data other than as set forth in this Agreement.\n\n11. Use of Harvard Name\n\nExcept as expressly provided in this Agreement, YOU shall not use or register Harvard's name (alone or as part of another name) or any logos, seals, insignia or other words, names, symbols or devices that identify Harvard, including any Harvard school, unit, division or affiliate (\"Harvard Names\") for any purpose in connection with this Agreement except with the prior written approval of, and in accordance with restrictions required by, Harvard. The foregoing notwithstanding, YOU may respond to legitimate business inquiries with factual information regarding the existence and purpose of the relationship that is the subject of this Agreement, without written permission from Harvard. Without limiting the foregoing, YOU shall cease all use of Harvard Names permitted under this Agreement on the termination or expiration of this Agreement except as otherwise approved by Harvard. \n\nExcept as expressly provided in Section II. Attribution of this Agreement, YOU shall not use Gradient Health's name, trademarks, or other logos in any publicity, advertising, or news release without the prior written approval of an authorized representative of Gradient Health. \n\n12. Term and Termination\n\nYOU may use the Data for the duration of YOUR research project as allowed under the permitted uses in Article III of this Agreement. Either party may terminate this agreement for any reason at any time, however, YOUR obligations that by their nature are intended to persist following termination shall remain in effect even after termination. Upon termination, YOU shall immediately cease use of the Data and destroy Data in YOUR possession and, if requested by Harvard, certify to Harvard as to its destruction.\n\nHarvard may limit, suspend or terminate YOUR access to Data at any time if Harvard believes YOU have violated the terms of this Agreement or otherwise acted negligently with respect to the Data or that continued use of or access to the Data by YOU presents significant risk to the individuals who are the subjects in the Data.\n\n13. Miscellaneous\n\nYOU may not assign, transfer or delegate any of YOUR rights and obligations hereunder without consent of the other party. No agency, partnership, joint venture, or employment relationship is created as a result of the Agreement. Neither Party shall have authority to make any statements, representations or commitments of any kind on behalf of the other Party, or to take any action which shall be binding on the other Party.\n\nNo modification or waiver of any provision of this Agreement shall be valid unless in writing and executed by duly-authorized representatives of both parties. A failure by one of the parties to this Agreement to assert its rights hereunder shall not be deemed a waiver of such rights. No such failure or waiver in writing by any one of the parties hereto with respect to any rights shall extend to or affect any subsequent breach or impair any right consequent thereon.\n\nReXGradient-160K Non-Commercial Data Access and Use Agreement v.1, April 7, 2025\n", "extra_gated_fields": {"Name": "text", "Institution": "text", "Email": "text", "By_checking_this_box": {"type": "checkbox", "description": "By checking this box, YOU acknowledge that YOU have read and are effectively signing this Non-Commercial Data Access and Use Agreement [https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K] and agreeing to its terms and conditions"}}, "configs": [{"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train_metadata.csv"}, {"split": "validation", "path": "metadata/valid_metadata.csv"}, {"split": "test", "path": "metadata/test_metadata.csv"}]}]}
false
null
2025-05-05T23:46:09
46
45
false
272f3ec1b4c3b26d6ed94bf41875bb1e1827e80b
Overview ReXGradient-160K is the largest publicly available multi-site chest X-ray dataset, containing 273,004 unique chest X-ray images from 160,000 radiological studies, collected from 109,487 unique patients across 3 U.S. health systems (79 medical sites). This comprehensive dataset includes multiple images per study and detailed radiology reports, making it particularly valuable for the development and evaluation of AI systems for medical imaging and automated report generation… See the full description on the dataset page: https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K.
762
767
[ "license:other", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.00228", "region:us" ]
2025-04-24T17:39:22
null
null
67ec47948647cfa17739af7a
nvidia/OpenCodeReasoning
nvidia
{"license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "OpenCodeReasoning", "dataset_info": [{"config_name": "split_0", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}], "splits": [{"name": "split_0", "num_bytes": 28108469190, "num_examples": 567850}]}, {"config_name": "split_1", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "index", "dtype": "string"}], "splits": [{"name": "split_1", "num_bytes": 4722811278, "num_examples": 167405}]}], "configs": [{"config_name": "split_0", "data_files": [{"split": "split_0", "path": "split_0/train-*"}]}, {"config_name": "split_1", "data_files": [{"split": "split_1", "path": "split_1/train-*"}]}], "task_categories": ["text-generation"], "tags": ["synthetic"]}
false
null
2025-05-04T23:54:22
367
44
false
20a1ca19c0d050fe9057fc08339d6b370ec1c67a
OpenCodeReasoning: Advancing Data Distillation for Competitive Coding Data Overview OpenCodeReasoning is the largest reasoning-based synthetic dataset to date for coding, comprises 735,255 samples in Python across 28,319 unique competitive programming questions. OpenCodeReasoning is designed for supervised fine-tuning (SFT). Technical Report - Discover the methodology and technical details behind OpenCodeReasoning. Github Repo - Access the complete pipeline used to… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenCodeReasoning.
17,975
18,549
[ "task_categories:text-generation", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.01943", "region:us", "synthetic" ]
2025-04-01T20:07:48
null
null
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-05-08T17:51:50
470
38
false
ab2a40d258a6a4d9d4c277d702aeea445081766c
Llama-Nemotron-Post-Training-Dataset-v1.1 Release Update [4/8/2025]: v1.1: We are releasing an additional 2.2M Math and 500K Code Reasoning Data in support of our release of Llama-3.1-Nemotron-Ultra-253B-v1. 🎉 Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIA’s release of… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset.
11,338
11,349
[ "license:cc-by-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2505.00949", "region:us" ]
2025-03-13T21:01:09
null
null
680788ed6b18c3643d14f39e
DMindAI/DMind_Benchmark
DMindAI
{"configs": [{"config_name": "objective_normal", "data_files": [{"split": "Tokenomist", "path": ["test_data/objective/Tokenomist.csv"]}, {"split": "Fundamentals", "path": ["test_data/objective/Blockchain_Fundamentals_benchmark.csv"]}, {"split": "DAO", "path": ["test_data/objective/DAO2.csv"]}, {"split": "Defi", "path": ["test_data/objective/Defi_benchmark.csv"]}, {"split": "MEME", "path": ["test_data/objective/MEME_Benchmark_modified.csv"]}, {"split": "NFT", "path": ["test_data/objective/NFT_Benchmark_modified.csv"]}, {"split": "Security", "path": ["test_data/objective/Security_Benchmark_modified.csv"]}, {"split": "Smart_contract", "path": ["test_data/objective/SmartContracts_benchmark.csv"]}]}, {"config_name": "objective_infrastructure", "data_files": [{"split": "Infrastructrue", "path": ["test_data/objective/Binfra_benchmark.csv"]}]}, {"config_name": "subjective_normal", "data_files": [{"split": "Tokenomist", "path": ["test_data/subjective/Token.jsonl"]}, {"split": "Fundamentals", "path": ["test_data/subjective/Blockchain_Fundamentals_benchmark.jsonl"]}, {"split": "DAO", "path": ["test_data/subjective/DAO.jsonl"]}, {"split": "Defi", "path": ["test_data/subjective/Defi.jsonl"]}, {"split": "MEME", "path": ["test_data/subjective/MEME.jsonl"]}, {"split": "NFT", "path": ["test_data/subjective/NFT.jsonl"]}, {"split": "Security", "path": ["test_data/subjective/Security.jsonl"]}, {"split": "Smart_contract", "path": ["test_data/subjective/smart_contract.jsonl"]}]}, {"config_name": "subjective_infrastructure", "data_files": [{"split": "Infrastructure", "path": ["test_data/subjective/Infra.jsonl"]}]}]}
false
null
2025-05-08T18:37:56
31
31
false
6fd0dc14acd70a06e26b0cb58025686ab7ee8283
🔍 DMind Benchmark A comprehensive framework for evaluating large language models (LLMs) on blockchain, cryptocurrency, and Web3 knowledge across multiple domains. | Paper | Dataset | Latest LLM Leaderboard In Web3 📊 Overview This project provides tools to benchmark AI models on their understanding of blockchain concepts through both objective (multiple-choice) and subjective (open-ended) questions. The framework covers various domains including: 🧱… See the full description on the dataset page: https://huggingface.co/datasets/DMindAI/DMind_Benchmark.
