_id
stringlengths
24
24
id
stringlengths
5
123
author
stringlengths
2
42
cardData
stringlengths
2
911k
inferenceProviderMapping
listlengths
0
8
lastModified
timestamp[ns]
likes
int64
0
11.2k
trendingScore
float64
0
1.94k
config
stringlengths
2
37.1k
downloads
int64
0
116M
downloadsAllTime
int64
0
2.17B
safetensors
dict
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
53 values
transformersInfo
dict
siblings
listlengths
0
10k
createdAt
timestamp[ns]
gguf
dict
67c85cdbebd06f51d80ca1c7
Qwen/QwQ-32B
Qwen
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/Qwen2.5-32B", "tags": ["chat"], "library_name": "transformers"}
[ { "provider": "hyperbolic", "providerId": "Qwen/QwQ-32B", "status": "live", "task": "conversational" }, { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/qwq-32b", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "Qwen/QwQ-32B", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "QwQ-32B", "status": "live", "task": "conversational" } ]
2025-03-11T12:15:48
2,043
1,936
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
207,799
207,799
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2309.00071", "arxiv:2412.15115", "base_model:Qwen/Qwen2.5-32B", "base_model:finetune:Qwen/Qwen2.5-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00014.safetensors" }, { "rfilename": "model-00002-of-00014.safetensors" }, { "rfilename": "model-00003-of-00014.safetensors" }, { "rfilename": "model-00004-of-00014.safetensors" }, { "rfilename": "model-00005-of-00014.safetensors" }, { "rfilename": "model-00006-of-00014.safetensors" }, { "rfilename": "model-00007-of-00014.safetensors" }, { "rfilename": "model-00008-of-00014.safetensors" }, { "rfilename": "model-00009-of-00014.safetensors" }, { "rfilename": "model-00010-of-00014.safetensors" }, { "rfilename": "model-00011-of-00014.safetensors" }, { "rfilename": "model-00012-of-00014.safetensors" }, { "rfilename": "model-00013-of-00014.safetensors" }, { "rfilename": "model-00014-of-00014.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-05T14:16:59
null
678dc6fff905d106be796d8a
deepseek-ai/DeepSeek-R1
deepseek-ai
{"license": "mit", "library_name": "transformers"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/deepseek-r1", "status": "live", "task": "conversational" }, { "provider": "together", "providerId": "deepseek-ai/DeepSeek-R1", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "deepseek-ai/DeepSeek-R1-fast", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "deepseek-ai/DeepSeek-R1", "status": "live", "task": "conversational" }, { "provider": "replicate", "providerId": "deepseek-ai/deepseek-r1", "status": "staging", "task": "conversational" }, { "provider": "sambanova", "providerId": "DeepSeek-R1", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "deepseek/deepseek-r1-turbo", "status": "live", "task": "conversational" } ]
2025-02-24T03:30:31
11,215
430
{"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "quantization_config": {"quant_method": "fp8"}, "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\\n\\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- endfor %}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}}
2,987,585
5,605,904
{ "parameters": { "BF16": 3918786560, "BF69": null, "BOOL": null, "F16": null, "F32": 41555600, "F64": null, "F8_E4M3": 680571043840, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 684531386000 }
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "arxiv:2501.12948", "license:mit", "autotrain_compatible", "fp8", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_deepseek.DeepseekV3ForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_deepseek.py" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-000163.safetensors" }, { "rfilename": "model-00002-of-000163.safetensors" }, { "rfilename": "model-00003-of-000163.safetensors" }, { "rfilename": "model-00004-of-000163.safetensors" }, { "rfilename": "model-00005-of-000163.safetensors" }, { "rfilename": "model-00006-of-000163.safetensors" }, { "rfilename": "model-00007-of-000163.safetensors" }, { "rfilename": "model-00008-of-000163.safetensors" }, { "rfilename": "model-00009-of-000163.safetensors" }, { "rfilename": "model-00010-of-000163.safetensors" }, { "rfilename": "model-00011-of-000163.safetensors" }, { "rfilename": "model-00012-of-000163.safetensors" }, { "rfilename": "model-00013-of-000163.safetensors" }, { "rfilename": "model-00014-of-000163.safetensors" }, { "rfilename": "model-00015-of-000163.safetensors" }, { "rfilename": "model-00016-of-000163.safetensors" }, { "rfilename": "model-00017-of-000163.safetensors" }, { "rfilename": "model-00018-of-000163.safetensors" }, { "rfilename": "model-00019-of-000163.safetensors" }, { "rfilename": "model-00020-of-000163.safetensors" }, { "rfilename": "model-00021-of-000163.safetensors" }, { "rfilename": "model-00022-of-000163.safetensors" }, { "rfilename": "model-00023-of-000163.safetensors" }, { "rfilename": "model-00024-of-000163.safetensors" }, { "rfilename": "model-00025-of-000163.safetensors" }, { "rfilename": "model-00026-of-000163.safetensors" }, { "rfilename": "model-00027-of-000163.safetensors" }, { "rfilename": "model-00028-of-000163.safetensors" }, { "rfilename": "model-00029-of-000163.safetensors" }, { "rfilename": "model-00030-of-000163.safetensors" }, { "rfilename": "model-00031-of-000163.safetensors" }, { "rfilename": "model-00032-of-000163.safetensors" }, { "rfilename": "model-00033-of-000163.safetensors" }, { "rfilename": "model-00034-of-000163.safetensors" }, { "rfilename": "model-00035-of-000163.safetensors" }, { "rfilename": "model-00036-of-000163.safetensors" }, { "rfilename": "model-00037-of-000163.safetensors" }, { "rfilename": "model-00038-of-000163.safetensors" }, { "rfilename": "model-00039-of-000163.safetensors" }, { "rfilename": "model-00040-of-000163.safetensors" }, { "rfilename": "model-00041-of-000163.safetensors" }, { "rfilename": "model-00042-of-000163.safetensors" }, { "rfilename": "model-00043-of-000163.safetensors" }, { "rfilename": "model-00044-of-000163.safetensors" }, { "rfilename": "model-00045-of-000163.safetensors" }, { "rfilename": "model-00046-of-000163.safetensors" }, { "rfilename": "model-00047-of-000163.safetensors" }, { "rfilename": "model-00048-of-000163.safetensors" }, { "rfilename": "model-00049-of-000163.safetensors" }, { "rfilename": "model-00050-of-000163.safetensors" }, { "rfilename": "model-00051-of-000163.safetensors" }, { "rfilename": "model-00052-of-000163.safetensors" }, { "rfilename": "model-00053-of-000163.safetensors" }, { "rfilename": "model-00054-of-000163.safetensors" }, { "rfilename": "model-00055-of-000163.safetensors" }, { "rfilename": "model-00056-of-000163.safetensors" }, { "rfilename": "model-00057-of-000163.safetensors" }, { "rfilename": "model-00058-of-000163.safetensors" }, { "rfilename": "model-00059-of-000163.safetensors" }, { "rfilename": "model-00060-of-000163.safetensors" }, { "rfilename": "model-00061-of-000163.safetensors" }, { "rfilename": "model-00062-of-000163.safetensors" }, { "rfilename": "model-00063-of-000163.safetensors" }, { "rfilename": "model-00064-of-000163.safetensors" }, { "rfilename": "model-00065-of-000163.safetensors" }, { "rfilename": "model-00066-of-000163.safetensors" }, { "rfilename": "model-00067-of-000163.safetensors" }, { "rfilename": "model-00068-of-000163.safetensors" }, { "rfilename": "model-00069-of-000163.safetensors" }, { "rfilename": "model-00070-of-000163.safetensors" }, { "rfilename": "model-00071-of-000163.safetensors" }, { "rfilename": "model-00072-of-000163.safetensors" }, { "rfilename": "model-00073-of-000163.safetensors" }, { "rfilename": "model-00074-of-000163.safetensors" }, { "rfilename": "model-00075-of-000163.safetensors" }, { "rfilename": "model-00076-of-000163.safetensors" }, { "rfilename": "model-00077-of-000163.safetensors" }, { "rfilename": "model-00078-of-000163.safetensors" }, { "rfilename": "model-00079-of-000163.safetensors" }, { "rfilename": "model-00080-of-000163.safetensors" }, { "rfilename": "model-00081-of-000163.safetensors" }, { "rfilename": "model-00082-of-000163.safetensors" }, { "rfilename": "model-00083-of-000163.safetensors" }, { "rfilename": "model-00084-of-000163.safetensors" }, { "rfilename": "model-00085-of-000163.safetensors" }, { "rfilename": "model-00086-of-000163.safetensors" }, { "rfilename": "model-00087-of-000163.safetensors" }, { "rfilename": "model-00088-of-000163.safetensors" }, { "rfilename": "model-00089-of-000163.safetensors" }, { "rfilename": "model-00090-of-000163.safetensors" }, { "rfilename": "model-00091-of-000163.safetensors" }, { "rfilename": "model-00092-of-000163.safetensors" }, { "rfilename": "model-00093-of-000163.safetensors" }, { "rfilename": "model-00094-of-000163.safetensors" }, { "rfilename": "model-00095-of-000163.safetensors" }, { "rfilename": "model-00096-of-000163.safetensors" }, { "rfilename": "model-00097-of-000163.safetensors" }, { "rfilename": "model-00098-of-000163.safetensors" }, { "rfilename": "model-00099-of-000163.safetensors" }, { "rfilename": "model-00100-of-000163.safetensors" }, { "rfilename": "model-00101-of-000163.safetensors" }, { "rfilename": "model-00102-of-000163.safetensors" }, { "rfilename": "model-00103-of-000163.safetensors" }, { "rfilename": "model-00104-of-000163.safetensors" }, { "rfilename": "model-00105-of-000163.safetensors" }, { "rfilename": "model-00106-of-000163.safetensors" }, { "rfilename": "model-00107-of-000163.safetensors" }, { "rfilename": "model-00108-of-000163.safetensors" }, { "rfilename": "model-00109-of-000163.safetensors" }, { "rfilename": "model-00110-of-000163.safetensors" }, { "rfilename": "model-00111-of-000163.safetensors" }, { "rfilename": "model-00112-of-000163.safetensors" }, { "rfilename": "model-00113-of-000163.safetensors" }, { "rfilename": "model-00114-of-000163.safetensors" }, { "rfilename": "model-00115-of-000163.safetensors" }, { "rfilename": "model-00116-of-000163.safetensors" }, { "rfilename": "model-00117-of-000163.safetensors" }, { "rfilename": "model-00118-of-000163.safetensors" }, { "rfilename": "model-00119-of-000163.safetensors" }, { "rfilename": "model-00120-of-000163.safetensors" }, { "rfilename": "model-00121-of-000163.safetensors" }, { "rfilename": "model-00122-of-000163.safetensors" }, { "rfilename": "model-00123-of-000163.safetensors" }, { "rfilename": "model-00124-of-000163.safetensors" }, { "rfilename": "model-00125-of-000163.safetensors" }, { "rfilename": "model-00126-of-000163.safetensors" }, { "rfilename": "model-00127-of-000163.safetensors" }, { "rfilename": "model-00128-of-000163.safetensors" }, { "rfilename": "model-00129-of-000163.safetensors" }, { "rfilename": "model-00130-of-000163.safetensors" }, { "rfilename": "model-00131-of-000163.safetensors" }, { "rfilename": "model-00132-of-000163.safetensors" }, { "rfilename": "model-00133-of-000163.safetensors" }, { "rfilename": "model-00134-of-000163.safetensors" }, { "rfilename": "model-00135-of-000163.safetensors" }, { "rfilename": "model-00136-of-000163.safetensors" }, { "rfilename": "model-00137-of-000163.safetensors" }, { "rfilename": "model-00138-of-000163.safetensors" }, { "rfilename": "model-00139-of-000163.safetensors" }, { "rfilename": "model-00140-of-000163.safetensors" }, { "rfilename": "model-00141-of-000163.safetensors" }, { "rfilename": "model-00142-of-000163.safetensors" }, { "rfilename": "model-00143-of-000163.safetensors" }, { "rfilename": "model-00144-of-000163.safetensors" }, { "rfilename": "model-00145-of-000163.safetensors" }, { "rfilename": "model-00146-of-000163.safetensors" }, { "rfilename": "model-00147-of-000163.safetensors" }, { "rfilename": "model-00148-of-000163.safetensors" }, { "rfilename": "model-00149-of-000163.safetensors" }, { "rfilename": "model-00150-of-000163.safetensors" }, { "rfilename": "model-00151-of-000163.safetensors" }, { "rfilename": "model-00152-of-000163.safetensors" }, { "rfilename": "model-00153-of-000163.safetensors" }, { "rfilename": "model-00154-of-000163.safetensors" }, { "rfilename": "model-00155-of-000163.safetensors" }, { "rfilename": "model-00156-of-000163.safetensors" }, { "rfilename": "model-00157-of-000163.safetensors" }, { "rfilename": "model-00158-of-000163.safetensors" }, { "rfilename": "model-00159-of-000163.safetensors" }, { "rfilename": "model-00160-of-000163.safetensors" }, { "rfilename": "model-00161-of-000163.safetensors" }, { "rfilename": "model-00162-of-000163.safetensors" }, { "rfilename": "model-00163-of-000163.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_deepseek.py" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-01-20T03:46:07
null
67c35b9bb236f0d365bf29d3
google/gemma-3-27b-it
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-27b-pt"}
[ { "provider": "hf-inference", "providerId": "google/gemma-3-27b-it", "status": "live", "task": "image-text-to-text" } ]
2025-03-12T08:30:59
294
294
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
116
116
{ "parameters": { "BF16": 27432406640, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 27432406640 }
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-27b-pt", "base_model:finetune:google/gemma-3-27b-pt", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00012.safetensors" }, { "rfilename": "model-00002-of-00012.safetensors" }, { "rfilename": "model-00003-of-00012.safetensors" }, { "rfilename": "model-00004-of-00012.safetensors" }, { "rfilename": "model-00005-of-00012.safetensors" }, { "rfilename": "model-00006-of-00012.safetensors" }, { "rfilename": "model-00007-of-00012.safetensors" }, { "rfilename": "model-00008-of-00012.safetensors" }, { "rfilename": "model-00009-of-00012.safetensors" }, { "rfilename": "model-00010-of-00012.safetensors" }, { "rfilename": "model-00011-of-00012.safetensors" }, { "rfilename": "model-00012-of-00012.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-01T19:10:19
