Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
stringclasses
3 values
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-08-21 13:14:28
likes
int64
0
8.79k
trendingScore
float64
0
99
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
3.17M
downloadsAllTime
int64
0
143M
tags
listlengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-08-21 13:11:06
paperswithcode_id
stringclasses
677 values
citation
stringlengths
0
10.7k
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
False
2025-01-06T00:02:53
8,787
99
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
37,062
258,206
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
682600d8e6a0ae86702e3da9
nvidia/Granary
nvidia
{"license": "cc-by-3.0", "task_categories": ["automatic-speech-recognition", "translation"], "language": ["bg", "cs", "da", "de", "el", "en", "es", "et", "fi", "fr", "hr", "hu", "it", "lt", "lv", "mt", "nl", "pl", "pt", "ro", "ru", "sk", "sl", "sv", "uk"], "pretty_name": "Granary", "size_categories": ["10M<n<100M"], "tags": ["granary", "multilingual", "nemo"], "configs": [{"config_name": "sv_voxpopuli", "data_files": [{"path": "sv/voxpopuli/sv_asr.jsonl", "split": "asr"}, {"path": "sv/voxpopuli/sv_ast-en.jsonl", "split": "ast"}]}, {"config_name": "sv_ytc", "data_files": [{"path": "sv/ytc/sv_asr.jsonl", "split": "asr"}, {"path": "sv/ytc/sv_ast-en.jsonl", "split": "ast"}]}, {"config_name": "mt_voxpopuli", "data_files": [{"path": "mt/voxpopuli/mt_ast-en.jsonl", "split": "ast"}, {"path": "mt/voxpopuli/mt_asr.jsonl", "split": "asr"}]}, {"config_name": "sk_voxpopuli", "data_files": [{"path": "sk/voxpopuli/sk_asr.jsonl", "split": "asr"}, {"path": "sk/voxpopuli/sk_ast-en.jsonl", "split": "ast"}]}, {"config_name": "sk_ytc", "data_files": [{"path": "sk/ytc/sk_asr.jsonl", "split": "asr"}, {"path": "sk/ytc/sk_ast-en.jsonl", "split": "ast"}]}, {"config_name": "it_voxpopuli", "data_files": [{"path": "it/voxpopuli/it_asr.jsonl", "split": "asr"}, {"path": "it/voxpopuli/it_ast-en.jsonl", "split": "ast"}]}, {"config_name": "it_ytc", "data_files": [{"path": "it/ytc/it_asr.jsonl", "split": "asr"}, {"path": "it/ytc/it_ast-en.jsonl", "split": "ast"}]}, {"config_name": "en_voxpopuli", "data_files": [{"path": "en/voxpopuli/en_asr.jsonl", "split": "asr"}]}, {"config_name": "en_ytc", "data_files": [{"path": "en/ytc/en_asr.jsonl", "split": "asr"}]}, {"config_name": "en_librilight", "data_files": [{"path": "en/librilight/en_asr.jsonl", "split": "asr"}]}, {"config_name": "en_yodas", "data_files": [{"path": "en/yodas/en_asr.jsonl", "split": "asr"}]}, {"config_name": "pt_voxpopuli", "data_files": [{"path": "pt/voxpopuli/pt_ast-en.jsonl", "split": "ast"}, {"path": "pt/voxpopuli/pt_asr.jsonl", "split": "asr"}]}, {"config_name": "pt_ytc", "data_files": [{"path": "pt/ytc/pt_ast-en.jsonl", "split": "ast"}, {"path": "pt/ytc/pt_asr.jsonl", "split": "asr"}]}, {"config_name": "lv_voxpopuli", "data_files": [{"path": "lv/voxpopuli/lv_ast-en.jsonl", "split": "ast"}, {"path": "lv/voxpopuli/lv_asr.jsonl", "split": "asr"}]}, {"config_name": "lv_ytc", "data_files": [{"path": "lv/ytc/lv_ast-en.jsonl", "split": "ast"}, {"path": "lv/ytc/lv_asr.jsonl", "split": "asr"}]}, {"config_name": "ro_voxpopuli", "data_files": [{"path": "ro/voxpopuli/ro_ast-en.jsonl", "split": "ast"}, {"path": "ro/voxpopuli/ro_asr.jsonl", "split": "asr"}]}, {"config_name": "ro_ytc", "data_files": [{"path": "ro/ytc/ro_ast-en.jsonl", "split": "ast"}, {"path": "ro/ytc/ro_asr.jsonl", "split": "asr"}]}, {"config_name": "pl_voxpopuli", "data_files": [{"path": "pl/voxpopuli/pl_asr.jsonl", "split": "asr"}, {"path": "pl/voxpopuli/pl_ast-en.jsonl", "split": "ast"}]}, {"config_name": "pl_ytc", "data_files": [{"path": "pl/ytc/pl_asr.jsonl", "split": "asr"}, {"path": "pl/ytc/pl_ast-en.jsonl", "split": "ast"}]}, {"config_name": "sl_voxpopuli", "data_files": [{"path": "sl/voxpopuli/sl_ast-en.jsonl", "split": "ast"}, {"path": "sl/voxpopuli/sl_asr.jsonl", "split": "asr"}]}, {"config_name": "sl_ytc", "data_files": [{"path": "sl/ytc/sl_ast-en.jsonl", "split": "ast"}, {"path": "sl/ytc/sl_asr.jsonl", "split": "asr"}]}, {"config_name": "cs_voxpopuli", "data_files": [{"path": "cs/voxpopuli/cs_asr.jsonl", "split": "asr"}, {"path": "cs/voxpopuli/cs_ast-en.jsonl", "split": "ast"}]}, {"config_name": "cs_ytc", "data_files": [{"path": "cs/ytc/cs_asr.jsonl", "split": "asr"}, {"path": "cs/ytc/cs_ast-en.jsonl", "split": "ast"}]}, {"config_name": "cs_yodas", "data_files": [{"path": "cs/yodas/cs_asr.jsonl", "split": "asr"}, {"path": "cs/yodas/cs_ast-en.jsonl", "split": "ast"}]}, {"config_name": "el_voxpopuli", "data_files": [{"path": "el/voxpopuli/el_asr.jsonl", "split": "asr"}, {"path": "el/voxpopuli/el_ast-en.jsonl", "split": "ast"}]}, {"config_name": "el_ytc", "data_files": [{"path": "el/ytc/el_asr.jsonl", "split": "asr"}, {"path": "el/ytc/el_ast-en.jsonl", "split": "ast"}]}, {"config_name": "hu_voxpopuli", "data_files": [{"path": "hu/voxpopuli/hu_asr.jsonl", "split": "asr"}, {"path": "hu/voxpopuli/hu_ast-en.jsonl", "split": "ast"}]}, {"config_name": "hu_ytc", "data_files": [{"path": "hu/ytc/hu_asr.jsonl", "split": "asr"}, {"path": "hu/ytc/hu_ast-en.jsonl", "split": "ast"}]}, {"config_name": "lt_voxpopuli", "data_files": [{"path": "lt/voxpopuli/lt_asr.jsonl", "split": "asr"}, {"path": "lt/voxpopuli/lt_ast-en.jsonl", "split": "ast"}]}, {"config_name": "lt_ytc", "data_files": [{"path": "lt/ytc/lt_asr.jsonl", "split": "asr"}, {"path": "lt/ytc/lt_ast-en.jsonl", "split": "ast"}]}, {"config_name": "et_voxpopuli", "data_files": [{"path": "et/voxpopuli/et_asr.jsonl", "split": "asr"}, {"path": "et/voxpopuli/et_ast-en.jsonl", "split": "ast"}]}, {"config_name": "et_ytc", "data_files": [{"path": "et/ytc/et_asr.jsonl", "split": "asr"}, {"path": "et/ytc/et_ast-en.jsonl", "split": "ast"}]}, {"config_name": "fr_voxpopuli", "data_files": [{"path": "fr/voxpopuli/fr_ast-en.jsonl", "split": "ast"}, {"path": "fr/voxpopuli/fr_asr.jsonl", "split": "asr"}]}, {"config_name": "fr_ytc", "data_files": [{"path": "fr/ytc/fr_ast-en.jsonl", "split": "ast"}, {"path": "fr/ytc/fr_asr.jsonl", "split": "asr"}]}, {"config_name": "da_voxpopuli", "data_files": [{"path": "da/voxpopuli/da_asr.jsonl", "split": "asr"}, {"path": "da/voxpopuli/da_ast-en.jsonl", "split": "ast"}]}, {"config_name": "da_ytc", "data_files": [{"path": "da/ytc/da_asr.jsonl", "split": "asr"}, {"path": "da/ytc/da_ast-en.jsonl", "split": "ast"}]}, {"config_name": "da_yodas", "data_files": [{"path": "da/yodas/da_asr.jsonl", "split": "asr"}, {"path": "da/yodas/da_ast-en.jsonl", "split": "ast"}]}, {"config_name": "bg_voxpopuli", "data_files": [{"path": "bg/voxpopuli/bg_asr.jsonl", "split": "asr"}, {"path": "bg/voxpopuli/bg_ast-en.jsonl", "split": "ast"}]}, {"config_name": "bg_ytc", "data_files": [{"path": "bg/ytc/bg_asr.jsonl", "split": "asr"}, {"path": "bg/ytc/bg_ast-en.jsonl", "split": "ast"}]}, {"config_name": "bg_yodas", "data_files": [{"path": "bg/yodas/bg_asr.jsonl", "split": "asr"}, {"path": "bg/yodas/bg_ast-en.jsonl", "split": "ast"}]}, {"config_name": "es_voxpopuli", "data_files": [{"path": "es/voxpopuli/es_asr.jsonl", "split": "asr"}, {"path": "es/voxpopuli/es_ast-en.jsonl", "split": "ast"}]}, {"config_name": "es_ytc", "data_files": [{"path": "es/ytc/es_asr.jsonl", "split": "asr"}, {"path": "es/ytc/es_ast-en.jsonl", "split": "ast"}]}, {"config_name": "nl_voxpopuli", "data_files": [{"path": "nl/voxpopuli/nl_ast-en.jsonl", "split": "ast"}, {"path": "nl/voxpopuli/nl_asr.jsonl", "split": "asr"}]}, {"config_name": "nl_ytc", "data_files": [{"path": "nl/ytc/nl_ast-en.jsonl", "split": "ast"}, {"path": "nl/ytc/nl_asr.jsonl", "split": "asr"}]}, {"config_name": "hr_voxpopuli", "data_files": [{"path": "hr/voxpopuli/hr_ast-en.jsonl", "split": "ast"}, {"path": "hr/voxpopuli/hr_asr.jsonl", "split": "asr"}]}, {"config_name": "hr_ytc", "data_files": [{"path": "hr/ytc/hr_ast-en.jsonl", "split": "ast"}, {"path": "hr/ytc/hr_asr.jsonl", "split": "asr"}]}, {"config_name": "fi_voxpopuli", "data_files": [{"path": "fi/voxpopuli/fi_asr.jsonl", "split": "asr"}, {"path": "fi/voxpopuli/fi_ast-en.jsonl", "split": "ast"}]}, {"config_name": "fi_ytc", "data_files": [{"path": "fi/ytc/fi_asr.jsonl", "split": "asr"}, {"path": "fi/ytc/fi_ast-en.jsonl", "split": "ast"}]}, {"config_name": "uk_ytc", "data_files": [{"path": "uk/ytc/uk_asr.jsonl", "split": "asr"}, {"path": "uk/ytc/uk_ast-en.jsonl", "split": "ast"}]}, {"config_name": "de_voxpopuli", "data_files": [{"path": "de/voxpopuli/de_asr.jsonl", "split": "asr"}, {"path": "de/voxpopuli/de_ast-en.jsonl", "split": "ast"}]}, {"config_name": "de_ytc", "data_files": [{"path": "de/ytc/de_asr.jsonl", "split": "asr"}, {"path": "de/ytc/de_ast-en.jsonl", "split": "ast"}]}, {"config_name": "de_yodas", "data_files": [{"path": "de/yodas/de_asr.jsonl", "split": "asr"}, {"path": "de/yodas/de_ast-en.jsonl", "split": "ast"}]}, {"config_name": "sv", "data_files": [{"path": ["sv/voxpopuli/sv_asr.jsonl", "sv/ytc/sv_asr.jsonl"], "split": "asr"}, {"path": ["sv/voxpopuli/sv_ast-en.jsonl", "sv/ytc/sv_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "mt", "data_files": [{"path": ["mt/voxpopuli/mt_ast-en.jsonl"], "split": "ast"}, {"path": ["mt/voxpopuli/mt_asr.jsonl"], "split": "asr"}]}, {"config_name": "sk", "data_files": [{"path": ["sk/voxpopuli/sk_asr.jsonl", "sk/ytc/sk_asr.jsonl"], "split": "asr"}, {"path": ["sk/voxpopuli/sk_ast-en.jsonl", "sk/ytc/sk_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "it", "data_files": [{"path": ["it/voxpopuli/it_asr.jsonl", "it/ytc/it_asr.jsonl"], "split": "asr"}, {"path": ["it/voxpopuli/it_ast-en.jsonl", "it/ytc/it_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "en", "data_files": [{"path": ["en/voxpopuli/en_asr.jsonl", "en/ytc/en_asr.jsonl", "en/librilight/en_asr.jsonl", "en/yodas/en_asr.jsonl"], "split": "asr"}]}, {"config_name": "pt", "data_files": [{"path": ["pt/voxpopuli/pt_ast-en.jsonl", "pt/ytc/pt_ast-en.jsonl"], "split": "ast"}, {"path": ["pt/voxpopuli/pt_asr.jsonl", "pt/ytc/pt_asr.jsonl"], "split": "asr"}]}, {"config_name": "lv", "data_files": [{"path": ["lv/voxpopuli/lv_ast-en.jsonl", "lv/ytc/lv_ast-en.jsonl"], "split": "ast"}, {"path": ["lv/voxpopuli/lv_asr.jsonl", "lv/ytc/lv_asr.jsonl"], "split": "asr"}]}, {"config_name": "ro", "data_files": [{"path": ["ro/voxpopuli/ro_ast-en.jsonl", "ro/ytc/ro_ast-en.jsonl"], "split": "ast"}, {"path": ["ro/voxpopuli/ro_asr.jsonl", "ro/ytc/ro_asr.jsonl"], "split": "asr"}]}, {"config_name": "pl", "data_files": [{"path": ["pl/voxpopuli/pl_asr.jsonl", "pl/ytc/pl_asr.jsonl"], "split": "asr"}, {"path": ["pl/voxpopuli/pl_ast-en.jsonl", "pl/ytc/pl_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "sl", "data_files": [{"path": ["sl/voxpopuli/sl_ast-en.jsonl", "sl/ytc/sl_ast-en.jsonl"], "split": "ast"}, {"path": ["sl/voxpopuli/sl_asr.jsonl", "sl/ytc/sl_asr.jsonl"], "split": "asr"}]}, {"config_name": "cs", "data_files": [{"path": ["cs/voxpopuli/cs_asr.jsonl", "cs/ytc/cs_asr.jsonl", "cs/yodas/cs_asr.jsonl"], "split": "asr"}, {"path": ["cs/voxpopuli/cs_ast-en.jsonl", "cs/ytc/cs_ast-en.jsonl", "cs/yodas/cs_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "el", "data_files": [{"path": ["el/voxpopuli/el_asr.jsonl", "el/ytc/el_asr.jsonl"], "split": "asr"}, {"path": ["el/voxpopuli/el_ast-en.jsonl", "el/ytc/el_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "hu", "data_files": [{"path": ["hu/voxpopuli/hu_asr.jsonl", "hu/ytc/hu_asr.jsonl"], "split": "asr"}, {"path": ["hu/voxpopuli/hu_ast-en.jsonl", "hu/ytc/hu_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "lt", "data_files": [{"path": ["lt/voxpopuli/lt_asr.jsonl", "lt/ytc/lt_asr.jsonl"], "split": "asr"}, {"path": ["lt/voxpopuli/lt_ast-en.jsonl", "lt/ytc/lt_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "et", "data_files": [{"path": ["et/voxpopuli/et_asr.jsonl", "et/ytc/et_asr.jsonl"], "split": "asr"}, {"path": ["et/voxpopuli/et_ast-en.jsonl", "et/ytc/et_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "fr", "data_files": [{"path": ["fr/voxpopuli/fr_ast-en.jsonl", "fr/ytc/fr_ast-en.jsonl"], "split": "ast"}, {"path": ["fr/voxpopuli/fr_asr.jsonl", "fr/ytc/fr_asr.jsonl"], "split": "asr"}]}, {"config_name": "da", "data_files": [{"path": ["da/voxpopuli/da_asr.jsonl", "da/ytc/da_asr.jsonl", "da/yodas/da_asr.jsonl"], "split": "asr"}, {"path": ["da/voxpopuli/da_ast-en.jsonl", "da/ytc/da_ast-en.jsonl", "da/yodas/da_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "bg", "data_files": [{"path": ["bg/voxpopuli/bg_asr.jsonl", "bg/ytc/bg_asr.jsonl", "bg/yodas/bg_asr.jsonl"], "split": "asr"}, {"path": ["bg/voxpopuli/bg_ast-en.jsonl", "bg/ytc/bg_ast-en.jsonl", "bg/yodas/bg_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "es", "data_files": [{"path": ["es/voxpopuli/es_asr.jsonl", "es/ytc/es_asr.jsonl"], "split": "asr"}, {"path": ["es/voxpopuli/es_ast-en.jsonl", "es/ytc/es_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "nl", "data_files": [{"path": ["nl/voxpopuli/nl_ast-en.jsonl", "nl/ytc/nl_ast-en.jsonl"], "split": "ast"}, {"path": ["nl/voxpopuli/nl_asr.jsonl", "nl/ytc/nl_asr.jsonl"], "split": "asr"}]}, {"config_name": "hr", "data_files": [{"path": ["hr/voxpopuli/hr_ast-en.jsonl", "hr/ytc/hr_ast-en.jsonl"], "split": "ast"}, {"path": ["hr/voxpopuli/hr_asr.jsonl", "hr/ytc/hr_asr.jsonl"], "split": "asr"}]}, {"config_name": "fi", "data_files": [{"path": ["fi/voxpopuli/fi_asr.jsonl", "fi/ytc/fi_asr.jsonl"], "split": "asr"}, {"path": ["fi/voxpopuli/fi_ast-en.jsonl", "fi/ytc/fi_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "uk", "data_files": [{"path": ["uk/ytc/uk_asr.jsonl"], "split": "asr"}, {"path": ["uk/ytc/uk_ast-en.jsonl"], "split": "ast"}]}, {"config_name": "de", "data_files": [{"path": ["de/voxpopuli/de_asr.jsonl", "de/ytc/de_asr.jsonl", "de/yodas/de_asr.jsonl"], "split": "asr"}, {"path": ["de/voxpopuli/de_ast-en.jsonl", "de/ytc/de_ast-en.jsonl", "de/yodas/de_ast-en.jsonl"], "split": "ast"}]}]}
false
False
2025-08-14T15:05:28
99
99
false
834bfb1011cb5d4efe52fd8e9f3501026647bef3
Granary: Speech Recognition and Translation Dataset in 25 European Languages Granary is a large-scale, open-source multilingual speech dataset covering 25 European languages for Automatic Speech Recognition (ASR) and Automatic Speech Translation (AST) tasks. Overview Granary addresses the scarcity of high-quality speech data for low-resource languages by consolidating multiple datasets under a unified framework: 🗣️ ~1M hours of high-quality… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Granary.
9,671
9,671
[ "task_categories:automatic-speech-recognition", "task_categories:translation", "language:bg", "language:cs", "language:da", "language:de", "language:el", "language:en", "language:es", "language:et", "language:fi", "language:fr", "language:hr", "language:hu", "language:it", "language:lt", "language:lv", "language:mt", "language:nl", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sv", "language:uk", "license:cc-by-3.0", "size_categories:100M<n<1B", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2406.00899", "arxiv:2505.13404", "region:us", "granary", "multilingual", "nemo" ]
2025-05-15T14:57:28
null
null
6891e8dbfab7a43a5a3c3ec2
nvidia/Llama-Nemotron-VLM-Dataset-v1
nvidia
{"license": "cc-by-4.0", "task_categories": ["visual-question-answering", "image-text-to-text", "image-to-text"], "pretty_name": "Llama-Nemotron-VLM-Dataset v1", "size_categories": ["n>1T"], "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "conversations", "sequence": {"struct": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}}, {"name": "metadata", "struct": [{"name": "pdf", "dtype": "string"}, {"name": "page_number", "dtype": "int32"}, {"name": "url", "dtype": "string"}]}], "splits": [{"name": "captioning_1", "num_bytes": null, "num_examples": 21953}, {"name": "captioning_2", "num_bytes": null, "num_examples": 109765}, {"name": "ocr_1", "num_bytes": null, "num_examples": 14525}, {"name": "ocr_2", "num_bytes": null, "num_examples": 29108}, {"name": "ocr_3", "num_bytes": null, "num_examples": 14533}, {"name": "ocr_4", "num_bytes": null, "num_examples": 193310}, {"name": "ocr_5", "num_bytes": null, "num_examples": 188569}, {"name": "ocr_6", "num_bytes": null, "num_examples": 48369}, {"name": "ocr_7", "num_bytes": null, "num_examples": 25281}, {"name": "ocr_8", "num_bytes": null, "num_examples": 57137}, {"name": "ocr_9", "num_bytes": null, "num_examples": 224170}, {"name": "ocr_10", "num_bytes": null, "num_examples": 19379}, {"name": "vqa_1", "num_bytes": null, "num_examples": 1278221}, {"name": "vqa_2", "num_bytes": null, "num_examples": 503275}, {"name": "vqa_3", "num_bytes": null, "num_examples": 34602}, {"name": "vqa_4", "num_bytes": null, "num_examples": 23571}, {"name": "vqa_5", "num_bytes": null, "num_examples": 971}, {"name": "vqa_6", "num_bytes": null, "num_examples": 199}, {"name": "vqa_7", "num_bytes": null, "num_examples": 15050}, {"name": "vqa_8", "num_bytes": null, "num_examples": 15121}, {"name": "vqa_9", "num_bytes": null, "num_examples": 46745}], "download_size": null, "dataset_size": null}, "configs": [{"config_name": "default", "data_files": [{"split": "captioning_1", "path": "captioning_1.jsonl"}, {"split": "captioning_2", "path": "captioning_2.jsonl"}, {"split": "ocr_1", "path": "ocr_1.jsonl"}, {"split": "ocr_2", "path": "ocr_2.jsonl"}, {"split": "ocr_3", "path": "ocr_3.jsonl"}, {"split": "ocr_4", "path": "ocr_4.jsonl"}, {"split": "ocr_5", "path": "ocr_5.jsonl"}, {"split": "ocr_6", "path": "ocr_6.jsonl"}, {"split": "ocr_7", "path": "ocr_7.jsonl"}, {"split": "ocr_8", "path": "ocr_8.jsonl"}, {"split": "ocr_9", "path": "ocr_9.jsonl"}, {"split": "ocr_10", "path": "ocr_10.jsonl"}, {"split": "vqa_1", "path": "vqa_1.jsonl"}, {"split": "vqa_2", "path": "vqa_2.jsonl"}, {"split": "vqa_3", "path": "vqa_3.jsonl"}, {"split": "vqa_4", "path": "vqa_4.jsonl"}, {"split": "vqa_5", "path": "vqa_5.jsonl"}, {"split": "vqa_6", "path": "vqa_6.jsonl"}, {"split": "vqa_7", "path": "vqa_7.jsonl"}, {"split": "vqa_8", "path": "vqa_8.jsonl"}, {"split": "vqa_9", "path": "vqa_9.jsonl"}]}]}
false
False
2025-08-19T15:03:46
110
49
false
ef85bef68f178201160a657abdd0b18d752166d5
Llama-Nemotron-VLM-Dataset v1 Versions Date Commit Changes 11.08.2025 bdb3899 Initial release 18.08.2025 5abc7df Fixes bug (ocr_1 and ocr_3 images were swapped) 19.08.2025 head Update instructions for ocr_9 Data Description This dataset is a compilation of high quality VLM post-training datasets that support NVIDIA’s release of https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1. NVIDIA Llama Nemotron Nano VL is a vision language… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-VLM-Dataset-v1.