1,189
1,189
[ "size_categories:1K<n<10K", "modality:text", "arxiv:2504.16116", "region:us" ]
2025-04-22T12:17:49
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,769
26
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
14,564
156,255
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
6798d7adece6b7910c594f1a
BramVanroy/CommonCrawl-CreativeCommons
BramVanroy
{"license": "cc", "task_categories": ["text-generation"], "task_ids": ["language-modeling"], "pretty_name": "Common Crawl Creative Commons Corpus (C5)", "language": ["afr", "deu", "eng", "fra", "fry", "ita", "nld", "spa", "af", "de", "en", "fr", "fy", "it", "nl", "es"], "configs": [{"config_name": "v1", "data_files": ["data/CC-MAIN-2019-30/**/*.parquet", "data/CC-MAIN-2020-05/**/*.parquet", "data/CC-MAIN-2022-05/**/*.parquet", "data/CC-MAIN-2023-06/**/*.parquet", "data/CC-MAIN-2024-46/**/*.parquet", "data/CC-MAIN-2024-51/**/*.parquet", "data/CC-MAIN-2025-05/**/*.parquet"]}, {"config_name": "default", "data_files": "data/**/*.parquet"}, {"config_name": "afr", "data_files": "data/**/afr/*.parquet"}, {"config_name": "deu", "data_files": "data/**/deu/*.parquet"}, {"config_name": "eng", "data_files": "data/**/eng/*.parquet"}, {"config_name": "spa", "data_files": "data/**/spa/*.parquet"}, {"config_name": "fra", "data_files": "data/**/fra/*.parquet"}, {"config_name": "fry", "data_files": "data/**/fry/*.parquet"}, {"config_name": "ita", "data_files": "data/**/ita/*.parquet"}, {"config_name": "nld", "data_files": "data/**/nld/*.parquet"}, {"config_name": "CC-MAIN-2019-30", "data_files": "data/CC-MAIN-2019-30/**/*.parquet"}, {"config_name": "CC-MAIN-2019-30-afr", "data_files": "data/CC-MAIN-2019-30/afr/*.parquet"}, {"config_name": "CC-MAIN-2019-30-deu", "data_files": "data/CC-MAIN-2019-30/deu/*.parquet"}, {"config_name": "CC-MAIN-2019-30-eng", "data_files": "data/CC-MAIN-2019-30/eng/*.parquet"}, {"config_name": "CC-MAIN-2019-30-spa", "data_files": "data/CC-MAIN-2019-30/spa/*.parquet"}, {"config_name": "CC-MAIN-2019-30-fra", "data_files": "data/CC-MAIN-2019-30/fra/*.parquet"}, {"config_name": "CC-MAIN-2019-30-fry", "data_files": "data/CC-MAIN-2019-30/fry/*.parquet"}, {"config_name": "CC-MAIN-2019-30-ita", "data_files": "data/CC-MAIN-2019-30/ita/*.parquet"}, {"config_name": "CC-MAIN-2019-30-nld", "data_files": "data/CC-MAIN-2019-30/nld/*.parquet"}, {"config_name": "CC-MAIN-2020-05", "data_files": "data/CC-MAIN-2020-05/**/*.parquet"}, {"config_name": "CC-MAIN-2020-05-afr", "data_files": "data/CC-MAIN-2020-05/afr/*.parquet"}, {"config_name": "CC-MAIN-2020-05-deu", "data_files": "data/CC-MAIN-2020-05/deu/*.parquet"}, {"config_name": "CC-MAIN-2020-05-eng", "data_files": "data/CC-MAIN-2020-05/eng/*.parquet"}, {"config_name": "CC-MAIN-2020-05-spa", "data_files": "data/CC-MAIN-2020-05/spa/*.parquet"}, {"config_name": "CC-MAIN-2020-05-fra", "data_files": "data/CC-MAIN-2020-05/fra/*.parquet"}, {"config_name": "CC-MAIN-2020-05-fry", "data_files": "data/CC-MAIN-2020-05/fry/*.parquet"}, {"config_name": "CC-MAIN-2020-05-ita", "data_files": "data/CC-MAIN-2020-05/ita/*.parquet"}, {"config_name": "CC-MAIN-2020-05-nld", "data_files": "data/CC-MAIN-2020-05/nld/*.parquet"}, {"config_name": "CC-MAIN-2022-05", "data_files": "data/CC-MAIN-2022-05/**/*.parquet"}, {"config_name": "CC-MAIN-2022-05-afr", "data_files": "data/CC-MAIN-2022-05/afr/*.parquet"}, {"config_name": "CC-MAIN-2022-05-deu", "data_files": "data/CC-MAIN-2022-05/deu/*.parquet"}, {"config_name": "CC-MAIN-2022-05-eng", "data_files": "data/CC-MAIN-2022-05/eng/*.parquet"}, {"config_name": "CC-MAIN-2022-05-spa", "data_files": "data/CC-MAIN-2022-05/spa/*.parquet"}, {"config_name": "CC-MAIN-2022-05-fra", "data_files": "data/CC-MAIN-2022-05/fra/*.parquet"}, {"config_name": "CC-MAIN-2022-05-fry", "data_files": "data/CC-MAIN-2022-05/fry/*.parquet"}, {"config_name": "CC-MAIN-2022-05-ita", "data_files": "data/CC-MAIN-2022-05/ita/*.parquet"}, {"config_name": "CC-MAIN-2022-05-nld", "data_files": "data/CC-MAIN-2022-05/nld/*.parquet"}, {"config_name": "CC-MAIN-2023-06", "data_files": "data/CC-MAIN-2023-06/**/*.parquet"}, {"config_name": "CC-MAIN-2023-06-afr", "data_files": "data/CC-MAIN-2023-06/afr/*.parquet"}, {"config_name": "CC-MAIN-2023-06-deu", "data_files": "data/CC-MAIN-2023-06/deu/*.parquet"}, {"config_name": "CC-MAIN-2023-06-eng", "data_files": "data/CC-MAIN-2023-06/eng/*.parquet"}, {"config_name": "CC-MAIN-2023-06-spa", "data_files": "data/CC-MAIN-2023-06/spa/*.parquet"}, {"config_name": "CC-MAIN-2023-06-fra", "data_files": "data/CC-MAIN-2023-06/fra/*.parquet"}, {"config_name": "CC-MAIN-2023-06-fry", "data_files": "data/CC-MAIN-2023-06/fry/*.parquet"}, {"config_name": "CC-MAIN-2023-06-ita", "data_files": "data/CC-MAIN-2023-06/ita/*.parquet"}, {"config_name": "CC-MAIN-2023-06-nld", "data_files": "data/CC-MAIN-2023-06/nld/*.parquet"}, {"config_name": "CC-MAIN-2024-46", "data_files": "data/CC-MAIN-2024-46/**/*.parquet"}, {"config_name": "CC-MAIN-2024-46-afr", "data_files": "data/CC-MAIN-2024-46/afr/*.parquet"}, {"config_name": "CC-MAIN-2024-46-deu", "data_files": "data/CC-MAIN-2024-46/deu/*.parquet"}, {"config_name": "CC-MAIN-2024-46-eng", "data_files": "data/CC-MAIN-2024-46/eng/*.parquet"}, {"config_name": "CC-MAIN-2024-46-spa", "data_files": "data/CC-MAIN-2024-46/spa/*.parquet"}, {"config_name": "CC-MAIN-2024-46-fra", "data_files": "data/CC-MAIN-2024-46/fra/*.parquet"}, {"config_name": "CC-MAIN-2024-46-fry", "data_files": "data/CC-MAIN-2024-46/fry/*.parquet"}, {"config_name": "CC-MAIN-2024-46-ita", "data_files": "data/CC-MAIN-2024-46/ita/*.parquet"}, {"config_name": "CC-MAIN-2024-46-nld", "data_files": "data/CC-MAIN-2024-46/nld/*.parquet"}, {"config_name": "CC-MAIN-2024-51", "data_files": "data/CC-MAIN-2024-51/**/*.parquet"}, {"config_name": "CC-MAIN-2024-51-afr", "data_files": "data/CC-MAIN-2024-51/afr/*.parquet"}, {"config_name": "CC-MAIN-2024-51-deu", "data_files": "data/CC-MAIN-2024-51/deu/*.parquet"}, {"config_name