null
67bff1ba4d22a9379b31305a
SparkAudio/Spark-TTS-0.5B
SparkAudio
{"license": "cc-by-nc-sa-4.0", "language": ["en", "zh"], "tags": ["text-to-speech"], "library_tag": "spark-tts"}
null
2025-03-07T05:44:26
326
272
null
6,806
6,806
null
[ "safetensors", "text-to-speech", "en", "zh", "arxiv:2503.01710", "doi:10.57967/hf/4650", "license:cc-by-nc-sa-4.0", "region:us" ]
text-to-speech
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "BiCodec/config.yaml" }, { "rfilename": "BiCodec/model.safetensors" }, { "rfilename": "LLM/added_tokens.json" }, { "rfilename": "LLM/config.json" }, { "rfilename": "LLM/merges.txt" }, { "rfilename": "LLM/model.safetensors" }, { "rfilename": "LLM/special_tokens_map.json" }, { "rfilename": "LLM/tokenizer.json" }, { "rfilename": "LLM/tokenizer_config.json" }, { "rfilename": "LLM/vocab.json" }, { "rfilename": "README.md" }, { "rfilename": "config.yaml" }, { "rfilename": "src/figures/gradio_TTS.png" }, { "rfilename": "src/figures/gradio_control.png" }, { "rfilename": "src/figures/infer_control.png" }, { "rfilename": "src/figures/infer_voice_cloning.png" }, { "rfilename": "src/logo/HKUST.jpg" }, { "rfilename": "src/logo/NPU.jpg" }, { "rfilename": "src/logo/NTU.jpg" }, { "rfilename": "src/logo/SJU.jpg" }, { "rfilename": "src/logo/SparkAudio.jpg" }, { "rfilename": "src/logo/SparkAudio2.jpg" }, { "rfilename": "src/logo/SparkTTS.jpg" }, { "rfilename": "src/logo/SparkTTS.png" }, { "rfilename": "src/logo/mobvoi.jpg" }, { "rfilename": "src/logo/mobvoi.png" }, { "rfilename": "wav2vec2-large-xlsr-53/README.md" }, { "rfilename": "wav2vec2-large-xlsr-53/config.json" }, { "rfilename": "wav2vec2-large-xlsr-53/preprocessor_config.json" }, { "rfilename": "wav2vec2-large-xlsr-53/pytorch_model.bin" } ]
2025-02-27T05:01:46
null
67bcf3bca03bde20d15377c6
microsoft/Phi-4-multimodal-instruct
microsoft
{"license": "mit", "license_link": "https://huggingface.co/microsoft/Phi-4-multimodal-instruct/resolve/main/LICENSE", "language": ["multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk"], "tags": ["nlp", "code", "audio", "automatic-speech-recognition", "speech-summarization", "speech-translation", "visual-question-answering", "phi-4-multimodal", "phi", "phi-4-mini"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}, {"messages": [{"role": "user", "content": "Transcribe the audio to text, and then translate the audio to French. Use <sep> as a separator between the original transcript and the translation."}]}], "library_name": "transformers", "paper": "arxiv.org/abs/2503.01743"}
null
2025-03-12T15:20:45
1,110
246
{"architectures": ["Phi4MMForCausalLM"], "auto_map": {"AutoConfig": "configuration_phi4mm.Phi4MMConfig", "AutoModelForCausalLM": "modeling_phi4mm.Phi4MMForCausalLM", "AutoTokenizer": "Xenova/gpt-4o"}, "model_type": "phi4mm", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}
410,689
410,689
{ "parameters": { "BF16": 5574460384, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 5574460384 }
[ "transformers", "safetensors", "phi4mm", "text-generation", "nlp", "code", "audio", "automatic-speech-recognition", "speech-summarization", "speech-translation", "visual-question-answering", "phi-4-multimodal", "phi", "phi-4-mini", "custom_code", "multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk", "arxiv:2407.13833", "license:mit", "autotrain_compatible", "region:us" ]
automatic-speech-recognition
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_phi4mm.Phi4MMForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "CODE_OF_CONDUCT.md" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "SECURITY.md" }, { "rfilename": "SUPPORT.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "configuration_phi4mm.py" }, { "rfilename": "examples/what_is_shown_in_this_image.wav" }, { "rfilename": "examples/what_is_the_traffic_sign_in_the_image.wav" }, { "rfilename": "figures/audio_understand.png" }, { "rfilename": "figures/multi_image.png" }, { "rfilename": "figures/speech_qa.png" }, { "rfilename": "figures/speech_recog_by_lang.png" }, { "rfilename": "figures/speech_recognition.png" }, { "rfilename": "figures/speech_summarization.png" }, { "rfilename": "figures/speech_translate.png" }, { "rfilename": "figures/speech_translate_2.png" }, { "rfilename": "figures/vision_radar.png" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00003.safetensors" }, { "rfilename": "model-00002-of-00003.safetensors" }, { "rfilename": "model-00003-of-00003.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_phi4mm.py" }, { "rfilename": "phi_4_mm.tech_report.02252025.pdf" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processing_phi4mm.py" }, { "rfilename": "processor_config.json" }, { "rfilename": "sample_finetune_speech.py" }, { "rfilename": "sample_finetune_vision.py" }, { "rfilename": "sample_inference_phi4mm.py" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "speech-lora/adapter_config.json" }, { "rfilename": "speech-lora/adapter_model.safetensors" }, { "rfilename": "speech-lora/added_tokens.json" }, { "rfilename": "speech-lora/special_tokens_map.json" }, { "rfilename": "speech-lora/tokenizer.json" }, { "rfilename": "speech-lora/tokenizer_config.json" }, { "rfilename": "speech-lora/vocab.json" }, { "rfilename": "speech_conformer_encoder.py" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vision-lora/adapter_config.json" }, { "rfilename": "vision-lora/adapter_model.safetensors" }, { "rfilename": "vision-lora/added_tokens.json" }, { "rfilename": "vision-lora/special_tokens_map.json" }, { "rfilename": "vision-lora/tokenizer.json" }, { "rfilename": "vision-lora/tokenizer_config.json" }, { "rfilename": "vision-lora/vocab.json" }, { "rfilename": "vision_siglip_navit.py" }, { "rfilename": "vocab.json" } ]
2025-02-24T22:33:32
null
67c818e729514343cee6eb43
tencent/HunyuanVideo-I2V
tencent
{"license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"}
null
2025-03-11T09:35:00
232
232
null
1,894
1,894
null
[ "arxiv:2412.03603", "license:other", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "Notice" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "hunyuan-video-i2v-720p/lora/embrace_kohaya_weights.safetensors" }, { "rfilename": "hunyuan-video-i2v-720p/lora/hair_growth_kohaya_weights.safetensors" }, { "rfilename": "hunyuan-video-i2v-720p/transformers/mp_rank_00_model_states.pt" }, { "rfilename": "hunyuan-video-i2v-720p/vae/config.json" }, { "rfilename": "hunyuan-video-i2v-720p/vae/pytorch_model.pt" } ]
2025-03-05T09:27:03
null
67cf8bc4c956b41df7527244
RekaAI/reka-flash-3
RekaAI
{"license": "apache-2.0"}
null
2025-03-12T01:57:13
194
194
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% if messages[0]['role'] == 'system' %}{% set merged_content = messages[0]['content'] + ' ' + messages[1]['content'] %}{% set merged_messages = [{'role': messages[1]['role'], 'content': merged_content}] + messages[2:] %}{% else %}{% set merged_messages = messages %}{% endif %}{% for message in merged_messages %}{{('human' if message['role'] == 'user' else message['role']) + ': ' + (message['content'].split('<reasoning>')|first + message['content'].split('</reasoning>')|last if message['role'] == 'assistant' and '</reasoning>' in message['content'] else message['content'])}}{% if (loop.last and add_generation_prompt and merged_messages[-1]['role'] != 'assistant') or not loop.last %}{{ ' <sep> ' }}{% endif %}{% endfor %}{% if add_generation_prompt and merged_messages[-1]['role'] != 'assistant' %}{{ 'assistant:' }}{% endif %}", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}
821
821
{ "parameters": { "BF16": 20905482240, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 20905482240 }
[ "safetensors", "llama", "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "aime.png" }, { "rfilename": "config.json" }, { "rfilename": "eval.png" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00005.safetensors" }, { "rfilename": "model-00002-of-00005.safetensors" }, { "rfilename": "model-00003-of-00005.safetensors" }, { "rfilename": "model-00004-of-00005.safetensors" }, { "rfilename": "model-00005-of-00005.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-11T01:03:00
null
67bd70aaac4a596a43c6706c
Wan-AI/Wan2.1-T2V-14B
Wan-AI
{"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "text-to-video", "tags": ["video generation"], "library_name": "diffusers", "inference": {"parameters": {"num_inference_steps": 10}}}
[ { "provider": "fal-ai", "providerId": "fal-ai/wan-t2v", "status": "live", "task": "text-to-video" }, { "provider": "replicate", "providerId": "wavespeedai/wan-2.1-t2v-480p", "status": "live", "task": "text-to-video" }, { "provider": "novita", "providerId": "wan-t2v", "status": "staging", "task": "text-to-video" } ]
2025-03-12T03:08:09
1,004
156
{"model_type": "t2v"}
203,387
203,387
null
[ "diffusers", "safetensors", "t2v", "video generation", "text-to-video", "en", "zh", "license:apache-2.0", "region:us" ]
text-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.txt" }, { "rfilename": "README.md" }, { "rfilename": "Wan2.1_VAE.pth" }, { "rfilename": "assets/comp_effic.png" }, { "rfilename": "assets/data_for_diff_stage.jpg" }, { "rfilename": "assets/i2v_res.png" }, { "rfilename": "assets/logo.png" }, { "rfilename": "assets/t2v_res.jpg" }, { "rfilename": "assets/vben_1.3b_vs_sota.png" }, { "rfilename": "assets/vben_vs_sota.png" }, { "rfilename": "assets/video_dit_arch.jpg" }, { "rfilename": "assets/video_vae_res.jpg" }, { "rfilename": "config.json" }, { "rfilename": "diffusion_pytorch_model-00001-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model-00002-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model-00003-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model-00004-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model-00005-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model-00006-of-00006.safetensors" }, { "rfilename": "diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "examples/i2v_input.JPG" }, { "rfilename": "google/umt5-xxl/special_tokens_map.json" }, { "rfilename": "google/umt5-xxl/spiece.model" }, { "rfilename": "google/umt5-xxl/tokenizer.json" }, { "rfilename": "google/umt5-xxl/tokenizer_config.json" }, { "rfilename": "models_t5_umt5-xxl-enc-bf16.pth" } ]
2025-02-25T07:26:34
null
66aaa908fc35e079a941470d
black-forest-labs/FLUX.1-dev
black-forest-labs
{"language": ["en"], "license": "other", "license_name": "flux-1-dev-non-commercial-license", "license_link": "LICENSE.md", "extra_gated_prompt": "By clicking \"Agree\", you agree to the [FluxDev Non-Commercial License Agreement](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) and acknowledge the [Acceptable Use Policy](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/POLICY.md).", "tags": ["text-to-image", "image-generation", "flux"]}
[ { "provider": "fal-ai", "providerId": "fal-ai/flux/dev", "status": "live", "task": "text-to-image" }, { "provider": "replicate", "providerId": "black-forest-labs/flux-dev", "status": "live", "task": "text-to-image" }, { "provider": "together", "providerId": "black-forest-labs/FLUX.1-dev", "status": "live", "task": "text-to-image" }, { "provider": "hf-inference", "providerId": "black-forest-labs/FLUX.1-dev", "status": "live", "task": "text-to-image" }, { "provider": "nebius", "providerId": "black-forest-labs/flux-dev", "status": "live", "task": "text-to-image" }, { "provider": "black-forest-labs", "providerId": "flux-dev", "status": "staging", "task": "text-to-image" } ]
2024-08-16T14:38:19
9,306
139
{"diffusers": {"_class_name": "FluxPipeline"}}
2,717,802
10,350,902
null
[ "diffusers", "safetensors", "text-to-image", "image-generation", "flux", "en", "license:other", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.md" }, { "rfilename": "README.md" }, { "rfilename": "ae.safetensors" }, { "rfilename": "dev_grid.jpg" }, { "rfilename": "flux1-dev.safetensors" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model.safetensors" }, { "rfilename": "text_encoder_2/config.json" }, { "rfilename": "text_encoder_2/model-00001-of-00002.safetensors" }, { "rfilename": "text_encoder_2/model-00002-of-00002.safetensors" }, { "rfilename": "text_encoder_2/model.safetensors.index.json" }, { "rfilename": "tokenizer/merges.txt" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "tokenizer/vocab.json" }, { "rfilename": "tokenizer_2/special_tokens_map.json" }, { "rfilename": "tokenizer_2/spiece.model" }, { "rfilename": "tokenizer_2/tokenizer.json" }, { "rfilename": "tokenizer_2/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2024-07-31T21:13:44
null
67c878faab8bd5dc1b2ffbf0
bartowski/Qwen_QwQ-32B-GGUF
bartowski
{"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "base_model": "Qwen/QwQ-32B", "tags": ["chat"], "language": ["en"]}
null
2025-03-05T18:46:44
135
120
null
151,152
151,152
null