2,974
2,974
[ "task_categories:visual-question-answering", "task_categories:image-text-to-text", "task_categories:image-to-text", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.14818", "arxiv:2502.04223", "region:us" ]
2025-08-05T11:19:55
null
null
689629e0f60856afd8fa16ec
allenai/WildChat-4.8M
allenai
{"license": "odc-by", "size_categories": ["1M<n<10M"], "task_categories": ["text-generation", "question-answering"], "pretty_name": "WildChat-4.8M", "dataset_info": {"features": [{"name": "conversation_hash", "dtype": "string"}, {"name": "model", "dtype": "string"}, {"name": "timestamp", "dtype": "timestamp[us]"}, {"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "created", "dtype": "int64"}, {"name": "header", "struct": [{"name": "accept-language", "dtype": "string"}, {"name": "user-agent", "dtype": "string"}]}, {"name": "hashed_ip", "dtype": "string"}, {"name": "country", "dtype": "string"}, {"name": "toxic", "dtype": "bool"}, {"name": "redacted", "dtype": "bool"}, {"name": "state", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "openai_id", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "temperature", "dtype": "float64"}, {"name": "timestamp", "dtype": "timestamp[us]"}, {"name": "token_counter", "dtype": "int64"}, {"name": "top_p", "dtype": "float64"}, {"name": "turn_identifier", "dtype": "int64"}, {"name": "system_fingerprint", "dtype": "string"}, {"name": "usage", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "struct": [{"name": "reasoning_tokens", "dtype": "int64"}, {"name": "text_tokens", "dtype": "int64"}, {"name": "audio_tokens", "dtype": "int64"}, {"name": "accepted_prediction_tokens", "dtype": "int64"}, {"name": "rejected_prediction_tokens", "dtype": "int64"}]}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "total_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "struct": [{"name": "cached_tokens", "dtype": "int64"}, {"name": "audio_tokens", "dtype": "int64"}]}]}]}, {"name": "turn", "dtype": "int64"}, {"name": "language", "dtype": "string"}, {"name": "openai_moderation", "list": [{"name": "categories", "struct": [{"name": "harassment", "dtype": "bool"}, {"name": "harassment/threatening", "dtype": "bool"}, {"name": "harassment_threatening", "dtype": "bool"}, {"name": "hate", "dtype": "bool"}, {"name": "hate/threatening", "dtype": "bool"}, {"name": "hate_threatening", "dtype": "bool"}, {"name": "illicit", "dtype": "bool"}, {"name": "illicit/violent", "dtype": "bool"}, {"name": "illicit_violent", "dtype": "bool"}, {"name": "self-harm", "dtype": "bool"}, {"name": "self-harm/instructions", "dtype": "bool"}, {"name": "self-harm/intent", "dtype": "bool"}, {"name": "self_harm", "dtype": "bool"}, {"name": "self_harm_instructions", "dtype": "bool"}, {"name": "self_harm_intent", "dtype": "bool"}, {"name": "sexual", "dtype": "bool"}, {"name": "sexual/minors", "dtype": "bool"}, {"name": "sexual_minors", "dtype": "bool"}, {"name": "violence", "dtype": "bool"}, {"name": "violence/graphic", "dtype": "bool"}, {"name": "violence_graphic", "dtype": "bool"}]}, {"name": "category_applied_input_types", "struct": [{"name": "harassment", "list": "string"}, {"name": "harassment/threatening", "list": "string"}, {"name": "harassment_threatening", "list": "string"}, {"name": "hate", "list": "string"}, {"name": "hate/threatening", "list": "string"}, {"name": "hate_threatening", "list": "string"}, {"name": "illicit", "list": "string"}, {"name": "illicit/violent", "list": "string"}, {"name": "illicit_violent", "list": "string"}, {"name": "self-harm", "list": "string"}, {"name": "self-harm/instructions", "list": "string"}, {"name": "self-harm/intent", "list": "string"}, {"name": "self_harm", "list": "string"}, {"name": "self_harm_instructions", "list": "string"}, {"name": "self_harm_intent", "list": "string"}, {"name": "sexual", "list": "string"}, {"name": "sexual/minors", "list": "string"}, {"name": "sexual_minors", "list": "string"}, {"name": "violence", "list": "string"}, {"name": "violence/graphic", "list": "string"}, {"name": "violence_graphic", "list": "string"}]}, {"name": "category_scores", "struct": [{"name": "harassment", "dtype": "float64"}, {"name": "harassment/threatening", "dtype": "float64"}, {"name": "harassment_threatening", "dtype": "float64"}, {"name": "hate", "dtype": "float64"}, {"name": "hate/threatening", "dtype": "float64"}, {"name": "hate_threatening", "dtype": "float64"}, {"name": "illicit", "dtype": "float64"}, {"name": "illicit/violent", "dtype": "float64"}, {"name": "illicit_violent", "dtype": "float64"}, {"name": "self-harm", "dtype": "float64"}, {"name": "self-harm/instructions", "dtype": "float64"}, {"name": "self-harm/intent", "dtype": "float64"}, {"name": "self_harm", "dtype": "float64"}, {"name": "self_harm_instructions", "dtype": "float64"}, {"name": "self_harm_intent", "dtype": "float64"}, {"name": "sexual", "dtype": "float64"}, {"name": "sexual/minors", "dtype": "float64"}, {"name": "sexual_minors", "dtype": "float64"}, {"name": "violence", "dtype": "float64"}, {"name": "violence/graphic", "dtype": "float64"}, {"name": "violence_graphic", "dtype": "float64"}]}, {"name": "flagged", "dtype": "bool"}]}, {"name": "detoxify_moderation", "list": [{"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "toxicity", "dtype": "float64"}]}, {"name": "toxic", "dtype": "bool"}, {"name": "redacted", "dtype": "bool"}, {"name": "state", "dtype": "string"}, {"name": "country", "dtype": "string"}, {"name": "hashed_ip", "dtype": "string"}, {"name": "header", "struct": [{"name": "accept-language", "dtype": "string"}, {"name": "user-agent", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 42645714270.23995, "num_examples": 3199860}], "download_size": 15282293424, "dataset_size": 42645714270.23995}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["instruction-finetuning"]}
false
False
2025-08-11T15:12:58
85
40
false
c827c6df8fcf008219ffaffa4d1dd77491099367
Dataset Card for WildChat-4.8M Dataset Description Interactive Search Tool: https://wildvisualizer.com WildChat paper: https://arxiv.org/abs/2405.01470 WildVis paper: https://arxiv.org/abs/2409.03753 Point of Contact: Yuntian Deng Dataset Summary WildChat-4.8M is a collection of 3,199,860 conversations between human users and ChatGPT. This version only contains non-toxic user inputs and ChatGPT responses, as flagged by the OpenAI Moderations API or… See the full description on the dataset page: https://huggingface.co/datasets/allenai/WildChat-4.8M.