": "CC-MAIN-2024-51-eng", "data_files": "data/CC-MAIN-2024-51/eng/*.parquet"}, {"config_name": "CC-MAIN-2024-51-spa", "data_files": "data/CC-MAIN-2024-51/spa/*.parquet"}, {"config_name": "CC-MAIN-2024-51-fra", "data_files": "data/CC-MAIN-2024-51/fra/*.parquet"}, {"config_name": "CC-MAIN-2024-51-fry", "data_files": "data/CC-MAIN-2024-51/fry/*.parquet"}, {"config_name": "CC-MAIN-2024-51-ita", "data_files": "data/CC-MAIN-2024-51/ita/*.parquet"}, {"config_name": "CC-MAIN-2024-51-nld", "data_files": "data/CC-MAIN-2024-51/nld/*.parquet"}, {"config_name": "CC-MAIN-2025-05", "data_files": "data/CC-MAIN-2025-05/**/*.parquet"}, {"config_name": "CC-MAIN-2025-05-afr", "data_files": "data/CC-MAIN-2025-05/afr/*.parquet"}, {"config_name": "CC-MAIN-2025-05-deu", "data_files": "data/CC-MAIN-2025-05/deu/*.parquet"}, {"config_name": "CC-MAIN-2025-05-eng", "data_files": "data/CC-MAIN-2025-05/eng/*.parquet"}, {"config_name": "CC-MAIN-2025-05-spa", "data_files": "data/CC-MAIN-2025-05/spa/*.parquet"}, {"config_name": "CC-MAIN-2025-05-fra", "data_files": "data/CC-MAIN-2025-05/fra/*.parquet"}, {"config_name": "CC-MAIN-2025-05-fry", "data_files": "data/CC-MAIN-2025-05/fry/*.parquet"}, {"config_name": "CC-MAIN-2025-05-ita", "data_files": "data/CC-MAIN-2025-05/ita/*.parquet"}, {"config_name": "CC-MAIN-2025-05-nld", "data_files": "data/CC-MAIN-2025-05/nld/*.parquet"}]}
false
null
2025-05-07T09:49:07
27
26
false
0a0223522217e08d07a66f8c068ff92fce254c38
The Common Crawl Creative Commons Corpus (C5) Raw CommonCrawl crawls, annotated with Creative Commons license information C5 is an effort to collect Creative Commons-licensed web data in one place. The licensing information is extracted from the web pages based on whether they link to Creative Commons licenses either overtly in a tags (like in the footer of Wikipedia) or in metadata fields indicating deliberate Creative Commons publication. However, false positives may occur! See… See the full description on the dataset page: https://huggingface.co/datasets/BramVanroy/CommonCrawl-CreativeCommons.
1,247
3,673
[ "task_categories:text-generation", "task_ids:language-modeling", "language:afr", "language:deu", "language:eng", "language:fra", "language:fry", "language:ita", "language:nld", "language:spa", "language:af", "language:de", "language:en", "language:fr", "language:fy", "language:it", "language:nl", "language:es", "license:cc", "size_categories:100M<n<1B", "modality:text", "doi:10.57967/hf/5340", "region:us" ]
2025-01-28T13:12:13
null
null
6819bf075435fed9f1a20705
maya-research/IndicVault
maya-research
{"license": "mit", "task_categories": ["question-answering", "text-generation"], "language": ["hi", "te", "en"], "configs": [{"config_name": "Hindi", "data_files": "Hindi100k.json"}, {"config_name": "Hinglish", "data_files": "Hinglish100k.json"}, {"config_name": "Telugu", "data_files": "Telugu100k.json"}], "size_categories": ["10K<n<100K"]}
false
null
2025-05-06T09:33:00
26
26
false
6f89850d5dbae85afbe3976d46db3ef944e446b4
Indic Vault — everyday Indian language QA pairs, tuned for chatbots & voice agents. 🧾 Overview Indic Vault is a high-quality, instruction-tuned dataset featuring question-answer pairs crafted in the contemporary, everyday language spoken across India in 2025. Unlike traditional datasets that lean heavily on formal or outdated linguistic styles, Indic Vault captures the authentic, colloquial expressions used in daily conversations, making it ideal for building AI… See the full description on the dataset page: https://huggingface.co/datasets/maya-research/IndicVault.
235
235
[ "task_categories:question-answering", "task_categories:text-generation", "language:hi", "language:te", "language:en", "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-05-06T07:49:27
null
null
6813224fb6dbda9fd92c0c1b
tokyotech-llm/swallow-code
tokyotech-llm
{"license": "llama3.3", "task_categories": ["text-generation"], "language": ["en", "ja"], "tags": ["code"], "pretty_name": "swallowcode", "size_categories": ["10M<n<100M"], "modalities": ["Text"], "formats": ["json"], "configs": [{"config_name": "swallow-code", "data_files": [{"split": "train", "path": "train/train-*"}]}, {"config_name": "exp1-the-stack-v2", "data_files": [{"split": "train", "path": "ablation/exp1-the-stack-v2-train-smol-ids-python/jsonl/train-*"}]}, {"config_name": "exp2-syntax-error", "data_files": [{"split": "train", "path": "ablation/exp2-syntax-error-filtered/jsonl/train-*"}]}, {"config_name": "exp3-linter", "data_files": [{"split": "train", "path": "ablation/exp3-linter-filtered/jsonl/train-*"}]}, {"config_name": "exp4-comment-lang", "data_files": [{"split": "train", "path": "ablation/exp4-code_comment_ja_or_en/jsonl/train-*"}]}, {"config_name": "exp5-sgcr", "data_files": [{"split": "train", "path": "ablation/exp5-sgcr/jsonl/train-*"}]}, {"config_name": "exp6-llm-scoring", "data_files": [{"split": "train", "path": "ablation/exp6-llm-based-scoring/jsonl/train-*"}]}, {"config_name": "exp7", "data_files": [{"split": "train", "path": "ablation/exp7/jsonl/train-*"}]}, {"config_name": "exp10-direct-sgcr", "data_files": [{"split": "train", "path": "ablation/exp10-direct-sgcr/jsonl/train-*"}]}, {"config_name": "exp11-scor", "data_files": [{"split": "train", "path": "ablation/exp11-scor/jsonl/train-*"}]}]}
false
null
2025-05-08T04:09:25
25
25
false
a2c3e7b472c9a1c4ac18ab140752e7db50a50570
SwallowCode Resources 🐙 GitHub: Explore the project repository, including pipeline code and prompts at rioyokotalab/swallow-code-math. 📑 arXiv: Read our paper for detailed methodology and results at arXiv:2505.02881. 🤗 Sister Dataset: Discover SwallowMath, our companion dataset for mathematical reasoning. What is it? 💻 SwallowCode is a high-quality code dataset comprising approximately 16.1 billion tokens of Python code, derived from… See the full description on the dataset page: https://huggingface.co/datasets/tokyotech-llm/swallow-code.