[ "gguf", "chat", "text-generation", "en", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "Qwen_QwQ-32B-IQ2_M.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ2_S.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ2_XS.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ2_XXS.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ3_M.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ3_XS.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ3_XXS.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ4_NL.gguf" }, { "rfilename": "Qwen_QwQ-32B-IQ4_XS.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q2_K.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q2_K_L.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q3_K_L.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q3_K_M.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q3_K_S.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q3_K_XL.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q4_0.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q4_1.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q4_K_L.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q4_K_M.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q4_K_S.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q5_K_L.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q5_K_M.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q5_K_S.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q6_K.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q6_K_L.gguf" }, { "rfilename": "Qwen_QwQ-32B-Q8_0.gguf" }, { "rfilename": "Qwen_QwQ-32B.imatrix" }, { "rfilename": "README.md" } ]
2025-03-05T16:16:58
{ "architecture": "qwen2", "bos_token": "<|endoftext|>", "causal": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "context_length": 131072, "eos_token": "<|im_end|>", "quantize_imatrix_file": "/models_out/QwQ-32B-GGUF/Qwen_QwQ-32B.imatrix", "total": 32763876352 }
67c49e36c94abe8ba7096280
CohereForAI/aya-vision-8b
CohereForAI
{"inference": false, "library_name": "transformers", "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"], "license": "cc-by-nc-4.0", "extra_gated_prompt": "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere\u2019s [Privacy Policy]( https://cohere.com/privacy). You\u2019ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time.", "extra_gated_fields": {"Name": "text", "Affiliation": "text", "Country": "country", "I agree to use this model for non-commercial use ONLY": "checkbox"}, "pipeline_tag": "image-text-to-text"}
null
2025-03-04T16:22:35
247
117
{"architectures": ["AyaVisionForConditionalGeneration"], "model_type": "aya_vision", "processor_config": {"chat_template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes. When analyzing images, carefully describe and interpret their content while avoiding any promotion of harm, misinformation, or bias.\n\nYou are Aya Vision, a vision-language model built by Cohere for AI. You have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context. Your responses must maintain the highest standards of quality, accuracy, and safety.\n\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Aya Vision.\n- You are a large language model built by Cohere for AI.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<BOS_TOKEN>", "chat_template": [{"name": "default", "template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes. When analyzing images, carefully describe and interpret their content while avoiding any promotion of harm, misinformation, or bias.\n\nYou are Aya Vision, a vision-language model built by Cohere for AI. You have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context. Your responses must maintain the highest standards of quality, accuracy, and safety.\n\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Aya Vision.\n- You are a large language model built by Cohere for AI.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}], "eos_token": "<|END_OF_TURN_TOKEN|>", "pad_token": "<PAD>", "unk_token": null, "use_default_system_prompt": false}}
146,501
146,501
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 8631842032, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8631842032 }
[ "transformers", "safetensors", "aya_vision", "image-text-to-text", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "arxiv:2412.04261", "license:cc-by-nc-4.0", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "AyaVision8BWinRates(AyaVisionBench).png" }, { "rfilename": "AyaVision8BWinRates(m-WildVision).png" }, { "rfilename": "Aya_Vision_8B_Combined_Win_Rates.png" }, { "rfilename": "Aya_Vision_8BvsPangea(AyaVisionBench).png" }, { "rfilename": "EfficiencyvsPerformance.png" }, { "rfilename": "README.md" }, { "rfilename": "Vision_Text_Performance.png" }, { "rfilename": "aya-vision-8B.png" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-02T18:06:46
null
679802d9c71912514bc8d75b
lodestones/Chroma
lodestones
{"language": ["en"], "license": "apache-2.0", "tags": ["text-to-image", "image-generation", "chroma"]}
null
2025-03-12T05:53:21
126
114
null
0
0
null
[ "text-to-image", "image-generation", "chroma", "en", "license:apache-2.0", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "ComfyUI_00038_.png" }, { "rfilename": "README.md" }, { "rfilename": "chroma-unlocked-v1.safetensors" }, { "rfilename": "chroma-unlocked-v10.safetensors" }, { "rfilename": "chroma-unlocked-v11.safetensors" }, { "rfilename": "chroma-unlocked-v12.safetensors" }, { "rfilename": "chroma-unlocked-v2.safetensors" }, { "rfilename": "chroma-unlocked-v3.safetensors" }, { "rfilename": "chroma-unlocked-v4.safetensors" }, { "rfilename": "chroma-unlocked-v5.safetensors" }, { "rfilename": "chroma-unlocked-v6.safetensors" }, { "rfilename": "chroma-unlocked-v7.safetensors" }, { "rfilename": "chroma-unlocked-v8.safetensors" }, { "rfilename": "chroma-unlocked-v9.safetensors" }, { "rfilename": "chroma-v2.5.safetensors" }, { "rfilename": "collage.png" }, { "rfilename": "mask.png" }, { "rfilename": "prune.png" }, { "rfilename": "simple_workflow.json" }, { "rfilename": "timestep.png" } ]
2025-01-27T22:04:09
null
67882547eb36144551980fb3
allenai/olmOCR-7B-0225-preview
allenai
{"language": ["en"], "license": "apache-2.0", "datasets": ["allenai/olmOCR-mix-0225"], "base_model": ["Qwen/Qwen2-VL-7B-Instruct"], "library_name": "transformers"}
null
2025-02-25T00:55:05
536
112
{"architectures": ["Qwen2VLForConditionalGeneration"], "model_type": "qwen2_vl", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
178,103
178,439
{ "parameters": { "BF16": 8291375616, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8291375616 }
[ "transformers", "safetensors", "qwen2_vl", "image-text-to-text", "conversational", "en", "dataset:allenai/olmOCR-mix-0225", "base_model:Qwen/Qwen2-VL-7B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-7B-Instruct", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-01-15T21:14:47
null
67c869f6a3a4e28d00af552b
Qwen/QwQ-32B-GGUF
Qwen
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B-GGUF/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat"]}
null
2025-03-12T09:50:15
122
111
null
88,367
88,367
null
[ "gguf", "chat", "text-generation", "en", "arxiv:2309.00071", "arxiv:2412.15115", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "fp16/qwq-32b-fp16-00001-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00002-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00003-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00004-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00005-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00006-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00007-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00008-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00009-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00010-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00011-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00012-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00013-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00014-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00015-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00016-of-00017.gguf" }, { "rfilename": "fp16/qwq-32b-fp16-00017-of-00017.gguf" }, { "rfilename": "params" }, { "rfilename": "qwq-32b-q2_k.gguf" }, { "rfilename": "qwq-32b-q3_k_m.gguf" }, { "rfilename": "qwq-32b-q4_0.gguf" }, { "rfilename": "qwq-32b-q4_k_m.gguf" }, { "rfilename": "qwq-32b-q5_0.gguf" }, { "rfilename": "qwq-32b-q5_k_m.gguf" }, { "rfilename": "qwq-32b-q6_k.gguf" }, { "rfilename": "qwq-32b-q8_0.gguf" } ]
2025-03-05T15:12:54
{ "architecture": "qwen2", "bos_token": "<|endoftext|>", "causal": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "context_length": 131072, "eos_token": "<|im_end|>", "quantize_imatrix_file": null, "total": 32763876352 }
67b3d091b9895fea7fe29e42
perplexity-ai/r1-1776
perplexity-ai
{"license": "mit", "base_model": ["deepseek-ai/DeepSeek-R1"], "library_name": "transformers"}
[ { "provider": "fireworks-ai", "providerId": "accounts/perplexity/models/r1-1776", "status": "live", "task": "conversational" } ]
2025-02-26T17:40:09
2,112
105
{"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\\n\\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- endfor %}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c>'}}{% endif %}"}}
40,901
40,901
{ "parameters": { "BF16": 671026419200, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 671026419200 }
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "base_model:deepseek-ai/DeepSeek-R1", "base_model:finetune:deepseek-ai/DeepSeek-R1", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_deepseek.DeepseekV3ForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_deepseek.py" }, { "rfilename": "model-00001-of-00252.safetensors" }, { "rfilename": "model-00002-of-00252.safetensors" }, { "rfilename": "model-00003-of-00252.safetensors" }, { "rfilename": "model-00004-of-00252.safetensors" }, { "rfilename": "model-00005-of-00252.safetensors" }, { "rfilename": "model-00006-of-00252.safetensors" }, { "rfilename": "model-00007-of-00252.safetensors" }, { "rfilename": "model-00008-of-00252.safetensors" }, { "rfilename": "model-00009-of-00252.safetensors" }, { "rfilename": "model-00010-of-00252.safetensors" }, { "rfilename": "model-00011-of-00252.safetensors" }, { "rfilename": "model-00012-of-00252.safetensors" }, { "rfilename": "model-00013-of-00252.safetensors" }, { "rfilename": "model-00014-of-00252.safetensors" }, { "rfilename": "model-00015-of-00252.safetensors" }, { "rfilename": "model-00016-of-00252.safetensors" }, { "rfilename": "model-00017-of-00252.safetensors" }, { "rfilename": "model-00018-of-00252.safetensors" }, { "rfilename": "model-00019-of-00252.safetensors" }, { "rfilename": "model-00020-of-00252.safetensors" }, { "rfilename": "model-00021-of-00252.safetensors" }, { "rfilename": "model-00022-of-00252.safetensors" }, { "rfilename": "model-00023-of-00252.safetensors" }, { "rfilename": "model-00024-of-00252.safetensors" }, { "rfilename": "model-00025-of-00252.safetensors" }, { "rfilename": "model-00026-of-00252.safetensors" }, { "rfilename": "model-00027-of-00252.safetensors" }, { "rfilename": "model-00028-of-00252.safetensors" }, { "rfilename": "model-00029-of-00252.safetensors" }, { "rfilename": "model-00030-of-00252.safetensors" }, { "rfilename": "model-00031-of-00252.safetensors" }, { "rfilename": "model-00032-of-00252.safetensors" }, { "rfilename": "model-00033-of-00252.safetensors" }, { "rfilename": "model-00034-of-00252.safetensors" }, { "rfilename": "model-00035-of-00252.safetensors" }, { "rfilename": "model-00036-of-00252.safetensors" }, { "rfilename": "model-00037-of-00252.safetensors" }, { "rfilename": "model-00038-of-00252.safetensors" }, { "rfilename": "model-00039-of-00252.safetensors" }, { "rfilename": "model-00040-of-00252.safetensors" }, { "rfilename": "model-00041-of-00252.safetensors" }, { "rfilename": "model-00042-of-00252.safetensors" }, { "rfilename": "model-00043-of-00252.safetensors" }, { "rfilename": "model-00044-of-00252.safetensors" }, { "rfilename": "model-00045-of-00252.safetensors" }, { "rfilename": "model-00046-of-00252.safetensors" }, { "rfilename": "model-00047-of-00252.safetensors" }, { "rfilename": "model-00048-of-00252.safetensors" }, { "rfilename": "model-00049-of-00252.safetensors" }, { "rfilename": "model-00050-of-00252.safetensors" }, { "rfilename": "model-00051-of-00252.safetensors" }, { "rfilename": "model-00052-of-00252.safetensors" }, { "rfilename": "model-00053-of-00252.safetensors" }, { "rfilename": "model-00054-of-00252.safetensors" }, { "rfilename": "model-00055-of-00252.safetensors" }, { "rfilename": "model-00056-of-00252.safetensors" }, { "rfilename": "model-00057-of-00252.safetensors" }, { "rfilename": "model-00058-of-00252.safetensors" }, { "rfilename": "model-00059-of-00252.safetensors" }, { "rfilename": "model-00060-of-00252.safetensors" }, { "rfilename": "model-00061-of-00252.safetensors" }, { "rfilename": "model-00062-of-00252.safetensors" }, { "rfilename": "model-00063-of-00252.safetensors" }, { "rfilename": "model-00064-of-00252.safetensors" }, { "rfilename": "model-00065-of-00252.safetensors" }, { "rfilename": "model-00066-of-00252.safetensors" }, { "rfilename": "model-00067-of-00252.safetensors" }, { "rfilename": "model-00068-of-00252.safetensors" }, { "rfilename": "model-00069-of-00252.safetensors" }, { "rfilename": "model-00070-of-00252.safetensors" }, { "rfilename": "model-00071-of-00252.safetensors" }, { "rfilename": "model-00072-of-00252.safetensors" }, { "rfilename": "model-00073-of-00252.safetensors" }, { "rfilename": "model-00074-of-00252.safetensors" }, { "rfilename": "model-00075-of-00252.safetensors" }, { "rfilename": "model-00076-of-00252.safetensors" }, { "rfilename": "model-00077-of-00252.safetensors" }, { "rfilename": "model-00078-of-00252.safetensors" }, { "rfilename": "model-00079-of-00252.safetensors" }, { "rfilename": "model-00080-of-00252.safetensors" }, { "rfilename": "model-00081-of-00252.safetensors" }, { "rfilename": "model-00082-of-00252.safetensors" }, { "rfilename": "model-00083-of-00252.safetensors" }, { "rfilename": "model-00084-of-00252.safetensors" }, { "rfilename": "model-00085-of-00252.safetensors" }, { "rfilename": "model-00086-of-00252.safetensors" }, { "rfilename": "model-00087-of-00252.safetensors" }, { "rfilename": "model-00088-of-00252.safetensors" }, { "rfilename": "model-00089-of-00252.safetensors" }, { "rfilename": "model-00090-of-00252.safetensors" }, { "rfilename": "model-00091-of-00252.safetensors" }, { "rfilename": "model-00092-of-00252.safetensors" }, { "rfilename": "model-00093-of-00252.safetensors" }, { "rfilename": "model-00094-of-00252.safetensors" }, { "rfilename": "model-00095-of-00252.safetensors" }, { "rfilename": "model-00096-of-00252.safetensors" }, { "rfilename": "model-00097-of-00252.safetensors" }, { "rfilename": "model-00098-of-00252.safetensors" }, { "rfilename": "model-00099-of-00252.safetensors" }, { "rfilename": "model-00100-of-00252.safetensors" }, { "rfilename": "model-00101-of-00252.safetensors" }, { "rfilename": "model-00102-of-00252.safetensors" }, { "rfilename": "model-00103-of-00252.safetensors" }, { "rfilename": "model-00104-of-00252.safetensors" }, { "rfilename": "model-00105-of-00252.safetensors" }, { "rfilename": "model-00106-of-00252.safetensors" }, { "rfilename": "model-00107-of-00252.safetensors" }, { "rfilename": "model-00108-of-00252.safetensors" }, { "rfilename": "model-00109-of-00252.safetensors" }, { "rfilename": "model-00110-of-00252.safetensors" }, { "rfilename": "model-00111-of-00252.safetensors" }, { "rfilename": "model-00112-of-00252.safetensors" }, { "rfilename": "model-00113-of-00252.safetensors" }, { "rfilename": "model-00114-of-00252.safetensors" }, { "rfilename": "model-00115-of-00252.safetensors" }, { "rfilename": "model-00116-of-00252.safetensors" }, { "rfilename": "model-00117-of-00252.safetensors" }, { "rfilename": "model-00118-of-00252.safetensors" }, { "rfilename": "model-00119-of-00252.safetensors" }, { "rfilename": "model-00120-of-00252.safetensors" }, { "rfilename": "model-00121-of-00252.safetensors" }, { "rfilename": "model-00122-of-00252.safetensors" }, { "rfilename": "model-00123-of-00252.safetensors" }, { "rfilename": "model-00124-of-00252.safetensors" }, { "rfilename": "model-00125-of-00252.safetensors" }, { "rfilename": "model-00126-of-00252.safetensors" }, { "rfilename": "model-00127-of-00252.safetensors" }, { "rfilename": "model-00128-of-00252.safetensors" }, { "rfilename": "model-00129-of-00252.safetensors" }, { "rfilename": "model-00130-of-00252.safetensors" }, { "rfilename": "model-00131-of-00252.safetensors" }, { "rfilename": "model-00132-of-00252.safetensors" }, { "rfilename": "model-00133-of-00252.safetensors" }, { "rfilename": "model-00134-of-00252.safetensors" }, { "rfilename": "model-00135-of-00252.safetensors" }, { "rfilename": "model-00136-of-00252.safetensors" }, { "rfilename": "model-00137-of-00252.safetensors" }, { "rfilename": "model-00138-of-00252.safetensors" }, { "rfilename": "model-00139-of-00252.safetensors" }, { "rfilename": "model-00140-of-00252.safetensors" }, { "rfilename": "model-00141-of-00252.safetensors" }, { "rfilename": "model-00142-of-00252.safetensors" }, { "rfilename": "model-00143-of-00252.safetensors" }, { "rfilename": "model-00144-of-00252.safetensors" }, { "rfilename": "model-00145-of-00252.safetensors" }, { "rfilename": "model-00146-of-00252.safetensors" }, { "rfilename": "model-00147-of-00252.safetensors" }, { "rfilename": "model-00148-of-00252.safetensors" }, { "rfilename": "model-00149-of-00252.safetensors" }, { "rfilename": "model-00150-of-00252.safetensors" }, { "rfilename": "model-00151-of-00252.safetensors" }, { "rfilename": "model-00152-of-00252.safetensors" }, { "rfilename": "model-00153-of-00252.safetensors" }, { "rfilename": "model-00154-of-00252.safetensors" }, { "rfilename": "model-00155-of-00252.safetensors" }, { "rfilename": "model-00156-of-00252.safetensors" }, { "rfilename": "model-00157-of-00252.safetensors" }, { "rfilename": "model-00158-of-00252.safetensors" }, { "rfilename": "model-00159-of-00252.safetensors" }, { "rfilename": "model-00160-of-00252.safetensors" }, { "rfilename": "model-00161-of-00252.safetensors" }, { "rfilename": "model-00162-of-00252.safetensors" }, { "rfilename": "model-00163-of-00252.safetensors" }, { "rfilename": "model-00164-of-00252.safetensors" }, { "rfilename": "model-00165-of-00252.safetensors" }, { "rfilename": "model-00166-of-00252.safetensors" }, { "rfilename": "model-00167-of-00252.safetensors" }, { "rfilename": "model-00168-of-00252.safetensors" }, { "rfilename": "model-00169-of-00252.safetensors" }, { "rfilename": "model-00170-of-00252.safetensors" }, { "rfilename": "model-00171-of-00252.safetensors" }, { "rfilename": "model-00172-of-00252.safetensors" }, { "rfilename": "model-00173-of-00252.safetensors" }, { "rfilename": "model-00174-of-00252.safetensors" }, { "rfilename": "model-00175-of-00252.safetensors" }, { "rfilename": "model-00176-of-00252.safetensors" }, { "rfilename": "model-00177-of-00252.safetensors" }, { "rfilename": "model-00178-of-00252.safetensors" }, { "rfilename": "model-00179-of-00252.safetensors" }, { "rfilename": "model-00180-of-00252.safetensors" }, { "rfilename": "model-00181-of-00252.safetensors" }, { "rfilename": "model-00182-of-00252.safetensors" }, { "rfilename": "model-00183-of-00252.safetensors" }, { "rfilename": "model-00184-of-00252.safetensors" }, { "rfilename": "model-00185-of-00252.safetensors" }, { "rfilename": "model-00186-of-00252.safetensors" }, { "rfilename": "model-00187-of-00252.safetensors" }, { "rfilename": "model-00188-of-00252.safetensors" }, { "rfilename": "model-00189-of-00252.safetensors" }, { "rfilename": "model-00190-of-00252.safetensors" }, { "rfilename": "model-00191-of-00252.safetensors" }, { "rfilename": "model-00192-of-00252.safetensors" }, { "rfilename": "model-00193-of-00252.safetensors" }, { "rfilename": "model-00194-of-00252.safetensors" }, { "rfilename": "model-00195-of-00252.safetensors" }, { "rfilename": "model-00196-of-00252.safetensors" }, { "rfilename": "model-00197-of-00252.safetensors" }, { "rfilename": "model-00198-of-00252.safetensors" }, { "rfilename": "model-00199-of-00252.safetensors" }, { "rfilename": "model-00200-of-00252.safetensors" }, { "rfilename": "model-00201-of-00252.safetensors" }, { "rfilename": "model-00202-of-00252.safetensors" }, { "rfilename": "model-00203-of-00252.safetensors" }, { "rfilename": "model-00204-of-00252.safetensors" }, { "rfilename": "model-00205-of-00252.safetensors" }, { "rfilename": "model-00206-of-00252.safetensors" }, { "rfilename": "model-00207-of-00252.safetensors" }, { "rfilename": "model-00208-of-00252.safetensors" }, { "rfilename": "model-00209-of-00252.safetensors" }, { "rfilename": "model-00210-of-00252.safetensors" }, { "rfilename": "model-00211-of-00252.safetensors" }, { "rfilename": "model-00212-of-00252.safetensors" }, { "rfilename": "model-00213-of-00252.safetensors" }, { "rfilename": "model-00214-of-00252.safetensors" }, { "rfilename": "model-00215-of-00252.safetensors" }, { "rfilename": "model-00216-of-00252.safetensors" }, { "rfilename": "model-00217-of-00252.safetensors" }, { "rfilename": "model-00218-of-00252.safetensors" }, { "rfilename": "model-00219-of-00252.safetensors" }, { "rfilename": "model-00220-of-00252.safetensors" }, { "rfilename": "model-00221-of-00252.safetensors" }, { "rfilename": "model-00222-of-00252.safetensors" }, { "rfilename": "model-00223-of-00252.safetensors" }, { "rfilename": "model-00224-of-00252.safetensors" }, { "rfilename": "model-00225-of-00252.safetensors" }, { "rfilename": "model-00226-of-00252.safetensors" }, { "rfilename": "model-00227-of-00252.safetensors" }, { "rfilename": "model-00228-of-00252.safetensors" }, { "rfilename": "model-00229-of-00252.safetensors" }, { "rfilename": "model-00230-of-00252.safetensors" }, { "rfilename": "model-00231-of-00252.safetensors" }, { "rfilename": "model-00232-of-00252.safetensors" }, { "rfilename": "model-00233-of-00252.safetensors" }, { "rfilename": "model-00234-of-00252.safetensors" }, { "rfilename": "model-00235-of-00252.safetensors" }, { "rfilename": "model-00236-of-00252.safetensors" }, { "rfilename": "model-00237-of-00252.safetensors" }, { "rfilename": "model-00238-of-00252.safetensors" }, { "rfilename": "model-00239-of-00252.safetensors" }, { "rfilename": "model-00240-of-00252.safetensors" }, { "rfilename": "model-00241-of-00252.safetensors" }, { "rfilename": "model-00242-of-00252.safetensors" }, { "rfilename": "model-00243-of-00252.safetensors" }, { "rfilename": "model-00244-of-00252.safetensors" }, { "rfilename": "model-00245-of-00252.safetensors" }, { "rfilename": "model-00246-of-00252.safetensors" }, { "rfilename": "model-00247-of-00252.safetensors" }, { "rfilename": "model-00248-of-00252.safetensors" }, { "rfilename": "model-00249-of-00252.safetensors" }, { "rfilename": "model-00250-of-00252.safetensors" }, { "rfilename": "model-00251-of-00252.safetensors" }, { "rfilename": "model-00252-of-00252.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_deepseek.py" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-18T00:13:05
null
67c35be6eae05d8f94fae4c2
google/gemma-3-12b-it
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-12b-pt"}
null
2025-03-12T08:30:33
105
105
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
69
69
{ "parameters": { "BF16": 12187325040, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 12187325040 }
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-12b-pt", "base_model:finetune:google/gemma-3-12b-pt", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00005.safetensors" }, { "rfilename": "model-00002-of-00005.safetensors" }, { "rfilename": "model-00003-of-00005.safetensors" }, { "rfilename": "model-00004-of-00005.safetensors" }, { "rfilename": "model-00005-of-00005.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-01T19:11:34
null
67b79c8700245b72c5706777
google/gemma-3-4b-it
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-4b-pt"}
null
2025-03-12T08:30:08
95
95
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
1,639
1,639
{ "parameters": { "BF16": 4300079472, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 4300079472 }
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "conversational", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-4b-pt", "base_model:finetune:google/gemma-3-4b-pt", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-20T21:20:07
null
676ca1388118866906abbd7c
hexgrad/Kokoro-82M
hexgrad
{"license": "apache-2.0", "language": ["en"], "base_model": ["yl4579/StyleTTS2-LJSpeech"], "pipeline_tag": "text-to-speech"}
[ { "provider": "replicate", "providerId": "jaaari/kokoro-82m:dfdf537ba482b029e0a761699e6f55e9162cfd159270bfe0e44857caa5f275a6", "status": "staging", "task": "text-to-speech" }, { "provider": "fal-ai", "providerId": "fal-ai/kokoro/american-english", "status": "staging", "task": "text-to-speech" } ]
2025-03-04T05:39:12
3,645
94
{}
1,588,930
1,894,440
null
[ "text-to-speech", "en", "arxiv:2306.07691", "arxiv:2203.02395", "base_model:yl4579/StyleTTS2-LJSpeech", "base_model:finetune:yl4579/StyleTTS2-LJSpeech", "doi:10.57967/hf/4329", "license:apache-2.0", "region:us" ]
text-to-speech
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "DONATE.md" }, { "rfilename": "EVAL.md" }, { "rfilename": "README.md" }, { "rfilename": "SAMPLES.md" }, { "rfilename": "VOICES.md" }, { "rfilename": "config.json" }, { "rfilename": "eval/ArtificialAnalysis-2025-02-26.jpeg" }, { "rfilename": "eval/TTS_Arena-2025-02-26.jpeg" }, { "rfilename": "eval/TTS_Spaces_Arena-2025-02-26.jpeg" }, { "rfilename": "kokoro-v1_0.pth" }, { "rfilename": "samples/HEARME.wav" }, { "rfilename": "samples/af_heart_0.wav" }, { "rfilename": "samples/af_heart_1.wav" }, { "rfilename": "samples/af_heart_2.wav" }, { "rfilename": "samples/af_heart_3.wav" }, { "rfilename": "samples/af_heart_4.wav" }, { "rfilename": "samples/af_heart_5.wav" }, { "rfilename": "voices/af_alloy.pt" }, { "rfilename": "voices/af_aoede.pt" }, { "rfilename": "voices/af_bella.pt" }, { "rfilename": "voices/af_heart.pt" }, { "rfilename": "voices/af_jessica.pt" }, { "rfilename": "voices/af_kore.pt" }, { "rfilename": "voices/af_nicole.pt" }, { "rfilename": "voices/af_nova.pt" }, { "rfilename": "voices/af_river.pt" }, { "rfilename": "voices/af_sarah.pt" }, { "rfilename": "voices/af_sky.pt" }, { "rfilename": "voices/am_adam.pt" }, { "rfilename": "voices/am_echo.pt" }, { "rfilename": "voices/am_eric.pt" }, { "rfilename": "voices/am_fenrir.pt" }, { "rfilename": "voices/am_liam.pt" }, { "rfilename": "voices/am_michael.pt" }, { "rfilename": "voices/am_onyx.pt" }, { "rfilename": "voices/am_puck.pt" }, { "rfilename": "voices/am_santa.pt" }, { "rfilename": "voices/bf_alice.pt" }, { "rfilename": "voices/bf_emma.pt" }, { "rfilename": "voices/bf_isabella.pt" }, { "rfilename": "voices/bf_lily.pt" }, { "rfilename": "voices/bm_daniel.pt" }, { "rfilename": "voices/bm_fable.pt" }, { "rfilename": "voices/bm_george.pt" }, { "rfilename": "voices/bm_lewis.pt" }, { "rfilename": "voices/ef_dora.pt" }, { "rfilename": "voices/em_alex.pt" }, { "rfilename": "voices/em_santa.pt" }, { "rfilename": "voices/ff_siwis.pt" }, { "rfilename": "voices/hf_alpha.pt" }, { "rfilename": "voices/hf_beta.pt" }, { "rfilename": "voices/hm_omega.pt" }, { "rfilename": "voices/hm_psi.pt" }, { "rfilename": "voices/if_sara.pt" }, { "rfilename": "voices/im_nicola.pt" }, { "rfilename": "voices/jf_alpha.pt" }, { "rfilename": "voices/jf_gongitsune.pt" }, { "rfilename": "voices/jf_nezumi.pt" }, { "rfilename": "voices/jf_tebukuro.pt" }, { "rfilename": "voices/jm_kumo.pt" }, { "rfilename": "voices/pf_dora.pt" }, { "rfilename": "voices/pm_alex.pt" }, { "rfilename": "voices/pm_santa.pt" }, { "rfilename": "voices/zf_xiaobei.pt" }, { "rfilename": "voices/zf_xiaoni.pt" }, { "rfilename": "voices/zf_xiaoxiao.pt" }, { "rfilename": "voices/zf_xiaoyi.pt" }, { "rfilename": "voices/zm_yunjian.pt" }, { "rfilename": "voices/zm_yunxi.pt" }, { "rfilename": "voices/zm_yunxia.pt" }, { "rfilename": "voices/zm_yunyang.pt" } ]