2,683
2,683
[ "task_categories:text-generation", "task_categories:question-answering", "license:odc-by", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2405.01470", "arxiv:2409.03753", "arxiv:2406.04770", "arxiv:2406.08464", "region:us", "instruction-finetuning" ]
2025-08-08T16:46:24
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}, {"config_name": "en_mix", "data_files": "medical_o1_sft_mix.json"}, {"config_name": "zh_mix", "data_files": "medical_o1_sft_mix_Chinese.json"}]}
false
False
2025-04-22T15:11:21
844
23
false
fc2c9e8a37b38f38da6d449564a8c350b244aef4
News [2025/04/22] We split the data and kept only the medical SFT dataset (medical_o1_sft.json). The file medical_o1_sft_mix.json contains a mix of medical and general instruction data. [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
14,234
103,111
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
6894b0114a3a3a74e938e413
miromind-ai/MiroVerse-v0.1
miromind-ai
{"license": "cc-by-nc-4.0", "task_categories": ["question-answering"], "language": ["en"], "tags": ["deep research", "agent", "miromind"], "size_categories": ["100K<n<1M"], "configs": [{"config_name": "MiroVerse-v0.1-all", "data_files": [{"split": "train", "path": "zip_sft/MiroVerse-v0_1-SFT.zip"}]}, {"config_name": "MiroVerse-2WikiMultihopQA", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-2WikiMultihopQA.jsonl"}]}, {"config_name": "MiroVerse-HotpotQA", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-HotpotQA.jsonl"}]}, {"config_name": "MiroVerse-MegaScience", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-MegaScience.jsonl"}]}, {"config_name": "MiroVerse-MuSiQue", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-MuSiQue.jsonl"}]}, {"config_name": "MiroVerse-OneGen-TrainDataset-MultiHopQA", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-OneGen-TrainDataset-MultiHopQA.jsonl"}]}, {"config_name": "MiroVerse-QA-Expert-Multi-Hop-V1.0", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-QA-Expert-Multi-Hop-V1.0.jsonl"}]}, {"config_name": "MiroVerse-TaskCraft", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-TaskCraft.jsonl"}]}, {"config_name": "MiroVerse-Voyager1.0", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-Voyager1.0.jsonl"}]}, {"config_name": "MiroVerse-WebDancer", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-WebDancer.jsonl"}]}, {"config_name": "MiroVerse-WebShaper", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-WebShaper.jsonl"}]}, {"config_name": "MiroVerse-WebWalkerQA-Silver", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-WebWalkerQA-Silver.jsonl"}]}, {"config_name": "MiroVerse-WikiTables", "data_files": [{"split": "train", "path": "jsonl_sft/MiroVerse-WikiTables.jsonl"}]}, {"config_name": "MiroVerse-DPO", "data_files": [{"split": "MuSiQue_8B_DPO", "path": "dpo/MiroThinker-8B-DPO-Data.json"}, {"split": "MuSiQue_14B_DPO", "path": "dpo/MiroThinker-14B-DPO-Data.json"}, {"split": "MuSiQue_32B_DPO", "path": "dpo/MiroThinker-32B-DPO-Data.json"}]}]}
false
auto
2025-08-14T07:36:42
58
21
false
f7fefa7ec9415e13ca7b5f9cfc35fa00a4653ea0
MiroVerse: A Reproducible, Full-Trajectory, Ever-Growing Deep Research Dataset 🔥 News & Updates MiroVerse v0.1 has been released. This dataset can be used with our training framework, MiroTrain. In MiroVerse v0.1, we provide both SFT and DPO data, making it easy to reproduce MiroThinker-v0.1’s benchmark performance on Qwen3. Give it a try! The initial release of MiroVerse (v0.1) is coming this Friday—stay tuned! 🔥 First Batch of MiroVerse… See the full description on the dataset page: https://huggingface.co/datasets/miromind-ai/MiroVerse-v0.1.
1,026
1,026
[ "task_categories:question-answering", "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "modality:text", "region:us", "deep research", "agent", "miromind" ]
2025-08-07T13:54:25
null
null
6874b288e705a6646d49dd70
xlangai/AgentNet
xlangai
{"language": ["en"], "license": "mit", "task_categories": ["image-text-to-text"], "tags": ["Computer-Use", "Agent"]}
false
False
2025-08-15T03:39:43
31
20
false
b92269e2b42b18a12826036744def62beba60b4c
OpenCUA: Open Foundations for Computer-Use Agents 🌐 Website 📝 Paper 💻 Code AgentNet Dataset AgentNet is the first large-scale desktop computer-use agent trajectory dataset, containing 22.6K human-annotated computer-use tasks across Windows, macOS, and Ubuntu systems. Applications This dataset enables training and evaluation of: Vision-language-action (VLA) models for computer use Multi-modal agents for desktop automation GUI… See the full description on the dataset page: https://huggingface.co/datasets/xlangai/AgentNet.
8,783
8,783
[ "task_categories:image-text-to-text", "language:en", "license:mit", "arxiv:2508.09123", "region:us", "Computer-Use", "Agent" ]
2025-07-14T07:32:24
null
null
689d79028af09495df3c959b
nvidia/Nemotron-CC-v2
nvidia
{"license": "other", "task_categories": ["text-generation"], "extra_gated_prompt": "By clicking \u201cAgree\u201d I confirm I have read and agree to NVIDIA Data Agreement for Model Training and agree that I intend to use this data for model training purposes only. (https://huggingface.co/datasets/nvidia/Nemotron-Pretraining-Dataset-sample/raw/main/LICENSE.md) ", "extra_gated_fields": {"Company": "text", "Institutional Email": "text", "I agree to use this dataset for model training purposes ONLY": "checkbox"}, "configs": [{"config_name": "High-Quality", "data_files": [{"path": "High-Quality/*.parquet", "split": "train"}]}, {"config_name": "High-Quality-Synthetic", "data_files": [{"path": "High-Quality-Synthetic/*.parquet", "split": "train"}]}, {"config_name": "Medium-High-Quality", "data_files": [{"path": "Medium-High-Quality/*.parquet", "split": "train"}]}, {"config_name": "Medium-Quality", "data_files": [{"path": "Medium-Quality/*.parquet", "split": "train"}]}, {"config_name": "Diverse-QA", "data_files": [{"path": "Diverse-QA/*.parquet", "split": "train"}]}, {"config_name": "Translated-Diverse-QA", "data_files": [{"path": "Translated-Diverse-QA/*.parquet", "split": "train"}]}], "track_downloads": true}
false
manual
2025-08-20T16:20:07
20
20
false
1f2339f67cfec5b489c1be22f1609dec81f88cfd
Nemotron-Pre-Training-Dataset-v1 Release Data Overview This pretraining dataset, for generative AI model training, preserves high-value math and code while enriching it with diverse multilingual Q&A, fueling the next generation of intelligent, globally-capable models. This dataset supports NVIDIA Nemotron Nano 2, a family of large language models (LLMs) that consists of the NVIDIA-Nemotron-Nano-9B-v2, NVIDIA-Nemotron-Nano-9B-v2-Base, and NVIDIA-Nemotron-Nano-12B-v2-Base… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Nemotron-CC-v2.
31
31
[ "task_categories:text-generation", "license:other", "size_categories:1B<n<10B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-08-14T05:49:54
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2025-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-05/*"}]}, {"config_name": "CC-MAIN-2025-08", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-08/*"}]}, {"config_name": "CC-MAIN-2025-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-13/*"}]}, {"config_name": "CC-MAIN-2025-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-18/*"}]}, {"config_name": "CC-MAIN-2025-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-21/*"}]}, {"config_name": "CC-MAIN-2025-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-26/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
False
2025-07-11T20:16:53
2,319
19
false
9bb295ddab0e05d785b879661af7260fed5140fc
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 18.5T tokens (originally 15T tokens) of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
307,138
4,794,276
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "modality:tabular", "modality:text", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
689aeabe723f825ffb6d2635
Codatta/MM-Food-100K
Codatta
{"license": "openrail", "task_categories": ["image-classification", "image-to-text"], "language": ["en"], "size_categories": ["100K<n<1M"]}
false
False
2025-08-18T07:00:35
20
18
false
47afd00e23f527d952949d2699bbf39646da0d0d
Overview This project aims to introduce and release a comprehensive food image dataset designed specifically for computer vision tasks, particularly food recognition, classification, and nutritional analysis. We hope this dataset will provide a reliable resource for researchers and developers to advance the field of food AI. By publishing on Hugging Face, we expect to foster community collaboration and accelerate innovation in applications such as smart recipe recommendations, meal… See the full description on the dataset page: https://huggingface.co/datasets/Codatta/MM-Food-100K.
387
387
[ "task_categories:image-classification", "task_categories:image-to-text", "language:en", "license:openrail", "size_categories:100K<n<1M", "format:csv", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2508.10429", "region:us" ]
2025-08-12T07:18:22
null
null
688a94c5f5bb58bbd66655fb
allenai/MoNaCo_Benchmark
allenai
{"license": "odc-by", "language": ["en"], "task_categories": ["question-answering", "table-question-answering"], "pretty_name": "MoNaCo"}
false
auto
2025-08-18T16:23:59
17
17
false
8ca42024c346d5933bbe5f72db7bf117484b95c6
Website | Paper | Blogpost MoNaCo Dataset Card MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents MoNaCo is a benchmark of 1,315 human-written time-consuming questions that require retrieval, filtering and aggregation across text and tables --- with an average of 43.3 distinct documents per question! The broad scope of MoNaCo questions makes it ideal as an LLM benchmark for at least five different settings: Factuality: Evaluating models’ parametric… See the full description on the dataset page: https://huggingface.co/datasets/allenai/MoNaCo_Benchmark.