920
920
[ "task_categories:text-generation", "language:en", "language:ja", "license:llama3.3", "size_categories:100M<n<1B", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2505.02881", "region:us", "code" ]
2025-05-01T07:27:11
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}, {"config_name": "en_mix", "data_files": "medical_o1_sft_mix.json"}, {"config_name": "zh_mix", "data_files": "medical_o1_sft_mix_Chinese.json"}]}
false
null
2025-04-22T15:11:21
688
21
false
fc2c9e8a37b38f38da6d449564a8c350b244aef4
News [2025/04/22] We split the data and kept only the medical SFT dataset (medical_o1_sft.json). The file medical_o1_sft_mix.json contains a mix of medical and general instruction data. [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
11,897
64,852
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,141
20
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
853,759
3,234,694
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
680f79161cf05743d38266f6
nyuuzyou/svgfind
nyuuzyou
{"pretty_name": "SVGFind Icons", "size_categories": ["1M<n<10M"], "task_categories": ["image-classification", "text-to-image"], "annotations_creators": ["found"], "language": ["en"], "multilinguality": ["monolingual"], "source_datasets": ["original"], "configs": [{"config_name": "default", "data_files": [{"split": "creativecommons", "path": "svgfind-CREATIVECOMMONS_*.jsonl.zst"}, {"split": "publicdomain", "path": "svgfind-PUBLICDOMAIN.jsonl.zst"}], "default": true}], "tags": ["image", "vector-graphics", "icons", "svg"], "license": "other"}
false
null
2025-04-28T14:50:27
26
15
false
ca3fc28a42b0e3dc81725e5700ce893524703772
Dataset Card for SVGFind Icons Dataset Summary This dataset contains a large collection of Scalable Vector Graphics (SVG) icons sourced from SVGFind.com. The icons cover a wide range of categories and styles, suitable for user interfaces, web development, presentations, and potentially for training vector graphics or icon classification models. Each icon is provided under either a Creative Commons license or is in the Public Domain, as clearly indicated in its metadata.… See the full description on the dataset page: https://huggingface.co/datasets/nyuuzyou/svgfind.
684
684
[ "task_categories:image-classification", "task_categories:text-to-image", "annotations_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:1M<n<10M", "format:json", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us", "image", "vector-graphics", "icons", "svg" ]
2025-04-28T12:48:22
null
null
681b4f1dab6b347478b74d0f
miscovery/Math_CoT_Arabic_English_Reasoning
miscovery
{"license": "mit", "task_categories": ["question-answering", "text-generation", "fill-mask"], "language": ["en", "ar"], "pretty_name": "Math CoT Arabic English Reasoning", "size_categories": ["1K<n<10K"], "tags": ["code"]}
false
null
2025-05-07T12:28:42
14
14
false
193d4c2d4cbc1c4a5572bd8f5df50d69e177bac9
Math CoT Arabic English Dataset A high-quality, bilingual (English & Arabic) dataset for Chain-of-Thought (COT) reasoning in mathematics and related disciplines, developed by Miscovery AI. Overview Math-COT is a unique dataset designed to facilitate and benchmark the development of chain-of-thought reasoning capabilities in language models across mathematical domains. With meticulously crafted examples, explicit reasoning steps, and bilingual support, this dataset offers… See the full description on the dataset page: https://huggingface.co/datasets/miscovery/Math_CoT_Arabic_English_Reasoning.
25
25
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:fill-mask", "language:en", "language:ar", "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
2025-05-07T12:16:29
null
null
680eefdef99a20ddfc931d13
quotientai/HalluMix
quotientai
{"license": "apache-2.0", "language": ["en"], "tags": ["hallucination-evaluation", "benchmark"], "pretty_name": "HalluMix"}
false
null
2025-05-02T14:49:58
13
13
false
3e3a82e813f7c8c45257f10c29234063f95e7625
Introducing HalluMix: A Task-Agnostic, Multi-Domain Benchmark for Detecting Hallucinations in Real-World Scenarios ✉️ Contact: {deanna, mike, freddie, julia}@quotientai.co 📜 Paper: HalluMix: A Task-Agnostic, Multi-Domain Benchmark for Real-World Hallucination Detection, Emery et al (2025) As large language models (LLMs) are increasingly adopted in critical industries, ensuring their outputs are factually grounded has emerged as a major concern. One prominent issue is "hallucination… See the full description on the dataset page: https://huggingface.co/datasets/quotientai/HalluMix.
534
534
[ "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.00506", "region:us", "hallucination-evaluation", "benchmark" ]
2025-04-28T03:02:54
null
null
6812390f2fb2d588a9f7503a
deepseek-ai/DeepSeek-ProverBench
deepseek-ai
null
false
null
2025-04-30T14:54:40
26
13
false
3b9f067088e5e005fab91434ddc05a903e0a6252
1. Introduction We introduce DeepSeek-Prover-V2, an open-source large language model designed for formal theorem proving in Lean 4, with initialization data collected through a recursive theorem proving pipeline powered by DeepSeek-V3. The cold-start training procedure begins by prompting DeepSeek-V3 to decompose complex problems into a series of subgoals. The proofs of resolved subgoals… See the full description on the dataset page: https://huggingface.co/datasets/deepseek-ai/DeepSeek-ProverBench.
1,920
1,920
[ "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-30T14:51:59
null
null
661823b590a8b6724f1c6534
HuggingFaceM4/the_cauldron
HuggingFaceM4
{"dataset_info": [{"config_name": "ai2d", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 435362437.84770346, "num_examples": 2434}], "download_size": 438136609, "dataset_size": 435362437.84770346}, {"config_name": "aokvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 871997710, "num_examples": 16539}], "download_size": 893265070, "dataset_size": 871997710}, {"config_name": "chart2text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1060566797.2728182, "num_examples": 26961}], "download_size": 1103141721, "dataset_size": 1060566797.2728182}, {"config_name": "chartqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 784719364.9441738, "num_examples": 18265}], "download_size": 803192402, "dataset_size": 784719364.9441738}, {"config_name": "clevr", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 11522617868, "num_examples": 70000}], "download_size": 13267429872, "dataset_size": 11522617868}, {"config_name": "clevr_math", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 13308311206, "num_examples": 70000}], "download_size": 16315284, "dataset_size": 13308311206}, {"config_name": "cocoqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2213960474, "num_examples": 46287}], "download_size": 2393991009, "dataset_size": 2213960474}, {"config_name": "datikz", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 481233278, "num_examples": 47974}], "download_size": 613100257, "dataset_size": 481233278}, {"config_name": "diagram_image_to_text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 18877197, "num_examples": 300}], "download_size": 18706661, "dataset_size": 18877197}, {"config_name": "docvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6885686042, "num_examples": 10189}], "download_size": 6887803845, "dataset_size": 6885686042}, {"config_name": "dvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3689940101, "num_examples": 200000}], "download_size": 4295254110, "dataset_size": 3689940101}, {"config_name": "figureqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1901887152, "num_examples": 100000}], "download_size": 2220036667, "dataset_size": 1901887152}, {"config_name": "finqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 135268568, "num_examples": 5276}], "download_size": 123698250, "dataset_size": 135268568}, {"config_name": "geomverse", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 951640204, "num_examples": 9303}], "download_size": 323746516, "dataset_size": 951640204}, {"config_name": "hateful_memes", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3035059823, "num_examples": 8500}], "download_size": 3054208907, "dataset_size": 3035059823}, {"config_name": "hitab", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 161130580, "num_examples": 2500}], "download_size": 158295807, "dataset_size": 161130580}, {"config_name": "iam", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1129180352, "num_examples": 5663}], "download_size": 1128935602, "dataset_size": 1129180352}, {"config_name": "iconqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 264513634.7170419, "num_examples": 27307}], "download_size": 326674337, "dataset_size": 264513634.7170419}, {"config_name": "infographic_vqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 291677986, "num_examples": 2118}], "download_size": 292351760, "dataset_size": 291677986}, {"config_name": "intergps", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 24982328.291771192, "num_examples": 1280}], "download_size": 24870320, "dataset_size": 24982328.291771192}, {"config_name": "localized_narratives", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 21380844262.41927, "num_examples": 199998}], "download_size": 22164342699, "dataset_size": 21380844262.41927}, {"config_name": "mapqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3238062926, "num_examples": 37417}], "download_size": 3307676486, "dataset_size": 3238062926}, {"config_name": "mimic_cgd", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 12592929433, "num_examples": 70939}], "download_size": 13147641100, "dataset_size": 12592929433}, {"config_name": "multihiertt", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1356766489.046, "num_examples": 7619}], "download_size": 1360814135, "dataset_size": 1356766489.046}, {"config_name": "nlvr2", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8375492591, "num_examples": 50426}], "download_size": 10838882020, "dataset_size": 8375492591}, {"config_name": "ocrvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5467134439, "num_examples": 165746}], "download_size": 6078073015, "dataset_size": 5467134439}, {"config_name": "okvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 281454288182.492, "num_examples": 9009}], "download_size": 3009062, "dataset_size": 281454288182.492}, {"config_name": "plotqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 7837605221, "num_examples": 157070}], "download_size": 5320249066, "dataset_size": 7837605221}, {"config_name": "raven", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1506550467, "num_examples": 42000}], "download_size": 1720691636, "dataset_size": 1506550467}, {"config_name": "rendered_text", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 11086896502, "num_examples": 10000}], "download_size": 11086960376, "dataset_size": 11086896502}, {"config_name": "robut_sqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 679135952, "num_examples": 8514}], "download_size": 678722272, "dataset_size": 679135952}, {"config_name": "robut_wikisql", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5950915477, "num_examples": 74989}], "download_size": 6160300141, "dataset_size": 5950915477}, {"config_name": "robut_wtq", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4023729236, "num_examples": 38246}], "download_size": 4061523247, "dataset_size": 4023729236}, {"config_name": "scienceqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 284601898.76188564, "num_examples": 4976}], "download_size": 283265438, "dataset_size": 284601898.76188564}, {"config_name": "screen2words", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1670723783, "num_examples": 15730}], "download_size": 1346254268, "dataset_size": 1670723783}, {"config_name": "spot_the_diff", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1643123792, "num_examples": 8566}], "download_size": 1526740548, "dataset_size": 1643123792}, {"config_name": "st_vqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 696265340, "num_examples": 17247}], "download_size": 720462890, "dataset_size": 696265340}, {"config_name": "tabmwp", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 265337140.19648907, "num_examples": 22722}], "download_size": 306643610, "dataset_size": 265337140.19648907}, {"config_name": "tallyqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4267143189, "num_examples": 98680}], "download_size": 4662245152, "dataset_size": 4267143189}, {"config_name": "tat_qa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 73213942, "num_examples": 2199}], "download_size": 70862028, "dataset_size": 73213942}, {"config_name": "textcaps", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5938676115, "num_examples": 21953}], "download_size": 6175419911, "dataset_size": 5938676115}, {"config_name": "textvqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 5939437331, "num_examples": 21953}], "download_size": 6175442839, "dataset_size": 5939437331}, {"config_name": "tqa", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 380346870.806369, "num_examples": 1493}], "download_size": 378238311, "dataset_size": 380346870.806369}, {"config_name": "vistext", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 541250281, "num_examples": 9969}], "download_size": 386023352, "dataset_size": 541250281}, {"config_name": "visual7w", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4432168161, "num_examples": 14366}], "download_size": 4443083495, "dataset_size": 4432168161}, {"config_name": "visualmrc", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2941051627.2639995, "num_examples": 3027}], "download_size": 2912911810, "dataset_size": 2941051627.2639995}, {"config_name": "vqarad", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 16561537, "num_examples": 313}], "download_size": 16226241, "dataset_size": 16561537}, {"config_name": "vqav2", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 