2024-12-26T00:20:08
null
67be35b066f702bfed7d3bdc
Comfy-Org/Wan_2.1_ComfyUI_repackaged
Comfy-Org
null
null
2025-03-07T12:28:15
273
85
null
0
0
null
[ "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "example workflows_Wan2.1/image_to_video_wan_480p_example.json" }, { "rfilename": "example workflows_Wan2.1/image_to_video_wan_720p_example.json" }, { "rfilename": "example workflows_Wan2.1/text_to_video_wan.json" }, { "rfilename": "split_files/clip_vision/clip_vision_h.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_e4m3fn.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_scaled.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp8_scaled.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_1.3B_fp16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp16.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp8_e4m3fn.safetensors" }, { "rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp8_scaled.safetensors" }, { "rfilename": "split_files/text_encoders/umt5_xxl_fp16.safetensors" }, { "rfilename": "split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors" }, { "rfilename": "split_files/vae/wan_2.1_vae.safetensors" } ]
2025-02-25T21:27:12
null
67ced65c9b9a3df71008da90
google/gemma-3-1b-it
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "text-generation", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-1b-pt"}
null
2025-03-12T14:50:25
81
81
{"architectures": ["Gemma3ForCausalLM"], "model_type": "gemma3_text", "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
2,084
2,084
{ "parameters": { "BF16": 999885952, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 999885952 }
[ "transformers", "safetensors", "gemma3_text", "text-generation", "conversational", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-1b-pt", "base_model:finetune:google/gemma-3-1b-pt", "license:gemma", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-10T12:09:00
null
67473fdfe77182ac96417565
Qwen/QwQ-32B-Preview
Qwen
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE", "language": ["en"], "base_model": "Qwen/Qwen2.5-32B-Instruct", "tags": ["chat"], "library_name": "transformers"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/qwen-qwq-32b-preview", "status": "live", "task": "conversational" }, { "provider": "together", "providerId": "Qwen/QwQ-32B-Preview", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "Qwen/QwQ-32B-Preview", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "Qwen/QwQ-32B-Preview", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "Qwen/QwQ-32B-Preview", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "QwQ-32B", "status": "live", "task": "conversational" } ]
2025-01-12T01:58:42
1,715
74
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
254,955
672,894
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00017.safetensors" }, { "rfilename": "model-00002-of-00017.safetensors" }, { "rfilename": "model-00003-of-00017.safetensors" }, { "rfilename": "model-00004-of-00017.safetensors" }, { "rfilename": "model-00005-of-00017.safetensors" }, { "rfilename": "model-00006-of-00017.safetensors" }, { "rfilename": "model-00007-of-00017.safetensors" }, { "rfilename": "model-00008-of-00017.safetensors" }, { "rfilename": "model-00009-of-00017.safetensors" }, { "rfilename": "model-00010-of-00017.safetensors" }, { "rfilename": "model-00011-of-00017.safetensors" }, { "rfilename": "model-00012-of-00017.safetensors" }, { "rfilename": "model-00013-of-00017.safetensors" }, { "rfilename": "model-00014-of-00017.safetensors" }, { "rfilename": "model-00015-of-00017.safetensors" }, { "rfilename": "model-00016-of-00017.safetensors" }, { "rfilename": "model-00017-of-00017.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2024-11-27T15:50:55
null
67c4cf687a31bf4b1d19c639
CohereForAI/aya-vision-32b
CohereForAI
{"inference": false, "library_name": "transformers", "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"], "license": "cc-by-nc-4.0", "extra_gated_prompt": "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere\u2019s [Privacy Policy]( https://cohere.com/privacy). You\u2019ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time.", "extra_gated_fields": {"Name": "text", "Affiliation": "text", "Country": "country", "I agree to use this model for non-commercial use ONLY": "checkbox"}, "pipeline_tag": "image-text-to-text"}
null
2025-03-04T16:23:09
168
74
{"architectures": ["AyaVisionForConditionalGeneration"], "model_type": "aya_vision", "processor_config": {"chat_template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are Aya Vision, a brilliant, sophisticated, AI-assistant chatbot trained to assist human users by providing thorough responses. You are a large vision language model built by the Cohere For AI. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context.<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<BOS_TOKEN>", "chat_template": [{"name": "default", "template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are Aya Vision, a brilliant, sophisticated, AI-assistant chatbot trained to assist human users by providing thorough responses. You are a large vision language model built by the Cohere For AI. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context.<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}], "eos_token": "<|END_OF_TURN_TOKEN|>", "pad_token": "<PAD>", "unk_token": null, "use_default_system_prompt": false}}
870
870
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 33137288432, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 33137288432 }
[ "transformers", "safetensors", "aya_vision", "image-text-to-text", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi", "arxiv:2412.04261", "license:cc-by-nc-4.0", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "Aya_Vision_32B_Combined_Win_Rates.png" }, { "rfilename": "EfficiencyvsPerformance.png" }, { "rfilename": "README.md" }, { "rfilename": "Step_by_Step_Improvement.png" }, { "rfilename": "aya-vision-32B.png" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00015.safetensors" }, { "rfilename": "model-00002-of-00015.safetensors" }, { "rfilename": "model-00003-of-00015.safetensors" }, { "rfilename": "model-00004-of-00015.safetensors" }, { "rfilename": "model-00005-of-00015.safetensors" }, { "rfilename": "model-00006-of-00015.safetensors" }, { "rfilename": "model-00007-of-00015.safetensors" }, { "rfilename": "model-00008-of-00015.safetensors" }, { "rfilename": "model-00009-of-00015.safetensors" }, { "rfilename": "model-00010-of-00015.safetensors" }, { "rfilename": "model-00011-of-00015.safetensors" }, { "rfilename": "model-00012-of-00015.safetensors" }, { "rfilename": "model-00013-of-00015.safetensors" }, { "rfilename": "model-00014-of-00015.safetensors" }, { "rfilename": "model-00015-of-00015.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-02T21:36:40
null
67c858e541f1fd865c280520
Qwen/QwQ-32B-AWQ
Qwen
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B-AWQ/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat"]}
null
2025-03-11T12:16:21
81
71
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "quantization_config": {"bits": 4, "quant_method": "awq"}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
67,496
67,496
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 1802048512, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": 3931176960, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 5733225472 }
[ "safetensors", "qwen2", "chat", "text-generation", "conversational", "en", "arxiv:2309.00071", "arxiv:2412.15115", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "4-bit", "awq", "region:us" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00005.safetensors" }, { "rfilename": "model-00002-of-00005.safetensors" }, { "rfilename": "model-00003-of-00005.safetensors" }, { "rfilename": "model-00004-of-00005.safetensors" }, { "rfilename": "model-00005-of-00005.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-05T14:00:05
null
67c4766ad43a5b1766e00afe
ASLP-lab/DiffRhythm-base
ASLP-lab
{"language": ["zh", "en"], "tags": ["music", "art", "diffusion"], "license": "other", "license_name": "stable-audio-community", "license_link": "LICENSE", "library_name": "DiffRhythm"}
null
2025-03-11T14:43:54
130
69
null
0
0
null
[ "DiffRhythm", "music", "art", "diffusion", "zh", "en", "arxiv:2503.01183", "license:other", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.md" }, { "rfilename": "README.md" }, { "rfilename": "cfm_model.pt" }, { "rfilename": "diffrhythm-1b.json" }, { "rfilename": "src/ASLP.jpg" }, { "rfilename": "src/diffrhythm.jpg" } ]
2025-03-02T15:16:58
null
67b52d4a824d77f2bba8b0af
microsoft/Phi-4-mini-instruct
microsoft
{"language": ["multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk"], "library_name": "transformers", "license": "mit", "license_link": "https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "tags": ["nlp", "code"], "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]}
null
2025-03-10T22:22:22
345
67
{"architectures": ["Phi3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_phi3.Phi3Config", "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM", "AutoTokenizer": "Xenova/gpt-4o"}, "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}
142,059
142,059
{ "parameters": { "BF16": 3836021760, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 3836021760 }
[ "transformers", "safetensors", "phi3", "text-generation", "nlp", "code", "conversational", "custom_code", "multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk", "arxiv:2503.01743", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "CODE_OF_CONDUCT.md" }, { "rfilename": "LICENSE" }, { "rfilename": "NOTICE.md" }, { "rfilename": "README.md" }, { "rfilename": "SECURITY.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "configuration_phi3.py" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_phi3.py" }, { "rfilename": "sample_finetune.py" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-02-19T01:00:58
null
67c59e6ef872c9b6b6f8fc17
THUDM/CogView4-6B
THUDM
{"license": "apache-2.0", "language": ["zh", "en"], "base_model": ["THUDM/glm-4-9b"], "pipeline_tag": "text-to-image", "library_name": "diffusers"}
[ { "provider": "fal-ai", "providerId": "fal-ai/cogview4", "status": "live", "task": "text-to-image" } ]
2025-03-11T08:10:58
192
64
{"diffusers": {"_class_name": "CogView4Pipeline"}}
13,682
13,682
null
[ "diffusers", "safetensors", "text-to-image", "zh", "en", "arxiv:2403.05121", "base_model:THUDM/glm-4-9b", "base_model:finetune:THUDM/glm-4-9b", "license:apache-2.0", "diffusers:CogView4Pipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model-00001-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00002-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00003-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00004-of-00004.safetensors" }, { "rfilename": "text_encoder/model.safetensors.index.json" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2025-03-03T12:19:58
null
679ca2b42afc0c3e41a48436
ElectricAlexis/NotaGen
ElectricAlexis
{"license": "mit", "tags": ["music"]}
null
2025-02-26T09:26:51
106
63
null
0
0
null
[ "music", "arxiv:2502.18008", "license:mit", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "notagen.png" }, { "rfilename": "weights_notagen_pretrain-finetune-RL3_beta_0.1_lambda_10_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_1e-06_batch_1.pth" }, { "rfilename": "weights_notagen_pretrain-finetune_p_size_16_p_length_1024_p_layers_c_layers_6_20_h_size_1280_lr_1e-05_batch_1.pth" }, { "rfilename": "weights_notagen_pretrain_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_0.0001_batch_4.pth" }, { "rfilename": "weights_notagen_pretrain_p_size_16_p_length_2048_p_layers_12_c_layers_3_h_size_768_lr_0.0002_batch_8.pth" }, { "rfilename": "weights_notagen_pretrain_p_size_16_p_length_2048_p_layers_16_c_layers_3_h_size_1024_lr_0.0001_batch_4.pth" }, { "rfilename": "weights_notagenx_p_size_16_p_length_1024_p_layers_20_h_size_1280.pth" } ]
2025-01-31T10:15:16
null
67b5949fc1f004c14454b878
GSAI-ML/LLaDA-8B-Instruct
GSAI-ML
{"license": "mit", "library_name": "transformers", "pipeline_tag": "text-generation"}
null
2025-02-27T02:50:10
208
63
{"architectures": ["LLaDAModelLM"], "auto_map": {"AutoConfig": "configuration_llada.LLaDAConfig", "AutoModelForCausalLM": "modeling_llada.LLaDAModelLM", "AutoModel": "modeling_llada.LLaDAModelLM"}, "model_type": "llada", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", "cls_token": "[CLS]", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>"}}