132
132
[ "task_categories:question-answering", "task_categories:table-question-answering", "language:en", "license:odc-by", "arxiv:2508.11133", "region:us" ]
2025-07-30T21:55:17
null
null
68895c3182e38006a8e9aa94
nvidia/Nemotron-Post-Training-Dataset-v1
nvidia
{"dataset_info": {"features": [{"name": "uuid", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "generator", "dtype": "string"}, {"name": "version", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "reasoning", "dtype": "string"}, {"name": "messages", "list": [{"name": "role", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "tool_calls", "list": [{"name": "id", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "function", "struct": [{"name": "name", "dtype": "string"}, {"name": "arguments", "dtype": "string"}]}]}]}, {"name": "metadata", "dtype": "string"}], "splits": [{"name": "chat", "num_bytes": 3824039827, "num_examples": 746622}, {"name": "code", "num_bytes": 91391705833, "num_examples": 1896395}, {"name": "math", "num_bytes": 79173786238, "num_examples": 2044407}, {"name": "stem", "num_bytes": 329529074790, "num_examples": 20662167}, {"name": "tool_calling", "num_bytes": 6395081261, "num_examples": 310051}], "download_size": 203373185595, "dataset_size": 510313687949}, "configs": [{"config_name": "default", "data_files": [{"split": "chat", "path": "data/chat-*"}, {"split": "code", "path": "data/code-*"}, {"split": "math", "path": "data/math-*"}, {"split": "stem", "path": "data/stem-*"}, {"split": "tool_calling", "path": "data/tool-*"}]}], "license": "cc-by-4.0"}
false
False
2025-08-01T20:25:24
125
16
false
053ba262368bf80c5864d36524731271662be115
Nemotron-Post-Training-Dataset-v1 Release This dataset is a compilation of SFT data that supports improvements of math, code, stem, general reasoning, and tool calling capabilities of the original Llama instruct model Llama-3.3-Nemotron-Super-49B-v1.5. Llama-3.3-Nemotron-Super-49B-v1.5 is an LLM which is a derivative of Meta Llama-3.3-70B-Instruct (AKA the reference model). Llama-3.3-Nemotron-Super-49B-v1.5 offers a great tradeoff between model accuracy and efficiency. Efficiency… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v1.
24,223
24,223
[ "license:cc-by-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2505.00949", "region:us" ]
2025-07-29T23:41:37
null
null
689c0f182b384a7895b8a620
ttchungc/PRELUDE
ttchungc
{"configs": [{"config_name": "default", "data_files": [{"split": "subset", "path": "subset.parquet"}, {"split": "all", "path": "all.parquet"}, {"split": "public", "path": "public.parquet"}]}], "language": ["zh", "en"], "pretty_name": "PRELUDE: A Benchmark Designed to Require Global Comprehension and Reasoning over Long Contexts", "task_categories": ["question-answering", "text-generation", "text-classification"], "tags": ["question-answering", "long content reasoning", "narrative reasoning", "bilingual"], "size_categories": ["n<1K"]}
false
False
2025-08-14T11:28:39
16
16
false
c9aae0c1bce05335c759e26b36450b693e7a12ad
Dataset Card for PRELUDE Dataset Card Authors Mo Yu*, Tsz Ting Chung*, Chulun Zhou*, Tong Li*, Rui Lu*, Jiangnan Li*, Liyan Xu*, Haoshu Lu, Ning Zhang, Jing Li, Jie Zhou
282
282
[ "task_categories:question-answering", "task_categories:text-generation", "task_categories:text-classification", "language:zh", "language:en", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2508.09848", "region:us", "question-answering", "long content reasoning", "narrative reasoning", "bilingual" ]
2025-08-13T04:05:44
null
null
6899dde80d9cbf5281d007f8
Yejy53/Echo-4o-Image
Yejy53
{"language": ["en"], "size_categories": ["100K<n<1M"], "task_categories": ["text-to-image"], "configs": [{"config_name": "default", "data_files": "Surrel-Fantasy-Image/images/0-5000.tar.gz", "default": true}], "tags": ["gpt4o", "synthetic"], "license": "mit"}
false
False
2025-08-19T12:47:16
21
15
false
6018b97fa2d894ddf74a1b7378075c5451ad6432
Echo-4o-Image Dataset Paper | Project Page | Code Introduction Echo-4o-Image is a 180K-scale synthetic dataset generated by GPT-4o, designed to advance open-source models in image generation. While real-world image datasets are valuable, synthetic images offer crucial advantages, especially in addressing blind spots in real-world coverage: Complementing Rare Scenarios: Synthetic data can generate examples for scenarios less represented in real-world datasets, such as… See the full description on the dataset page: https://huggingface.co/datasets/Yejy53/Echo-4o-Image.
3,256
3,256
[ "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2508.09987", "region:us", "gpt4o", "synthetic" ]
2025-08-11T12:11:20
null
null
689e705664eb45be366848ed
We-Math/We-Math2.0-Standard
We-Math
{"license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "knowledge-level1", "dtype": "string"}, {"name": "knowledge-level2", "dtype": "string"}, {"name": "knowledge-level3", "dtype": "string"}, {"name": "knowledge-level4", "dtype": "string"}, {"name": "knowledge", "dtype": "string"}, {"name": "principle", "dtype": "string"}, {"name": "idx", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "standard", "num_bytes": 187530345.434, "num_examples": 5843}], "download_size": 241860062, "dataset_size": 187530345.434}}
false
False
2025-08-19T16:57:17
15
15
false
b176aac586fec023856bf6897fb4cf741f04e2b3
Dataset Card for We-Math 2.0 GitHub | Paper | Website We-Math 2.0 is a unified system designed to comprehensively enhance the mathematical reasoning capabilities of Multimodal Large Language Models (MLLMs). It integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to achieve both broad conceptual coverage and robust reasoning performance across varying difficulty levels. The key… See the full description on the dataset page: https://huggingface.co/datasets/We-Math/We-Math2.0-Standard.
466
466
[ "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2508.10433", "region:us" ]
2025-08-14T23:25:10
null
null
688cf1c35243ffa37516d87b
HuggingFaceH4/Multilingual-Thinking
HuggingFaceH4
{"viewer": true, "dataset_info": {"features": [{"name": "reasoning_language", "dtype": "string"}, {"name": "developer", "dtype": "string"}, {"name": "user", "dtype": "string"}, {"name": "analysis", "dtype": "string"}, {"name": "final", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "thinking", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 8900623, "num_examples": 1000}], "download_size": 5290171, "dataset_size": 8900623}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en", "de", "fr", "es", "it"], "pretty_name": "Multilingual-Thinking", "size_categories": ["1K<n<10K"]}
false
False
2025-08-07T08:14:11
63
13
false
f423949d2726f5a5633ea10ac45bc1ea1e0de6e7
Dataset summary Multilingual-Thinking is a reasoning dataset where the chain-of-thought has been translated from English into one of 4 languages: Spanish, French, Italian, and German. The dataset was created by sampling 1k training samples from the SystemChat subset of SmolTalk2 and translating the reasoning traces with another language model. This dataset was used in the OpenAI Cookbook to fine-tune the OpenAI gpt-oss models. You can load the dataset using: from datasets import… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceH4/Multilingual-Thinking.
13,786
13,786
[ "task_categories:text-generation", "language:en", "language:de", "language:fr", "language:es", "language:it", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-08-01T16:56:35
null
null
684d00f237c9aa4418cf8d65
lxucs/CapRetrieval
lxucs
{"license": "apache-2.0", "task_categories": ["text-retrieval"], "language": ["zh"], "tags": ["text", "retrieval"], "size_categories": ["1K<n<10K"], "configs": [{"config_name": "passages", "data_files": [{"split": "test", "path": "passages/test*"}]}, {"config_name": "queries", "data_files": [{"split": "test", "path": "queries/test*"}]}]}
false
False
2025-08-19T09:03:52
12
12
false
a17764a5626a1bcbc25e8b06514f9877b97facb0
The dataset CapRetrieval introduced in Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings. CapRetrieval is prepared in Chinese; the English version of CapRetrieval is available at CapRetrievalEn, sharing the same queries, passages and labels. Introduction CapRetrieval evaluates the fine-grained embedding matching (dense passage retrieval) in Chinese, tailored towards a practical image search scenario: Candidate passages are image captions… See the full description on the dataset page: https://huggingface.co/datasets/lxucs/CapRetrieval.