10630091683, "num_examples": 82772}], "download_size": 13479302437, "dataset_size": 10630091683}, {"config_name": "vsr", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 107489763, "num_examples": 2157}], "download_size": 107576214, "dataset_size": 107489763}, {"config_name": "websight", "features": [{"name": "images", "sequence": "image"}, {"name": "texts", "list": [{"name": "user", "dtype": "string"}, {"name": "assistant", "dtype": "string"}, {"name": "source", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2011365901, "num_examples": 10000}], "download_size": 1601222161, "dataset_size": 2011365901}], "configs": [{"config_name": "ai2d", "data_files": [{"split": "train", "path": "ai2d/train-*"}]}, {"config_name": "aokvqa", "data_files": [{"split": "train", "path": "aokvqa/train-*"}]}, {"config_name": "chart2text", "data_files": [{"split": "train", "path": "chart2text/train-*"}]}, {"config_name": "chartqa", "data_files": [{"split": "train", "path": "chartqa/train-*"}]}, {"config_name": "clevr", "data_files": [{"split": "train", "path": "clevr/train-*"}]}, {"config_name": "clevr_math", "data_files": [{"split": "train", "path": "clevr_math/train-*"}]}, {"config_name": "cocoqa", "data_files": [{"split": "train", "path": "cocoqa/train-*"}]}, {"config_name": "datikz", "data_files": [{"split": "train", "path": "datikz/train-*"}]}, {"config_name": "diagram_image_to_text", "data_files": [{"split": "train", "path": "diagram_image_to_text/train-*"}]}, {"config_name": "docvqa", "data_files": [{"split": "train", "path": "docvqa/train-*"}]}, {"config_name": "dvqa", "data_files": [{"split": "train", "path": "dvqa/train-*"}]}, {"config_name": "figureqa", "data_files": [{"split": "train", "path": "figureqa/train-*"}]}, {"config_name": "finqa", "data_files": [{"split": "train", "path": "finqa/train-*"}]}, {"config_name": "geomverse", "data_files": [{"split": "train", "path": "geomverse/train-*"}]}, {"config_name": "hateful_memes", "data_files": [{"split": "train", "path": "hateful_memes/train-*"}]}, {"config_name": "hitab", "data_files": [{"split": "train", "path": "hitab/train-*"}]}, {"config_name": "iam", "data_files": [{"split": "train", "path": "iam/train-*"}]}, {"config_name": "iconqa", "data_files": [{"split": "train", "path": "iconqa/train-*"}]}, {"config_name": "infographic_vqa", "data_files": [{"split": "train", "path": "infographic_vqa/train-*"}]}, {"config_name": "intergps", "data_files": [{"split": "train", "path": "intergps/train-*"}]}, {"config_name": "localized_narratives", "data_files": [{"split": "train", "path": "localized_narratives/train-*"}]}, {"config_name": "mapqa", "data_files": [{"split": "train", "path": "mapqa/train-*"}]}, {"config_name": "mimic_cgd", "data_files": [{"split": "train", "path": "mimic_cgd/train-*"}]}, {"config_name": "multihiertt", "data_files": [{"split": "train", "path": "multihiertt/train-*"}]}, {"config_name": "nlvr2", "data_files": [{"split": "train", "path": "nlvr2/train-*"}]}, {"config_name": "ocrvqa", "data_files": [{"split": "train", "path": "ocrvqa/train-*"}]}, {"config_name": "okvqa", "data_files": [{"split": "train", "path": "okvqa/train-*"}]}, {"config_name": "plotqa", "data_files": [{"split": "train", "path": "plotqa/train-*"}]}, {"config_name": "raven", "data_files": [{"split": "train", "path": "raven/train-*"}]}, {"config_name": "rendered_text", "data_files": [{"split": "train", "path": "rendered_text/train-*"}]}, {"config_name": "robut_sqa", "data_files": [{"split": "train", "path": "robut_sqa/train-*"}]}, {"config_name": "robut_wikisql", "data_files": [{"split": "train", "path": "robut_wikisql/train-*"}]}, {"config_name": "robut_wtq", "data_files": [{"split": "train", "path": "robut_wtq/train-*"}]}, {"config_name": "scienceqa", "data_files": [{"split": "train", "path": "scienceqa/train-*"}]}, {"config_name": "screen2words", "data_files": [{"split": "train", "path": "screen2words/train-*"}]}, {"config_name": "spot_the_diff", "data_files": [{"split": "train", "path": "spot_the_diff/train-*"}]}, {"config_name": "st_vqa", "data_files": [{"split": "train", "path": "st_vqa/train-*"}]}, {"config_name": "tabmwp", "data_files": [{"split": "train", "path": "tabmwp/train-*"}]}, {"config_name": "tallyqa", "data_files": [{"split": "train", "path": "tallyqa/train-*"}]}, {"config_name": "tat_qa", "data_files": [{"split": "train", "path": "tat_qa/train-*"}]}, {"config_name": "textcaps", "data_files": [{"split": "train", "path": "textcaps/train-*"}]}, {"config_name": "textvqa", "data_files": [{"split": "train", "path": "textvqa/train-*"}]}, {"config_name": "tqa", "data_files": [{"split": "train", "path": "tqa/train-*"}]}, {"config_name": "vistext", "data_files": [{"split": "train", "path": "vistext/train-*"}]}, {"config_name": "visual7w", "data_files": [{"split": "train", "path": "visual7w/train-*"}]}, {"config_name": "visualmrc", "data_files": [{"split": "train", "path": "visualmrc/train-*"}]}, {"config_name": "vqarad", "data_files": [{"split": "train", "path": "vqarad/train-*"}]}, {"config_name": "vqav2", "data_files": [{"split": "train", "path": "vqav2/train-*"}]}, {"config_name": "vsr", "data_files": [{"split": "train", "path": "vsr/train-*"}]}, {"config_name": "websight", "data_files": [{"split": "train", "path": "websight/train-*"}]}]}
false
null
2024-05-06T13:37:52
416
12
false
847a98a779b1652d65111daf20c972dfcd333605
Dataset Card for The Cauldron Dataset description The Cauldron is part of the Idefics2 release. It is a massive collection of 50 vision-language datasets (training sets only) that were used for the fine-tuning of the vision-language model Idefics2. Load the dataset To load the dataset, install the library datasets with pip install datasets. Then, from datasets import load_dataset ds = load_dataset("HuggingFaceM4/the_cauldron", "ai2d") to download and load the… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceM4/the_cauldron.
627,727
2,709,708
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:1603.07396", "arxiv:2206.01718", "arxiv:2208.05358", "arxiv:1612.06890", "arxiv:2310.00367", "arxiv:1710.07300", "arxiv:2312.12241", "arxiv:1912.03098", "arxiv:2211.08545", "arxiv:2306.05425", "arxiv:1709.00103", "arxiv:2003.12462", "arxiv:1612.00837", "arxiv:2205.00363", "arxiv:2403.09029", "arxiv:2405.02246", "region:us" ]
2024-04-11T17:53:57
null
null
68029f72cbf4fea90c2db08e
Mxode/Chinese-Instruct
Mxode
{"configs": [{"config_name": "stem_zh", "data_files": [{"split": "train", "path": "stem_zh/**/*"}]}, {"config_name": "infinity-instruct", "data_files": [{"split": "train", "path": "infinity-instruct/**/*"}]}, {"config_name": "firefly", "data_files": [{"split": "train", "path": "firefly/**/*"}]}, {"config_name": "magpie", "data_files": [{"split": "train", "path": "magpie/**/*"}]}, {"config_name": "dpsk-r1-distil", "default": true, "data_files": [{"split": "train", "path": "dpsk-r1-distil/**/*"}]}, {"config_name": "coig-cqia", "data_files": [{"split": "train", "path": "coig-cqia/**/*"}]}, {"config_name": "disc-law", "data_files": [{"split": "train", "path": "disc-law/**/*"}]}, {"config_name": "neo_sft_phase2", "data_files": [{"split": "train", "path": "neo_sft_phase2/**/*"}]}, {"config_name": "chinese-medical", "data_files": [{"split": "train", "path": "chinese-medical/**/*"}]}, {"config_name": "chinese-reasoning-distil", "data_files": [{"split": "train", "path": "chinese-reasoning-distil/**/*"}]}, {"config_name": "psycho-10k-dpsk-r1", "data_files": [{"split": "train", "path": "psycho-10k-dpsk-r1/**/*"}]}, {"config_name": "sof-c-zh", "data_files": [{"split": "train", "path": "sof-c-zh/**/*"}]}, {"config_name": "industryinstruction", "data_files": [{"split": "train", "path": "industryinstruction/**/*"}]}, {"config_name": "Chinese-QA-AFAF", "data_files": [{"split": "train", "path": "Chinese-QA-AFAF/**/*"}]}], "license": "cc-by-sa-4.0", "task_categories": ["text-generation", "question-answering"], "language": ["zh"]}
false
null
2025-05-02T10:50:50
20
12
false
3530b685d752eb5f1f6d7f1d3aa8e719ade128f5
中文指令微调数据集 💻 Github Repo 本项目旨在构建一个高质量、多领域、大规模的中文指令微调数据集,目前仍在施工中 🚧💦 具体构成 dpsk-r1-distil:中文 DeepSeek-R1 蒸馏数据集,来自 Congliu/Chinese-DeepSeek-R1-Distill-data-110k,根据打分质量做了筛选,提取了最终的回答,未包含思考过程。 chinese-reasoning-distil:中文推理蒸馏数据集,来自 Mxode/Chinese-Reasoning-Distil-Data,提取了最终的回答,未包含思考过程。 firefly:中文通用指令微调数据集,指令取自 Mxode/Firefly-1.1M-Rephrased,其本身已经相较于原 Firefly 数据集做了改进优化,此处再次针对所有优化的指令用更强的模型(如 DeepSeek-V2.5)做了新的回答。 stem_zh:中文 STEM 指令微调数据集,指令取自… See the full description on the dataset page: https://huggingface.co/datasets/Mxode/Chinese-Instruct.