24,722
24,722
{ "parameters": { "BF16": 8015581184, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8015581184 }
[ "transformers", "safetensors", "llada", "text-generation", "conversational", "custom_code", "license:mit", "autotrain_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_llada.LLaDAModelLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_llada.py" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00006.safetensors" }, { "rfilename": "model-00002-of-00006.safetensors" }, { "rfilename": "model-00003-of-00006.safetensors" }, { "rfilename": "model-00004-of-00006.safetensors" }, { "rfilename": "model-00005-of-00006.safetensors" }, { "rfilename": "model-00006-of-00006.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_llada.py" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-19T08:21:51
null
67d01933a3fc55dc44c264c5
open-r1/OlympicCoder-7B
open-r1
{"license": "apache-2.0", "datasets": ["open-r1/codeforces-cots"], "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-7B-Instruct"], "pipeline_tag": "text-generation", "library_name": "transformers"}
null
2025-03-12T07:42:03
62
62
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}}
170
170
{ "parameters": { "BF16": 7615616512, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 7615616512 }
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:open-r1/codeforces-cots", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "ioi-evals.png" }, { "rfilename": "latest" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "trainer_state.json" }, { "rfilename": "training_args.bin" }, { "rfilename": "vocab.json" }, { "rfilename": "zero_to_fp32.py" } ]
2025-03-11T11:06:27
null
67abf36a4d0bd8ed8ce072e2
microsoft/OmniParser-v2.0
microsoft
{"library_name": "transformers", "license": "mit", "pipeline_tag": "image-text-to-text"}
null
2025-02-18T06:00:11
1,141
61
null
9,251
9,251
null
[ "transformers", "safetensors", "image-text-to-text", "arxiv:2408.00203", "license:mit", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModel", "custom_class": null, "pipeline_tag": null, "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "icon_caption/LICENSE" }, { "rfilename": "icon_caption/config.json" }, { "rfilename": "icon_caption/generation_config.json" }, { "rfilename": "icon_caption/model.safetensors" }, { "rfilename": "icon_detect/LICENSE" }, { "rfilename": "icon_detect/model.pt" }, { "rfilename": "icon_detect/model.yaml" }, { "rfilename": "icon_detect/train_args.yaml" } ]
2025-02-12T01:03:38
null
672379b045bf745cb0f1a79a
Lightricks/LTX-Video
Lightricks
{"tags": ["ltx-video", "image-to-video"], "pinned": true, "language": ["en"], "license": "other", "pipeline_tag": "text-to-video", "library_name": "diffusers"}
[ { "provider": "fal-ai", "providerId": "fal-ai/ltx-video", "status": "live", "task": "text-to-video" }, { "provider": "replicate", "providerId": "lightricks/ltx-video:8c47da666861d081eeb4d1261853087de23923a268a69b63febdf5dc1dee08e4", "status": "live", "task": "text-to-video" } ]
2025-03-12T13:14:02
1,066
56
{"diffusers": {"_class_name": "LTXPipeline"}}
149,812
608,211
null
[ "diffusers", "safetensors", "ltx-video", "image-to-video", "text-to-video", "en", "license:other", "diffusers:LTXPipeline", "region:us" ]
text-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "ltx-video-2b-v0.9.1.license.txt" }, { "rfilename": "ltx-video-2b-v0.9.1.safetensors" }, { "rfilename": "ltx-video-2b-v0.9.5.license.txt" }, { "rfilename": "ltx-video-2b-v0.9.5.safetensors" }, { "rfilename": "ltx-video-2b-v0.9.license.txt" }, { "rfilename": "ltx-video-2b-v0.9.safetensors" }, { "rfilename": "media/ltx-video_example_00001.gif" }, { "rfilename": "media/ltx-video_example_00002.gif" }, { "rfilename": "media/ltx-video_example_00003.gif" }, { "rfilename": "media/ltx-video_example_00004.gif" }, { "rfilename": "media/ltx-video_example_00005.gif" }, { "rfilename": "media/ltx-video_example_00006.gif" }, { "rfilename": "media/ltx-video_example_00007.gif" }, { "rfilename": "media/ltx-video_example_00008.gif" }, { "rfilename": "media/ltx-video_example_00009.gif" }, { "rfilename": "media/ltx-video_example_00010.gif" }, { "rfilename": "media/ltx-video_example_00011.gif" }, { "rfilename": "media/ltx-video_example_00012.gif" }, { "rfilename": "media/ltx-video_example_00013.gif" }, { "rfilename": "media/ltx-video_example_00014.gif" }, { "rfilename": "media/ltx-video_example_00015.gif" }, { "rfilename": "media/ltx-video_example_00016.gif" }, { "rfilename": "media/trailer.gif" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model-00001-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00002-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00003-of-00004.safetensors" }, { "rfilename": "text_encoder/model-00004-of-00004.safetensors" }, { "rfilename": "text_encoder/model.safetensors.index.json" }, { "rfilename": "tokenizer/added_tokens.json" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/spiece.model" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2024-10-31T12:36:00
null
67c80feb08ea8978b977031a
huihui-ai/DeepSeek-V3-abliterated
huihui-ai
{"license": "apache-2.0", "language": ["en"], "base_model": ["deepseek-ai/DeepSeek-R1", "perplexity-ai/r1-1776", "deepseek-ai/DeepSeek-V3"], "library_name": "transformers", "tags": ["DeepSeek", "abliterated", "uncensored"]}
null
2025-03-12T13:44:56
64
56
null
0
0
null
[ "transformers", "DeepSeek", "abliterated", "uncensored", "en", "base_model:deepseek-ai/DeepSeek-R1", "base_model:finetune:deepseek-ai/DeepSeek-R1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
{ "auto_model": "AutoModel", "custom_class": null, "pipeline_tag": null, "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "DeepSeek-V3-bf16.png" }, { "rfilename": "README.md" } ]
2025-03-05T08:48:43
null
67c8ceeb42ab7be22ace58b5
unsloth/QwQ-32B-GGUF
unsloth
{"base_model": "Qwen/QwQ-32B", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "tags": ["chat", "qwen"]}
null
2025-03-10T11:20:40
56
56
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2"}
67,106
67,106
null
[ "gguf", "qwen2", "chat", "qwen", "text-generation", "en", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "BF16/QwQ-32B.BF16-00001-of-00002.gguf" }, { "rfilename": "BF16/QwQ-32B.BF16-00002-of-00002.gguf" }, { "rfilename": "QwQ-32B-Q2_K.gguf" }, { "rfilename": "QwQ-32B-Q2_K_L.gguf" }, { "rfilename": "QwQ-32B-Q3_K_M.gguf" }, { "rfilename": "QwQ-32B-Q4_K_M.gguf" }, { "rfilename": "QwQ-32B-Q5_K_M.gguf" }, { "rfilename": "QwQ-32B-Q6_K.gguf" }, { "rfilename": "QwQ-32B.Q8_0.gguf" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "params" } ]
2025-03-05T22:23:39
{ "architecture": "qwen2", "bos_token": null, "causal": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "context_length": 131072, "eos_token": "<|im_end|>", "quantize_imatrix_file": null, "total": 32763876352 }
67175475ab870480b86e7caa
stabilityai/stable-diffusion-3.5-large
stabilityai
{"license": "other", "license_name": "stabilityai-ai-community", "license_link": "LICENSE.md", "tags": ["text-to-image", "stable-diffusion", "diffusers"], "inference": true, "extra_gated_prompt": "By clicking \"Agree\", you agree to the [License Agreement](https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/LICENSE.md) and acknowledge Stability AI's [Privacy Policy](https://stability.ai/privacy-policy).", "extra_gated_fields": {"Name": "text", "Email": "text", "Country": "country", "Organization or Affiliation": "text", "Receive email updates and promotions on Stability AI products, services, and research?": {"type": "select", "options": ["Yes", "No"]}, "What do you intend to use the model for?": {"type": "select", "options": ["Research", "Personal use", "Creative Professional", "Startup", "Enterprise"]}, "I agree to the License Agreement and acknowledge Stability AI's Privacy Policy": "checkbox"}, "language": ["en"], "pipeline_tag": "text-to-image"}
[ { "provider": "fal-ai", "providerId": "fal-ai/stable-diffusion-v35-large", "status": "live", "task": "text-to-image" }, { "provider": "replicate", "providerId": "stability-ai/stable-diffusion-3.5-large", "status": "live", "task": "text-to-image" }, { "provider": "hf-inference", "providerId": "stabilityai/stable-diffusion-3.5-large", "status": "live", "task": "text-to-image" } ]
2024-10-22T14:36:33
2,456
54
{"diffusers": {"_class_name": "StableDiffusion3Pipeline"}}
160,516
918,778
null
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "en", "arxiv:2403.03206", "license:other", "diffusers:StableDiffusion3Pipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.md" }, { "rfilename": "README.md" }, { "rfilename": "SD3.5L_example_workflow.json" }, { "rfilename": "mmdit.png" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "sd3.5_large.safetensors" }, { "rfilename": "sd3.5_large_demo.png" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model.fp16.safetensors" }, { "rfilename": "text_encoder/model.safetensors" }, { "rfilename": "text_encoder_2/config.json" }, { "rfilename": "text_encoder_2/model.fp16.safetensors" }, { "rfilename": "text_encoder_2/model.safetensors" }, { "rfilename": "text_encoder_3/config.json" }, { "rfilename": "text_encoder_3/model-00001-of-00002.safetensors" }, { "rfilename": "text_encoder_3/model-00002-of-00002.safetensors" }, { "rfilename": "text_encoder_3/model.fp16-00001-of-00002.safetensors" }, { "rfilename": "text_encoder_3/model.fp16-00002-of-00002.safetensors" }, { "rfilename": "text_encoder_3/model.safetensors.index.fp16.json" }, { "rfilename": "text_encoder_3/model.safetensors.index.json" }, { "rfilename": "text_encoders/README.md" }, { "rfilename": "text_encoders/clip_g.safetensors" }, { "rfilename": "text_encoders/clip_l.safetensors" }, { "rfilename": "text_encoders/t5xxl_fp16.safetensors" }, { "rfilename": "text_encoders/t5xxl_fp8_e4m3fn.safetensors" }, { "rfilename": "tokenizer/merges.txt" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "tokenizer/vocab.json" }, { "rfilename": "tokenizer_2/merges.txt" }, { "rfilename": "tokenizer_2/special_tokens_map.json" }, { "rfilename": "tokenizer_2/tokenizer_config.json" }, { "rfilename": "tokenizer_2/vocab.json" }, { "rfilename": "tokenizer_3/special_tokens_map.json" }, { "rfilename": "tokenizer_3/spiece.model" }, { "rfilename": "tokenizer_3/tokenizer.json" }, { "rfilename": "tokenizer_3/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2024-10-22T07:29:57
null
67c08c2a0cec1569eda32ad5
ai21labs/AI21-Jamba-Large-1.6
ai21labs
{"license": "other", "license_name": "jamba-open-model-license", "license_link": "https://www.ai21.com/jamba-open-model-license/", "library_name": "transformers"}
null
2025-03-06T12:44:57
54
54
{"architectures": ["JambaForCausalLM"], "model_type": "jamba", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{# Variables #}\n{% set ns = namespace(message_count=0, is_last_checked_defined=False) %}\n{##}\n{% set bom_str = bom_str or \"<|bom|>\" %}\n{% set eom_str = eom_str or \"<|eom|>\" %}\n{% set default_system_message = default_system_message or \"\" %}\n{##}\n{% set documents_prefix = \"<documents>\" %}\n{% set documents_suffix = \"</documents>\" %}\n{% set tool_definitions_prefix = \"<tool_definitions>\" %}\n{% set tool_definitions_suffix = \"</tool_definitions>\" %}\n{% set active_modes_prefix = \"<active_output_modes>\" %}\n{% set active_modes_suffix = \"</active_output_modes>\" %}\n{##}\n{% set tool_calls_prefix = \"<tool_calls>\" %}\n{% set tool_calls_suffix = \"</tool_calls>\" %}\n{% set citations_prefix = \"<citations>\" %}\n{% set citations_suffix = \"</citations>\" %}\n{##}\n{% if add_generation_prompt is not defined %}\n {% set add_generation_prompt = True %}\n{% endif %}\n{% set role_to_predict = role_to_predict or \"assistant\" %}\n{% if messages|length > 0 and messages[0].role == \"system\" %}\n {% set system_message = messages[0].content %}\n {% set loop_messages = messages[1:] %}\n{% else %}\n {% set system_message = default_system_message %}\n {% set loop_messages = messages %}\n{% endif %}\n{##}\n{##}\n{# Macros #}\n{% macro handle_tool_definitions(tools) %}\n {{- tool_definitions_prefix -}}\n {{- \"\\n# Tools\" -}}\n {{- \"\\n\\n## Functions\" -}}\n {% for tool in tools %}\n {% set _ = is_param_set(tool, field=\"type\") %}\n {% set is_tool_type_set = ns.is_last_checked_defined %}\n {% if is_tool_type_set %}\n {% if tool.type == \"function\" %}\n {% set tool = tool.function %}\n {% else %}\n {{ raise_exception(\"Currently, the only supported tool type is `function`\") }}\n {% endif %}\n {% endif %}\n {{- \"\\n\\n\" + (tool|tojson(indent=2)) -}}\n {% endfor %}\n {{- \"\\n\" + tool_definitions_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_first_system_message(system_message, tools) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set _ = is_param_set(system_message) %}\n {% set is_system_message_set = ns.is_last_checked_defined %}\n {% if is_system_message_set %}\n {{- system_message -}}\n {% endif %}\n {% set _ = is_param_set(tools, check_length=True) %}\n {% set is_tools_set = ns.is_last_checked_defined %}\n {% if is_tools_set %}\n {% if system_message %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- handle_tool_definitions(tools) -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_tool_calls(tool_calls) %}\n {{- tool_calls_prefix + \"[\\n\" -}}\n {% for tool_call in tool_calls %}\n {% set _ = is_param_set(tool_call, field=\"function\") %}\n {% set is_tool_call_function_set = ns.is_last_checked_defined %}\n {% if is_tool_call_function_set %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {% set arguments = tool_call.arguments %}\n {% if arguments is not string %}\n {%- set arguments = arguments|tojson -%}\n {%- endif %}\n {{ \"{\\\"name\\\": \\\"\" + tool_call.name + \"\\\", \\\"arguments\\\": \" + arguments + \"}\" -}}\n {% if not loop.last %}\n {{- \",\" }}\n {% endif %}\n {% endfor %}\n {{- \"\\n]\" + tool_calls_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_documents(documents) %}\n {{- documents_prefix -}}\n {{- \"\\n# Documents\" -}}\n {{- \"\\n\\nYou can use the following documents for reference:\" -}}\n {% for doc in documents %}\n {{- \"\\n\\n## Document ID: \" + loop.index0|string -}}\n {% set _ = is_param_set(doc, field=\"title\") %}\n {% set is_doc_title_set = ns.is_last_checked_defined %}\n {% if is_doc_title_set %}\n {{- \"\\nTitle: \" + doc.title -}}\n {% endif %}\n {% for key, value in doc.items() %}\n {% if key not in [\"title\", \"text\"] %}\n {{- \"\\n\" + key|title + \": \" + value|string -}}\n {% endif %}\n {% endfor %}\n {{- \"\\nText: \" + doc.text -}}\n {% endfor %}\n {{- \"\\n\" + documents_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_knobs(knobs) %}\n {{- active_modes_prefix -}}\n {{- \"\\n# Active Modes\" -}}\n {{ \"\\n\\nThe following modes configure the format or style of your responses. You should adhere to all currently\" -}}\n {{ \" active modes simultaneously.