39
174
[ "task_categories:text-retrieval", "language:zh", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.08592", "region:us", "text", "retrieval" ]
2025-06-14T04:56:18
null
null
689e70861c433ece934b3ad9
We-Math/We-Math2.0-Pro
We-Math
{"license": "cc-by-nc-4.0", "dataset_info": {"features": [{"name": "question_id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "difficulty", "dtype": "string"}, {"name": "knowledge points", "sequence": "string"}, {"name": "idx", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "pro", "num_bytes": 717964159.664, "num_examples": 4552}], "download_size": 97424709, "dataset_size": 717964159.664}}
false
False
2025-08-19T17:04:39
12
12
false
c1d9f3ccea7361069f0442362e781d1ae7a28e94
Dataset Card for We-Math 2.0 GitHub | Paper | Website We-Math 2.0 is a unified system designed to comprehensively enhance the mathematical reasoning capabilities of Multimodal Large Language Models (MLLMs). It integrates a structured mathematical knowledge system, model-centric data space modeling, and a reinforcement learning (RL)-based training paradigm to achieve both broad conceptual coverage and robust reasoning performance across varying difficulty levels. The key… See the full description on the dataset page: https://huggingface.co/datasets/We-Math/We-Math2.0-Pro.
421
421
[ "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2508.10433", "region:us" ]
2025-08-14T23:25:58
null
null
68a439cc3a24e2df78a05f0a
lxucs/CapRetrievalEn
lxucs
{"license": "apache-2.0", "task_categories": ["text-retrieval"], "language": ["en"], "tags": ["text", "retrieval"], "size_categories": ["1K<n<10K"], "configs": [{"config_name": "passages", "data_files": [{"split": "test", "path": "passages/test*"}]}, {"config_name": "queries", "data_files": [{"split": "test", "path": "queries/test*"}]}]}
false
False
2025-08-19T08:58:02
12
12
false
456773dd808700b2e95ac4a18edd239601fe813a
The english version of CapRetrieval introduced in Dense Retrievers Can Fail on Simple Queries: Revealing The Granularity Dilemma of Embeddings. Queries and passages are translated automatically by GPT-4.1; all IDs and labels are kept the same as CapRetrieval. A few labels thus are not entirely accurate due to different language traits and expressions, but most labels should remain consistent. CapRetrieval evaluates the fine-grained embedding matching (dense passage retrieval) in Chinese… See the full description on the dataset page: https://huggingface.co/datasets/lxucs/CapRetrievalEn.
53
53
[ "task_categories:text-retrieval", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.08592", "region:us", "text", "retrieval" ]
2025-08-19T08:46:04
null
null
6860e1f20ec2862c77415b90
YiboZhang2001/TexVerse
YiboZhang2001
{"license": "odc-by", "language": ["en"]}
false
False
2025-08-18T11:15:06
19
11
false
a4fe9f473d6628e06c7187604a01c0d8b13de5e2
TexVerse: A Universe of 3D Objects with High-Resolution Textures             Yibo Zhang1,2, Li Zhang1,3, Rui Ma2 *, Nan Cao1,4 1Shanghai Innovation Institute 2Jilin University 3Fudan University 4Tongji University * Corresponding Author TexVerse is a large-scale 3D dataset featuring high-resolution textures. Its key characteristics include: Scale & Source: TexVerse dataset has 858,669 unique 3D models curated from Sketchfab, including 158,518… See the full description on the dataset page: https://huggingface.co/datasets/YiboZhang2001/TexVerse.
154,545
154,575
[ "language:en", "license:odc-by", "arxiv:2508.10868", "region:us" ]
2025-06-29T06:49:22
null
null
689430e6d5dd6bec1f194b1c
HelpingAI/Intermediate-Thinking-130k
HelpingAI
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["af", "ar", "bn", "bg", "ca", "zh", "cs", "da", "nl", "en", "et", "fi", "fr", "de", "el", "he", "hi", "hu", "id", "it", "ja", "ko", "mr", "no", "fa", "pl", "pt", "ro", "ru", "so", "es", "sw", "sv", "tl", "ta", "te", "th", "tr", "uk", "ur", "vi", "cy"], "tags": ["intermediate-thinking", "mathematical-reasoning", "logical-reasoning", "self-correction", "structured-thinking"], "pretty_name": "Intermediate Thinking Dataset"}
false
False
2025-08-07T06:04:45
28
11
false
7791d84cfb9d0b68b2ae5bcef3411eaf0342a70b
Intermediate-Thinking-130k A comprehensive dataset of 135,000 high-quality samples designed to advance language model reasoning capabilities through structured intermediate thinking processes. This dataset enables training and evaluation of models with sophisticated self-correction and iterative reasoning abilities across 42 languages. Overview Intermediate-Thinking-130k addresses a fundamental limitation in current language models: their inability to pause, reflect, and… See the full description on the dataset page: https://huggingface.co/datasets/HelpingAI/Intermediate-Thinking-130k.
959
959
[ "task_categories:text-generation", "language:af", "language:ar", "language:bn", "language:bg", "language:ca", "language:zh", "language:cs", "language:da", "language:nl", "language:en", "language:et", "language:fi", "language:fr", "language:de", "language:el", "language:he", "language:hi", "language:hu", "language:id", "language:it", "language:ja", "language:ko", "language:mr", "language:no", "language:fa", "language:pl", "language:pt", "language:ro", "language:ru", "language:so", "language:es", "language:sw", "language:sv", "language:tl", "language:ta", "language:te", "language:th", "language:tr", "language:uk", "language:ur", "language:vi", "language:cy", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "intermediate-thinking", "mathematical-reasoning", "logical-reasoning", "self-correction", "structured-thinking" ]
2025-08-07T04:51:50
null
null
689c3b49b81bb6c772345d05
DeepMount00/OpenItalianData
DeepMount00
{"dataset_info": {"features": [{"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3970741180, "num_examples": 2021922}], "download_size": 2251106125, "dataset_size": 3970741180}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["it"], "size_categories": ["1M<n<10M"]}
false
False
2025-08-21T12:19:08
14
11
false
c40c42d2cea188457d39e4986561b5b1b2f123cb
null
2,484
2,484
[ "task_categories:text-generation", "language:it", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-08-13T07:14:17
null
null
689cca62d870fb1a8441783b
nvidia/Nemotron-Post-Training-Dataset-v2
nvidia
{"dataset_info": {"features": [{"name": "uuid", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "generator", "dtype": "string"}, {"name": "version", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "reasoning", "dtype": "string"}, {"name": "messages", "list": [{"name": "role", "dtype": "string"}, {"name": "content", "dtype": "string"}]}], "splits": [{"name": "stem", "num_bytes": 807639463, "num_examples": 355000}, {"name": "chat", "num_bytes": 5971361114, "num_examples": 627720}, {"name": "math", "num_bytes": 507431890, "num_examples": 239467}, {"name": "code", "num_bytes": 980267419, "num_examples": 175000}, {"name": "multilingual_ja", "num_bytes": 18014250907, "num_examples": 975202}, {"name": "multilingual_de", "num_bytes": 18891078015, "num_examples": 1015314}, {"name": "multilingual_it", "num_bytes": 18724137501, "num_examples": 1016503}, {"name": "multilingual_es", "num_bytes": 16273052735, "num_examples": 935704}, {"name": "multilingual_fr", "num_bytes": 18231554197, "num_examples": 1001504}], "download_size": 44423886661, "dataset_size": 98400773241}, "configs": [{"config_name": "default", "data_files": [{"split": "stem", "path": "data/stem-*"}, {"split": "chat", "path": "data/chat-*"}, {"split": "math", "path": "data/math-*"}, {"split": "code", "path": "data/code-*"}, {"split": "multilingual_ja", "path": "data/multilingual_ja-*"}, {"split": "multilingual_de", "path": "data/multilingual_de-*"}, {"split": "multilingual_it", "path": "data/multilingual_it-*"}, {"split": "multilingual_es", "path": "data/multilingual_es-*"}, {"split": "multilingual_fr", "path": "data/multilingual_fr-*"}]}], "license": "cc-by-4.0", "language": ["en", "de", "it", "fr", "es", "ja"], "extra_gated_fields": {"Company": "text", "Institutional Email": "text"}}
false
auto
2025-08-21T04:29:18
11
11
false
5c89e01dd720ae0f4058445ed49c5fb68a03c76e
Nemotron-Post-Training-Dataset-v2 Release Data Overview This dataset adds to NVIDIA’s post-training dataset releases with an extension of SFT and RL data into five target languages: Spanish, French, German, Italian and Japanese. The data supports improvements of math, code, general reasoning, and instruction following capabilities of the NVIDIA-Nemotron-Nano-9B-v2-Base, in support of release of NVIDIA-Nemotron-Nano-8B-v2-Reasoning. NVIDIA-Nemotron-Nano-9B is a family of… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Nemotron-Post-Training-Dataset-v2.