2,254
2,254
[ "task_categories:text-generation", "task_categories:question-answering", "language:zh", "license:cc-by-sa-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-04-18T18:52:34
null
null
680b9e1a53d9d56430b73e2c
Qwen/PolyMath
Qwen
{"configs": [{"config_name": "ar", "data_files": [{"split": "top", "path": "ar/top.parquet"}, {"split": "high", "path": "ar/high.parquet"}, {"split": "medium", "path": "ar/medium.parquet"}, {"split": "low", "path": "ar/low.parquet"}]}, {"config_name": "bn", "data_files": [{"split": "top", "path": "bn/top.parquet"}, {"split": "high", "path": "bn/high.parquet"}, {"split": "medium", "path": "bn/medium.parquet"}, {"split": "low", "path": "bn/low.parquet"}]}, {"config_name": "de", "data_files": [{"split": "top", "path": "de/top.parquet"}, {"split": "high", "path": "de/high.parquet"}, {"split": "medium", "path": "de/medium.parquet"}, {"split": "low", "path": "de/low.parquet"}]}, {"config_name": "en", "data_files": [{"split": "top", "path": "en/top.parquet"}, {"split": "high", "path": "en/high.parquet"}, {"split": "medium", "path": "en/medium.parquet"}, {"split": "low", "path": "en/low.parquet"}]}, {"config_name": "es", "data_files": [{"split": "top", "path": "es/top.parquet"}, {"split": "high", "path": "es/high.parquet"}, {"split": "medium", "path": "es/medium.parquet"}, {"split": "low", "path": "es/low.parquet"}]}, {"config_name": "fr", "data_files": [{"split": "top", "path": "fr/top.parquet"}, {"split": "high", "path": "fr/high.parquet"}, {"split": "medium", "path": "fr/medium.parquet"}, {"split": "low", "path": "fr/low.parquet"}]}, {"config_name": "id", "data_files": [{"split": "top", "path": "id/top.parquet"}, {"split": "high", "path": "id/high.parquet"}, {"split": "medium", "path": "id/medium.parquet"}, {"split": "low", "path": "id/low.parquet"}]}, {"config_name": "it", "data_files": [{"split": "top", "path": "it/top.parquet"}, {"split": "high", "path": "it/high.parquet"}, {"split": "medium", "path": "it/medium.parquet"}, {"split": "low", "path": "it/low.parquet"}]}, {"config_name": "ja", "data_files": [{"split": "top", "path": "ja/top.parquet"}, {"split": "high", "path": "ja/high.parquet"}, {"split": "medium", "path": "ja/medium.parquet"}, {"split": "low", "path": "ja/low.parquet"}]}, {"config_name": "ko", "data_files": [{"split": "top", "path": "ko/top.parquet"}, {"split": "high", "path": "ko/high.parquet"}, {"split": "medium", "path": "ko/medium.parquet"}, {"split": "low", "path": "ko/low.parquet"}]}, {"config_name": "ms", "data_files": [{"split": "top", "path": "ms/top.parquet"}, {"split": "high", "path": "ms/high.parquet"}, {"split": "medium", "path": "ms/medium.parquet"}, {"split": "low", "path": "ms/low.parquet"}]}, {"config_name": "pt", "data_files": [{"split": "top", "path": "pt/top.parquet"}, {"split": "high", "path": "pt/high.parquet"}, {"split": "medium", "path": "pt/medium.parquet"}, {"split": "low", "path": "pt/low.parquet"}]}, {"config_name": "ru", "data_files": [{"split": "top", "path": "ru/top.parquet"}, {"split": "high", "path": "ru/high.parquet"}, {"split": "medium", "path": "ru/medium.parquet"}, {"split": "low", "path": "ru/low.parquet"}]}, {"config_name": "sw", "data_files": [{"split": "top", "path": "sw/top.parquet"}, {"split": "high", "path": "sw/high.parquet"}, {"split": "medium", "path": "sw/medium.parquet"}, {"split": "low", "path": "sw/low.parquet"}]}, {"config_name": "te", "data_files": [{"split": "top", "path": "te/top.parquet"}, {"split": "high", "path": "te/high.parquet"}, {"split": "medium", "path": "te/medium.parquet"}, {"split": "low", "path": "te/low.parquet"}]}, {"config_name": "th", "data_files": [{"split": "top", "path": "th/top.parquet"}, {"split": "high", "path": "th/high.parquet"}, {"split": "medium", "path": "th/medium.parquet"}, {"split": "low", "path": "th/low.parquet"}]}, {"config_name": "vi", "data_files": [{"split": "top", "path": "vi/top.parquet"}, {"split": "high", "path": "vi/high.parquet"}, {"split": "medium", "path": "vi/medium.parquet"}, {"split": "low", "path": "vi/low.parquet"}]}, {"config_name": "zh", "data_files": [{"split": "top", "path": "zh/top.parquet"}, {"split": "high", "path": "zh/high.parquet"}, {"split": "medium", "path": "zh/medium.parquet"}, {"split": "low", "path": "zh/low.parquet"}]}]}
false
null
2025-04-29T08:00:02
12
12
false
5cbffba3e86f73c201ee6910fcc115ef6c7ec25f
PolyMath: Evaluating Mathematical Reasoning in Multilingual Contexts PolyMath is a multilingual mathematical reasoning benchmark covering 18 languages and 4 easy-to-hard difficulty levels. Our benchmark ensures difficulty comprehensiveness, language diversity, and high-quality translation, making it a highly discriminative multilingual mathematical benchmark in the era of reasoning LLMs. 📈 Broad Difficulty Range: PolyMath defines and partitions… See the full description on the dataset page: https://huggingface.co/datasets/Qwen/PolyMath.
406
406
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.18428", "region:us" ]
2025-04-25T14:37:14
null
null
680c9fa16d68dd7030e1f324
nvidia/When2Call
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "test", "data_files": [{"split": "llm_judge", "path": "test/when2call_test_llm_judge.jsonl"}, {"split": "mcq", "path": "test/when2call_test_mcq.jsonl"}], "default": true}, {"config_name": "train_sft", "data_files": [{"split": "train", "path": "train/when2call_train_sft.jsonl"}]}, {"config_name": "train_pref", "data_files": [{"split": "train", "path": "train/when2call_train_pref.jsonl"}]}], "task_categories": ["text-generation"], "language": ["en"], "tags": ["function-calling", "tool-calling", "synthetic", "nvidia"]}
false
null
2025-04-29T00:14:10
20
12
false
0582f7749df63a96fdc3070932e83e72396ace53
When2Call 💾 Github   |    📄 Paper Dataset Description: When2Call is a benchmark designed to evaluate tool-calling decision-making for large language models (LLMs), including when to generate a tool call, when to ask follow-up questions, when to admit the question can't be answered with the tools provided, and what to do if the question seems to require tool use but a tool call can't be made. We find that state-of-the-art tool-calling LMs show significant room for… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/When2Call.