\" -}}\n {% if knobs.citation_mode == \"fast\" %}\n {{- \"\\n\\n## Citation Mode\" -}}\n {{- \"\\n\\nProvide a list of references only for the documents you base your response on. Format your response\" -}}\n {{ \" with the original answer followed by a citation section. Use this template:\" -}}\n {{ \" `{answer}\" + citations_prefix + \"DOCUMENT_IDS\" + citations_suffix + \"`, where DOCUMENT_IDS are the relevant document numbers\" -}}\n {{ \" (e.g. [2, 5, 9]), or [] if the answer cannot be supported by the provided documents.\" -}}\n {% endif %}\n {% if knobs.response_format == \"json_object\" %}\n {{- \"\\n\\n## JSON Mode\" -}}\n {{ \"\\n\\nProvide your response in JSON format. Adhere strictly to any schema given by the user.\" -}}\n {{ \" If an appropriate JSON format exists, use it without modification.\" -}}\n {% endif %}\n {{- \"\\n\" + active_modes_suffix -}}\n{% endmacro %}\n{##}\n{% macro get_last_user_index(messages) %}\n {% set ns.last_user_index = 0 %}\n {% for message in messages %}\n {% if message.role == 'user' %}\n {% set ns.last_user_index = loop.index0 %}\n {% endif %}\n {% endfor %}\n {{- ns.last_user_index -}}\n{% endmacro %}\n{##}\n{% macro handle_last_system_message(documents, knobs, use_documents, use_knobs) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set macros_to_call = [] %}\n {% set params_for_macros = [] %}\n {% if use_documents %}\n {% set macros_to_call = macros_to_call + [handle_documents] %}\n {% set params_for_macros = params_for_macros + [[documents]] %}\n {% endif %}\n {% if use_knobs %}\n {% set macros_to_call = macros_to_call + [handle_knobs] %}\n {% set params_for_macros = params_for_macros + [[knobs]] %}\n {% endif %}\n {% for i in range(macros_to_call|length) %}\n {% if i > 0 %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- macros_to_call[i](*params_for_macros[i]) -}}\n {% endfor %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_role(role, add_space=True) %}\n {{- \"<|\" + role + \"|>\" -}}\n {% if add_space %}\n {{- \" \" -}}\n {% endif %}\n{% endmacro %}\n{##}\n{% macro is_param_set(param, field=none, check_length=False) %}\n {% if field is not none %}\n {% if field in param %}\n {% set param = param[field] %}\n {% else %}\n {% set param = none %}\n {% endif %}\n {% endif %}\n {% set is_defined = param is defined and param is not none %}\n {% if check_length %}\n {% set ns.is_last_checked_defined = is_defined and param|length > 0 %}\n {% else %}\n {% set ns.is_last_checked_defined = is_defined %}\n {% endif %}\n{% endmacro %}\n{##}\n{##}\n{# Template #}\n{% if bos_token is defined and bos_token is not none %}\n {{- bos_token -}}\n{% endif %}\n{% set _ = is_param_set(system_message) %}\n{% set is_system_message_set = ns.is_last_checked_defined %}\n{% set _ = is_param_set(tools, check_length=True) %}\n{% set is_tools_set = ns.is_last_checked_defined %}\n{% set has_system_message = (is_system_message_set or is_tools_set) %}\n{% if has_system_message %}\n {{- handle_first_system_message(system_message, tools) -}}\n{% endif %}\n{% set last_user_index = get_last_user_index(loop_messages)|int %}\n{% for message in loop_messages %}\n {% if loop.index0 == last_user_index %}\n {% set _ = is_param_set(documents, check_length=True) %}\n {% set use_documents = ns.is_last_checked_defined %}\n {% set _ = is_param_set(knobs) %}\n {% set use_knobs = ns.is_last_checked_defined and knobs.is_set %}\n {% set add_last_system_message = use_documents or use_knobs %}\n {% if add_last_system_message %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- handle_last_system_message(documents, knobs, use_documents, use_knobs) -}}\n {% endif %}\n {% endif %}\n {% set role = message.role %}\n {% set _ = is_param_set(message, field=\"name\") %}\n {% set is_message_name_set = ns.is_last_checked_defined %}\n {% if is_message_name_set %}\n {% set message_prefix = handle_role(role) + \"(\" + message.name + \")\" %}\n {% else %}\n {% set message_prefix = handle_role(role) %}\n {% endif %}\n {% set content = (message.content or \"\") %}\n {% if content is not string %}\n {% set content = content|tojson %}\n {% endif %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + message_prefix + content -}}\n {% set _ = is_param_set(message, field=\"tool_calls\", check_length=True) %}\n {% set is_tool_calls_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_tool_calls_set %}\n {{- handle_tool_calls(message.tool_calls) -}}\n {% endif %}\n {% set _ = is_param_set(message, field=\"citations\", check_length=False) %}\n {% set is_citations_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_citations_set and knobs.is_set and knobs.citation_mode != \"off\" %}\n {{- citations_prefix + message.citations|map(attribute=\"document_id\")|list|string + citations_suffix -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endfor %}\n{% if add_generation_prompt %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + handle_role(role_to_predict, add_space=False) -}}\n {% set _ = is_param_set(generation_preamble) %}\n {% set is_generation_preamble_set = ns.is_last_checked_defined %}\n {% if is_generation_preamble_set and generation_preamble.strip() != \"\" %}\n {{- \" \" + generation_preamble -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% else %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n{% endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|pad|>", "unk_token": "<|unk|>", "use_default_system_prompt": false}}
395
395
{ "parameters": { "BF16": 398555145696, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 398555145696 }
[ "transformers", "safetensors", "jamba", "text-generation", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00166.safetensors" }, { "rfilename": "model-00002-of-00166.safetensors" }, { "rfilename": "model-00003-of-00166.safetensors" }, { "rfilename": "model-00004-of-00166.safetensors" }, { "rfilename": "model-00005-of-00166.safetensors" }, { "rfilename": "model-00006-of-00166.safetensors" }, { "rfilename": "model-00007-of-00166.safetensors" }, { "rfilename": "model-00008-of-00166.safetensors" }, { "rfilename": "model-00009-of-00166.safetensors" }, { "rfilename": "model-00010-of-00166.safetensors" }, { "rfilename": "model-00011-of-00166.safetensors" }, { "rfilename": "model-00012-of-00166.safetensors" }, { "rfilename": "model-00013-of-00166.safetensors" }, { "rfilename": "model-00014-of-00166.safetensors" }, { "rfilename": "model-00015-of-00166.safetensors" }, { "rfilename": "model-00016-of-00166.safetensors" }, { "rfilename": "model-00017-of-00166.safetensors" }, { "rfilename": "model-00018-of-00166.safetensors" }, { "rfilename": "model-00019-of-00166.safetensors" }, { "rfilename": "model-00020-of-00166.safetensors" }, { "rfilename": "model-00021-of-00166.safetensors" }, { "rfilename": "model-00022-of-00166.safetensors" }, { "rfilename": "model-00023-of-00166.safetensors" }, { "rfilename": "model-00024-of-00166.safetensors" }, { "rfilename": "model-00025-of-00166.safetensors" }, { "rfilename": "model-00026-of-00166.safetensors" }, { "rfilename": "model-00027-of-00166.safetensors" }, { "rfilename": "model-00028-of-00166.safetensors" }, { "rfilename": "model-00029-of-00166.safetensors" }, { "rfilename": "model-00030-of-00166.safetensors" }, { "rfilename": "model-00031-of-00166.safetensors" }, { "rfilename": "model-00032-of-00166.safetensors" }, { "rfilename": "model-00033-of-00166.safetensors" }, { "rfilename": "model-00034-of-00166.safetensors" }, { "rfilename": "model-00035-of-00166.safetensors" }, { "rfilename": "model-00036-of-00166.safetensors" }, { "rfilename": "model-00037-of-00166.safetensors" }, { "rfilename": "model-00038-of-00166.safetensors" }, { "rfilename": "model-00039-of-00166.safetensors" }, { "rfilename": "model-00040-of-00166.safetensors" }, { "rfilename": "model-00041-of-00166.safetensors" }, { "rfilename": "model-00042-of-00166.safetensors" }, { "rfilename": "model-00043-of-00166.safetensors" }, { "rfilename": "model-00044-of-00166.safetensors" }, { "rfilename": "model-00045-of-00166.safetensors" }, { "rfilename": "model-00046-of-00166.safetensors" }, { "rfilename": "model-00047-of-00166.safetensors" }, { "rfilename": "model-00048-of-00166.safetensors" }, { "rfilename": "model-00049-of-00166.safetensors" }, { "rfilename": "model-00050-of-00166.safetensors" }, { "rfilename": "model-00051-of-00166.safetensors" }, { "rfilename": "model-00052-of-00166.safetensors" }, { "rfilename": "model-00053-of-00166.safetensors" }, { "rfilename": "model-00054-of-00166.safetensors" }, { "rfilename": "model-00055-of-00166.safetensors" }, { "rfilename": "model-00056-of-00166.safetensors" }, { "rfilename": "model-00057-of-00166.safetensors" }, { "rfilename": "model-00058-of-00166.safetensors" }, { "rfilename": "model-00059-of-00166.safetensors" }, { "rfilename": "model-00060-of-00166.safetensors" }, { "rfilename": "model-00061-of-00166.safetensors" }, { "rfilename": "model-00062-of-00166.safetensors" }, { "rfilename": "model-00063-of-00166.safetensors" }, { "rfilename": "model-00064-of-00166.safetensors" }, { "rfilename": "model-00065-of-00166.safetensors" }, { "rfilename": "model-00066-of-00166.safetensors" }, { "rfilename": "model-00067-of-00166.safetensors" }, { "rfilename": "model-00068-of-00166.safetensors" }, { "rfilename": "model-00069-of-00166.safetensors" }, { "rfilename": "model-00070-of-00166.safetensors" }, { "rfilename": "model-00071-of-00166.safetensors" }, { "rfilename": "model-00072-of-00166.safetensors" }, { "rfilename": "model-00073-of-00166.safetensors" }, { "rfilename": "model-00074-of-00166.safetensors" }, { "rfilename": "model-00075-of-00166.safetensors" }, { "rfilename": "model-00076-of-00166.safetensors" }, { "rfilename": "model-00077-of-00166.safetensors" }, { "rfilename": "model-00078-of-00166.safetensors" }, { "rfilename": "model-00079-of-00166.safetensors" }, { "rfilename": "model-00080-of-00166.safetensors" }, { "rfilename": "model-00081-of-00166.safetensors" }, { "rfilename": "model-00082-of-00166.safetensors" }, { "rfilename": "model-00083-of-00166.safetensors" }, { "rfilename": "model-00084-of-00166.safetensors" }, { "rfilename": "model-00085-of-00166.safetensors" }, { "rfilename": "model-00086-of-00166.safetensors" }, { "rfilename": "model-00087-of-00166.safetensors" }, { "rfilename": "model-00088-of-00166.safetensors" }, { "rfilename": "model-00089-of-00166.safetensors" }, { "rfilename": "model-00090-of-00166.safetensors" }, { "rfilename": "model-00091-of-00166.safetensors" }, { "rfilename": "model-00092-of-00166.safetensors" }, { "rfilename": "model-00093-of-00166.safetensors" }, { "rfilename": "model-00094-of-00166.safetensors" }, { "rfilename": "model-00095-of-00166.safetensors" }, { "rfilename": "model-00096-of-00166.safetensors" }, { "rfilename": "model-00097-of-00166.safetensors" }, { "rfilename": "model-00098-of-00166.safetensors" }, { "rfilename": "model-00099-of-00166.safetensors" }, { "rfilename": "model-00100-of-00166.safetensors" }, { "rfilename": "model-00101-of-00166.safetensors" }, { "rfilename": "model-00102-of-00166.safetensors" }, { "rfilename": "model-00103-of-00166.safetensors" }, { "rfilename": "model-00104-of-00166.safetensors" }, { "rfilename": "model-00105-of-00166.safetensors" }, { "rfilename": "model-00106-of-00166.safetensors" }, { "rfilename": "model-00107-of-00166.safetensors" }, { "rfilename": "model-00108-of-00166.safetensors" }, { "rfilename": "model-00109-of-00166.safetensors" }, { "rfilename": "model-00110-of-00166.safetensors" }, { "rfilename": "model-00111-of-00166.safetensors" }, { "rfilename": "model-00112-of-00166.safetensors" }, { "rfilename": "model-00113-of-00166.safetensors" }, { "rfilename": "model-00114-of-00166.safetensors" }, { "rfilename": "model-00115-of-00166.safetensors" }, { "rfilename": "model-00116-of-00166.safetensors" }, { "rfilename": "model-00117-of-00166.safetensors" }, { "rfilename": "model-00118-of-00166.safetensors" }, { "rfilename": "model-00119-of-00166.safetensors" }, { "rfilename": "model-00