88
88
[ "language:en", "language:de", "language:it", "language:fr", "language:es", "language:ja", "license:cc-by-4.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2508.14444", "region:us" ]
2025-08-13T17:24:50
null
null
639244f571c51c43091df168
Anthropic/hh-rlhf
Anthropic
{"license": "mit", "tags": ["human-feedback"]}
false
False
2023-05-26T18:47:34
1,404
10
false
09be8c5bbc57cb3887f3a9732ad6aa7ec602a1fa
Dataset Card for HH-RLHF Dataset Summary This repository provides access to two different kinds of data: Human preference data about helpfulness and harmlessness from Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. These data are meant to train preference (or reward) models for subsequent RLHF training. These data are not meant for supervised training of dialogue agents. Training dialogue agents on these data is likely to lead… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/hh-rlhf.
16,322
1,631,034
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2204.05862", "region:us", "human-feedback" ]
2022-12-08T20:11:33
null
null
6655eb19d17e141dcb546ed5
HuggingFaceFW/fineweb-edu
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2025-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-05/*"}]}, {"config_name": "CC-MAIN-2025-08", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-08/*"}]}, {"config_name": "CC-MAIN-2025-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-13/*"}]}, {"config_name": "CC-MAIN-2025-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-18/*"}]}, {"config_name": "CC-MAIN-2025-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-21/*"}]}, {"config_name": "CC-MAIN-2025-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2025-26/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
False
2025-07-11T20:16:53
737
10
false
87f09149ef4734204d70ed1d046ddc9ca3f2b8f9
📚 FineWeb-Edu 1.3 trillion tokens of the finest educational data the 🌐 web has to offer Paper: https://arxiv.org/abs/2406.17557 What is it? 📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
92,382
3,898,239
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "doi:10.57967/hf/2497", "region:us" ]
2024-05-28T14:32:57
null
null
689d797321a2764d78695569
nvidia/Nemotron-Pretraining-Code-v1
nvidia
{"license": "other", "task_categories": ["text-generation"], "extra_gated_prompt": "By clicking \u201cAgree\u201d I confirm I have read and agree to NVIDIA Data Agreement for Model Training and agree that I intend to use this data for model training purposes only. (https://huggingface.co/datasets/nvidia/Nemotron-Pretraining-Dataset-sample/raw/main/LICENSE.md) ", "extra_gated_fields": {"Company": "text", "Institutional Email": "text", "I agree to use this dataset for model training purposes ONLY": "checkbox"}, "configs": [{"config_name": "Synthetic-Code", "data_files": [{"path": "Synthetic-Code/*.parquet", "split": "train"}]}, {"config_name": "Nemotron-Code-Metadata", "data_files": [{"path": "Nemotron-Code-Metadata/*.parquet", "split": "train"}]}], "track_downloads": true}
false
manual
2025-08-20T16:20:10
10
10
false
c7e681692e63630bea1d8419ed3e2080c57fb03e
Nemotron-Pre-Training-Dataset-v1 Release Data Overview This pretraining dataset, for generative AI model training, preserves high-value math and code while enriching it with diverse multilingual Q&A, fueling the next generation of intelligent, globally-capable models. This dataset supports NVIDIA Nemotron Nano 2, a family of large language models (LLMs) that consists of the NVIDIA-Nemotron-Nano-9B-v2, NVIDIA-Nemotron-Nano-9B-v2-Base, and NVIDIA-Nemotron-Nano-12B-v2-Base… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Nemotron-Pretraining-Code-v1.
104
104
[ "task_categories:text-generation", "license:other", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-08-14T05:51:47
null
null
689f5fa0e6d760e64838621f
bytedance-research/UNO-1M
bytedance-research
{"language": ["en"], "license": "apache-2.0", "size_categories": ["1M<n<10M"], "task_categories": ["text-to-image", "image-to-image"], "tags": ["text-to-image", "image-to-image"], "configs": [{"config_name": "train", "data_files": "uno_1m_total_labels.json"}]}
false
False
2025-08-17T13:29:29
10
10
false
f25bb61db6d6d66d82f41d1e613c0e04ba342e84
Less-to-More Generalization: Unlocking More Controllability by In-Context Generation Overview UNO-1M is a large dataset (~1M paired images) constructed by the in-context generation pipeline introduced in the UNO paper. Its advantages include highly diverse categories (>365 categories), high-resolution images (around 1024x1024), variable resolutions (different aspect ratios), high quality (produced by state-of-the-art text-to-image models), and high subject… See the full description on the dataset page: https://huggingface.co/datasets/bytedance-research/UNO-1M.
795
795
[ "task_categories:text-to-image", "task_categories:image-to-image", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "arxiv:2504.02160", "region:us", "text-to-image", "image-to-image" ]
2025-08-15T16:26:08
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
False
2024-01-04T12:05:15
839
9
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
384,924
6,455,315
[ "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
6532270e829e1dc2f293d6b8
gaia-benchmark/GAIA
gaia-benchmark
{"language": ["en"], "pretty_name": "General AI Assistants Benchmark", "extra_gated_prompt": "To avoid contamination and data leakage, you agree to not reshare this dataset outside of a gated or private repository on the HF hub.", "extra_gated_fields": {"I agree to not reshare the GAIA submissions set according to the above conditions": "checkbox"}}
false
auto
2025-02-13T08:36:12
420
9
false
897f2dfbb5c952b5c3c1509e648381f9c7b70316
GAIA dataset GAIA is a benchmark which aims at evaluating next-generation LLMs (LLMs with augmented capabilities due to added tooling, efficient prompting, access to search, etc). We added gating to prevent bots from scraping the dataset. Please do not reshare the validation or test set in a crawlable format. Data and leaderboard GAIA is made of more than 450 non-trivial question with an unambiguous answer, requiring different levels of tooling and autonomy to solve. It… See the full description on the dataset page: https://huggingface.co/datasets/gaia-benchmark/GAIA.
9,749
87,837
[ "language:en", "arxiv:2311.12983", "region:us" ]
2023-10-20T07:06:54
null
685a3e532ffa3324700102d5
interstellarninja/hermes_reasoning_tool_use
interstellarninja
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "tools", "dtype": "string"}, {"name": "task", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "scenario_category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 392137224, "num_examples": 51004}], "download_size": 128188655, "dataset_size": 392137224}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en"], "tags": ["tool-use", "json-mode", "reasoning", "rl"], "size_categories": ["10K<n<100K"]}
false
False
2025-08-05T13:50:58
102
9
false
55d824b623303055d5a76eb6ab12861b80a4ee20
TL;DR 51 004 ShareGPT conversations that teach LLMs when, how and whether to call tools.Built with the Nous Research Atropos RL stack in Atropos using a custom MultiTurnToolCallingEnv, and aligned with BFCL v3 evaluation scenarios.Released by @interstellarninja under Apache-2.0. 1 Dataset Highlights Count Split Scenarios covered Size 51 004 train single-turn · multi-turn · multi-step · relevance 392 MB Each row: OpenAI-style conversations… See the full description on the dataset page: https://huggingface.co/datasets/interstellarninja/hermes_reasoning_tool_use.
2,590
2,908
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "tool-use", "json-mode", "reasoning", "rl" ]
2025-06-24T05:57:39
null
null
686176a165816f63e6edee56
theaidealab/workflows
theaidealab
nan
false
False
2025-08-09T06:53:55
38
9
false
c44baa69f397a4cd0b48638b909742b19b0befa8
null
10,358
13,184
[ "region:us" ]
2025-06-29T17:23:45
null
null
End of preview. Expand in Data Studio

Changelog

NEW Changes July 25th

  • added baseModels field to models which shows the models that the user tagged as base models for that model

Example:

{
  "models": [
    {
      "_id": "687de260234339fed21e768a",
      "id": "Qwen/Qwen3-235B-A22B-Instruct-2507"
    }
  ],
  "relation": "quantized"
}

NEW Changes July 9th

  • Fixed issue with gguf column with integer overflow causing import pipeline to be broken over a few weeks ✅

NEW Changes Feb 27th

  • Added new fields on the models split: downloadsAllTime, safetensors, gguf

  • Added new field on the datasets split: downloadsAllTime

  • Added new split: papers which is all of the Daily Papers

Updated Daily

Downloads last month
1,941

Spaces using cfahlgren1/hub-stats 14