669
669
[ "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "function-calling", "tool-calling", "synthetic", "nvidia" ]
2025-04-26T08:56:01
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
575
10
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
28,393
116,734
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67fce65dd1ec7d15ba6a2da3
zwhe99/DeepMath-103K
zwhe99
{"license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "question", "dtype": "string"}, {"name": "final_answer", "dtype": "string"}, {"name": "difficulty", "dtype": "float64"}, {"name": "topic", "dtype": "string"}, {"name": "r1_solution_1", "dtype": "string"}, {"name": "r1_solution_2", "dtype": "string"}, {"name": "r1_solution_3", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4963981308, "num_examples": 103110}], "download_size": 2135828159, "dataset_size": 4963981308}, "task_categories": ["text-generation", "text2text-generation"], "language": ["en"], "tags": ["math", "reasoning", "rl"], "pretty_name": "deepmath-103k", "size_categories": ["100K<n<1M"]}
false
null
2025-05-08T07:20:43
169
10
false
b24ee6e700c72e9bf9c134ad88363c0c9d260f70
DeepMath-103K 🔥 News May 8, 2025: We found that 48 samples contained hints that revealed the answers. The relevant questions have now been revised to remove the leaked answers. April 14, 2025: We release DeepMath-103K, a large-scale dataset featuring challenging, verifiable, and decontaminated math problems tailored for RL and SFT. We open source:… See the full description on the dataset page: https://huggingface.co/datasets/zwhe99/DeepMath-103K.
21,510
21,510
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.11456", "region:us", "math", "reasoning", "rl" ]
2025-04-14T10:41:33
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-04-06T23:31:24
702
9
false
a5996b0064b4ddd42c6e9a7302eeec0618cb7b63
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
23,746
178,838
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
680a5ef919f25e184a85c785
Rapidata/text-2-image-Rich-Human-Feedback-32k
Rapidata
{"dataset_info": {"features": [{"name": "image_name", "dtype": "image"}, {"name": "sentence", "dtype": "string"}, {"name": "word_scores", "dtype": "string"}, {"name": "alignment_score_norm", "dtype": "float32"}, {"name": "coherence_score_norm", "dtype": "float32"}, {"name": "style_score_norm", "dtype": "float32"}, {"name": "alignment_heatmap", "dtype": {"array2_d": {"shape": [1024, 1024], "dtype": "float32"}}}, {"name": "coherence_heatmap", "dtype": {"array2_d": {"shape": [1024, 1024], "dtype": "float32"}}}, {"name": "alignment_score", "dtype": "float32"}, {"name": "coherence_score", "dtype": "float32"}, {"name": "style_score", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 116617124714.976, "num_examples": 32528}], "download_size": 91216762385, "dataset_size": 116617124714.976}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["heatmap", "t2i", "human", "feedback", "rich", "annotation", "open-image-preferences"], "license": "apache-2.0", "language": ["en"], "pretty_name": "Text to image - Rich Annotation", "size_categories": ["10K<n<100K"]}
false
null
2025-04-29T11:28:30
21
9
false
c4b7ca19097c0143c8f072df33af8c5e54425467
Building upon Google's research Rich Human Feedback for Text-to-Image Generation, and the smaller, previous version of this dataset, we have collected over 3.7 million responses from 307'415 individual humans for the open-image-preference-v1 dataset using Rapidata via the Python API. Collection took less than 2 weeks. If you get value from this dataset and would like to see more in the future, please consider liking it ♥️ Overview We asked humans to evaluate AI-generated images… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/text-2-image-Rich-Human-Feedback-32k.
1,181
1,181
[ "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2312.10240", "region:us", "heatmap", "t2i", "human", "feedback", "rich", "annotation", "open-image-preferences" ]
2025-04-24T15:55:37
null
null
681139f166e75cf56190c341
SWE-bench/SWE-smith-trajectories
SWE-bench
{"dataset_info": {"features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "instance_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 479188645, "num_examples": 5016}], "download_size": 146906769, "dataset_size": 479188645}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "mit", "language": ["en"], "tags": ["code", "agents", "software-engineering"], "size_categories": ["1K<n<10K"]}
false
null
2025-05-07T16:10:02
11
9
false
07a0c81a9f38e0bb2b004f2ce8ea8a04dc7f0f3d
SWE-smith Trajectories Code • Paper • Site This dataset contains the 5017 trajectories we fine-tuned Qwen 2.5 Coder Instruct on, leading to SWE-agent-LM-32B, a coding LM agent that achieve 40.2% on SWE-bench Verified (no verifiers or multiple rollouts, just 1 attempt per instance). Trajectories were generated by running SWE-agent + Claude 3.7 Sonnet on task instances from the SWE-smith dataset.
353
353
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.21798", "region:us", "code", "agents", "software-engineering" ]
2025-04-29T20:43:29
null
null
68132a23ef52a53ef9351750
tokyotech-llm/swallow-math
tokyotech-llm
{"license": "llama3.3", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math"], "pretty_name": "swallowmath", "size_categories": ["1M<n<10M"]}
false
null
2025-05-07T03:15:18
9
9
false
f0ecf05b746254933ebaded21d6f96763757df46
SwallowMath Resources 🐙 GitHub: Explore the project repository, including pipeline code and prompts at rioyokotalab/swallow-code-math. 📑 arXiv: Read our paper for detailed methodology and results at arXiv:2505.02881. 🤗 Sister Dataset: Discover SwallowCode, our companion dataset for code generation. What is it? SwallowMath is a high-quality mathematical dataset comprising approximately 2.3 billion tokens derived from the FineMath-4+ dataset through an… See the full description on the dataset page: https://huggingface.co/datasets/tokyotech-llm/swallow-math.
762
762
[ "task_categories:text-generation", "language:en", "license:llama3.3", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "arxiv:2505.02881", "region:us", "math" ]
2025-05-01T08:00:35
null
null
649444227853dd12c3bbadd8
Amod/mental_health_counseling_conversations
Amod
{"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]}
false
null
2024-04-05T08:30:03
370
8
false
4672e03c7f1a7b2215eb4302b83ca50449ce2553
Amod/mental_health_counseling_conversations Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. Supported Tasks and Leaderboards The dataset supports… See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations.
3,903
69,149
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
2023-06-22T12:52:50
null
null
681133a1f664a34e36208c4b
SWE-bench/SWE-smith
SWE-bench
{"language": ["en"], "license": "mit", "size_categories": ["10K<n<100K"], "task_categories": ["text-generation"], "dataset_info": {"features": [{"name": "instance_id", "dtype": "string"}, {"name": "repo", "dtype": "string"}, {"name": "patch", "dtype": "string"}, {"name": "FAIL_TO_PASS", "sequence": "string"}, {"name": "PASS_TO_PASS", "sequence": "string"}, {"name": "created_at", "dtype": "string"}, {"name": "image_name", "dtype": "string"}, {"name": "base_commit", "dtype": "string"}, {"name": "problem_statement", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5040247353, "num_examples": 50137}], "download_size": 253578293, "dataset_size": 5040247353}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["code", "agents", "software-engineering"]}
false
null
2025-05-08T16:25:32
12
8
false
699b53400d3855206a0fbf3ff4beaf1a52f4f232
SWE-smith Dataset Code • Paper • Site The SWE-smith Dataset is a training dataset of 50137 task instances from 128 GitHub repositories, collected using the SWE-smith toolkit. It is the largest dataset to date for training software engineering agents. All SWE-smith task instances come with an executable environment. To learn more about how to use this dataset to train Language Models for Software Engineering, please refer to the documentation.
561
561
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.21798", "region:us", "code", "agents", "software-engineering" ]
2025-04-29T20:16:33
null
null
End of preview.

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
5,817

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 13