120-of-00166.safetensors" }, { "rfilename": "model-00121-of-00166.safetensors" }, { "rfilename": "model-00122-of-00166.safetensors" }, { "rfilename": "model-00123-of-00166.safetensors" }, { "rfilename": "model-00124-of-00166.safetensors" }, { "rfilename": "model-00125-of-00166.safetensors" }, { "rfilename": "model-00126-of-00166.safetensors" }, { "rfilename": "model-00127-of-00166.safetensors" }, { "rfilename": "model-00128-of-00166.safetensors" }, { "rfilename": "model-00129-of-00166.safetensors" }, { "rfilename": "model-00130-of-00166.safetensors" }, { "rfilename": "model-00131-of-00166.safetensors" }, { "rfilename": "model-00132-of-00166.safetensors" }, { "rfilename": "model-00133-of-00166.safetensors" }, { "rfilename": "model-00134-of-00166.safetensors" }, { "rfilename": "model-00135-of-00166.safetensors" }, { "rfilename": "model-00136-of-00166.safetensors" }, { "rfilename": "model-00137-of-00166.safetensors" }, { "rfilename": "model-00138-of-00166.safetensors" }, { "rfilename": "model-00139-of-00166.safetensors" }, { "rfilename": "model-00140-of-00166.safetensors" }, { "rfilename": "model-00141-of-00166.safetensors" }, { "rfilename": "model-00142-of-00166.safetensors" }, { "rfilename": "model-00143-of-00166.safetensors" }, { "rfilename": "model-00144-of-00166.safetensors" }, { "rfilename": "model-00145-of-00166.safetensors" }, { "rfilename": "model-00146-of-00166.safetensors" }, { "rfilename": "model-00147-of-00166.safetensors" }, { "rfilename": "model-00148-of-00166.safetensors" }, { "rfilename": "model-00149-of-00166.safetensors" }, { "rfilename": "model-00150-of-00166.safetensors" }, { "rfilename": "model-00151-of-00166.safetensors" }, { "rfilename": "model-00152-of-00166.safetensors" }, { "rfilename": "model-00153-of-00166.safetensors" }, { "rfilename": "model-00154-of-00166.safetensors" }, { "rfilename": "model-00155-of-00166.safetensors" }, { "rfilename": "model-00156-of-00166.safetensors" }, { "rfilename": "model-00157-of-00166.safetensors" }, { "rfilename": "model-00158-of-00166.safetensors" }, { "rfilename": "model-00159-of-00166.safetensors" }, { "rfilename": "model-00160-of-00166.safetensors" }, { "rfilename": "model-00161-of-00166.safetensors" }, { "rfilename": "model-00162-of-00166.safetensors" }, { "rfilename": "model-00163-of-00166.safetensors" }, { "rfilename": "model-00164-of-00166.safetensors" }, { "rfilename": "model-00165-of-00166.safetensors" }, { "rfilename": "model-00166-of-00166.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-27T16:00:42
null
674f2f8f51a64ee560f8ae65
Kijai/HunyuanVideo_comfy
Kijai
{"license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"}
null
2025-03-11T07:01:11
349
52
null
8,677
8,677
null
[ "gguf", "license:other", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "HunyuanI2V_basic_native_workflow_example.json" }, { "rfilename": "HunyuanVideo_dashtoon_keyframe_lora_converted_bf16.safetensors" }, { "rfilename": "HunyuanVideo_dashtoon_keyframe_lora_converted_comfy_bf16.safetensors" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "hunyuan_video_720_cfgdistill_bf16.safetensors" }, { "rfilename": "hunyuan_video_720_cfgdistill_fp8_e4m3fn.safetensors" }, { "rfilename": "hunyuan_video_FastVideo_720_fp8_e4m3fn.safetensors" }, { "rfilename": "hunyuan_video_I2V-Q3_K_S.gguf" }, { "rfilename": "hunyuan_video_I2V-Q4_K_S.gguf" }, { "rfilename": "hunyuan_video_I2V-Q6_K.gguf" }, { "rfilename": "hunyuan_video_I2V-Q8_0.gguf" }, { "rfilename": "hunyuan_video_I2V_720_fixed_bf16.safetensors" }, { "rfilename": "hunyuan_video_I2V_720_fixed_fp8_e4m3fn.safetensors" }, { "rfilename": "hunyuan_video_I2V_fp8_e4m3fn.safetensors" }, { "rfilename": "hunyuan_video_I2V_fp8_e5m2.safetensors" }, { "rfilename": "hunyuan_video_vae_bf16.safetensors" }, { "rfilename": "hunyuan_video_vae_fp32.safetensors" }, { "rfilename": "hyvid_I2V_lora_embrace.safetensors" }, { "rfilename": "hyvid_I2V_lora_hair_growth.safetensors" }, { "rfilename": "hyvid_dashtoon_keyframe_native_example_01.json" }, { "rfilename": "hyvideo_FastVideo_LoRA-fp8.safetensors" } ]
2024-12-03T16:19:27
{ "architecture": "hyvid", "bos_token": null, "causal": null, "chat_template": null, "context_length": null, "eos_token": null, "quantize_imatrix_file": null, "total": 12810991680 }
67c8a7465da042e7d1e03669
pipecat-ai/smart-turn
pipecat-ai
{"license": "bsd-2-clause"}
null
2025-03-09T19:59:51
51
51
{"architectures": ["Wav2Vec2BertForSequenceClassification"], "model_type": "wav2vec2-bert"}
1,327
1,327
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": null, "F32": 581281858, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 581281858 }
[ "coreml", "safetensors", "wav2vec2-bert", "license:bsd-2-clause", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Data/com.apple.CoreML/model.mlmodel" }, { "rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Data/com.apple.CoreML/weights/weight.bin" }, { "rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Manifest.json" }, { "rfilename": "coreml/smart_turn_classifier.mlpackage" }, { "rfilename": "model.safetensors" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "training_args.bin" } ]
2025-03-05T19:34:30
null
6795ffcd88cd7c0294702a72
Qwen/Qwen2.5-VL-7B-Instruct
Qwen
{"license": "apache-2.0", "language": ["en"], "pipeline_tag": "image-text-to-text", "tags": ["multimodal"], "library_name": "transformers"}
null
2025-03-06T07:54:47
657
48
{"architectures": ["Qwen2_5_VLForConditionalGeneration"], "model_type": "qwen2_5_vl", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
3,474,366
4,016,812
{ "parameters": { "BF16": 8292166656, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8292166656 }
[ "transformers", "safetensors", "qwen2_5_vl", "image-text-to-text", "multimodal", "conversational", "en", "arxiv:2309.00071", "arxiv:2409.12191", "arxiv:2308.12966", "license:apache-2.0", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00005.safetensors" }, { "rfilename": "model-00002-of-00005.safetensors" }, { "rfilename": "model-00003-of-00005.safetensors" }, { "rfilename": "model-00004-of-00005.safetensors" }, { "rfilename": "model-00005-of-00005.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-01-26T09:26:37
null
67bd77e73826831672deeec5
Wan-AI/Wan2.1-I2V-14B-720P
Wan-AI
{"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "image-to-video", "library_name": "diffusers", "tags": ["video", "video genration"]}
null
2025-02-26T14:35:45
354
47
{"model_type": "i2v"}
70,519
70,519
null
[ "diffusers", "safetensors", "i2v", "video", "video genration", "image-to-video", "en", "zh", "license:apache-2.0", "region:us" ]
image-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "Wan2.1_VAE.pth" }, { "rfilename": "assets/comp_effic.png" }, { "rfilename": "assets/data_for_diff_stage.jpg" }, { "rfilename": "assets/i2v_res.png" }, { "rfilename": "assets/logo.png" }, { "rfilename": "assets/t2v_res.jpg" }, { "rfilename": "assets/vben_1.3b_vs_sota.png" }, { "rfilename": "assets/vben_vs_sota.png" }, { "rfilename": "assets/video_dit_arch.jpg" }, { "rfilename": "assets/video_vae_res.jpg" }, { "rfilename": "config.json" }, { "rfilename": "diffusion_pytorch_model-00001-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00002-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00003-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00004-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00005-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00006-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model-00007-of-00007.safetensors" }, { "rfilename": "diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "examples/i2v_input.JPG" }, { "rfilename": "google/umt5-xxl/special_tokens_map.json" }, { "rfilename": "google/umt5-xxl/spiece.model" }, { "rfilename": "google/umt5-xxl/tokenizer.json" }, { "rfilename": "google/umt5-xxl/tokenizer_config.json" }, { "rfilename": "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth" }, { "rfilename": "models_t5_umt5-xxl-enc-bf16.pth" }, { "rfilename": "xlm-roberta-large/sentencepiece.bpe.model" }, { "rfilename": "xlm-roberta-large/special_tokens_map.json" }, { "rfilename": "xlm-roberta-large/tokenizer.json" }, { "rfilename": "xlm-roberta-large/tokenizer_config.json" } ]
2025-02-25T07:57:27
null
67b87c3d15b8db13cc755c34
EuroBERT/EuroBERT-210m
EuroBERT
{"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]}
null
2025-03-10T14:35:21
46
46
{"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}}
2,667
2,667
null
[ "transformers", "pytorch", "eurobert", "fill-mask", "code", "custom_code", "en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi", "arxiv:2503.05500", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
{ "auto_model": "AutoModelForMaskedLM", "custom_class": "modeling_eurobert.EuroBertForMaskedLM", "pipeline_tag": "fill-mask", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_eurobert.py" }, { "rfilename": "img/banner.png" }, { "rfilename": "img/code_math.png" }, { "rfilename": "img/long_context.png" }, { "rfilename": "img/multilingual.png" }, { "rfilename": "modeling_eurobert.py" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-21T13:14:37
null
66eaef786865fea1324edb5d
meta-llama/Llama-3.2-3B-Instruct
meta-llama
{"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "library_name": "transformers", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.2", "extra_gated_prompt": "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version Release Date: September 25, 2024\n\n\u201cAgreement\u201d means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\n\u201cDocumentation\u201d means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\n\u201cLicensee\u201d or \u201cyou\u201d means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\n\u201cLlama 3.2\u201d means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads.\n\n\u201cLlama Materials\u201d means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement.\n\n\u201cMeta\u201d or \u201cwe\u201d means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \n\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. \nb. Redistribution and Use. \ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. \niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\u00a0\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:\n 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled substances\n 11. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:\n 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 16. Generating, promoting, or further distributing spam\n 17. Impersonating another individual without consent, authorization, or legal right\n 18. Representing that the use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\u00a0\n4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\n\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/llama-v3p2-3b-instruct", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "Meta-Llama-3.2-3B-Instruct", "status": "live", "task": "conversational" }, { "provider": "together", "providerId": "meta-llama/Llama-3.2-3B-Instruct-Turbo", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "meta-llama/Llama-3.2-3B-Instruct", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "meta-llama/Llama-3.2-3B-Instruct", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "meta-llama/llama-3.2-3b-instruct", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "meta-llama/Llama-3.2-3B-Instruct", "status": "live", "task": "conversational" } ]
2024-10-24T15:07:29
1,201
45
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}}
3,029,238
9,182,112
{ "parameters": { "BF16": 3212749824, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 3212749824 }
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "arxiv:2405.16406", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.txt" }, { "rfilename": "README.md" }, { "rfilename": "USE_POLICY.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "original/consolidated.00.pth" }, { "rfilename": "original/orig_params.json" }, { "rfilename": "original/params.json" }, { "rfilename": "original/tokenizer.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-09-18T15:19:20
null
67d07c0bbde63e65957d5d46
open-r1/OlympicCoder-32B
open-r1
{"license": "apache-2.0", "datasets": ["open-r1/codeforces-cots"], "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-32B-Instruct"], "pipeline_tag": "text-generation"}
null
2025-03-12T08:53:40
45
45
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}}
39
39
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:open-r1/codeforces-cots", "base_model:Qwen/Qwen2.5-Coder-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-32B-Instruct", "license:apache-2.0", "region:us" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "ioi-evals.png" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00014.safetensors" }, { "rfilename": "model-00002-of-00014.safetensors" }, { "rfilename": "model-00003-of-00014.safetensors" }, { "rfilename": "model-00004-of-00014.safetensors" }, { "rfilename": "model-00005-of-00014.safetensors" }, { "rfilename": "model-00006-of-00014.safetensors" }, { "rfilename": "model-00007-of-00014.safetensors" }, { "rfilename": "model-00008-of-00014.safetensors" }, { "rfilename": "model-00009-of-00014.safetensors" }, { "rfilename": "model-00010-of-00014.safetensors" }, { "rfilename": "model-00011-of-00014.safetensors" }, { "rfilename": "model-00012-of-00014.safetensors" }, { "rfilename": "model-00013-of-00014.safetensors" }, { "rfilename": "model-00014-of-00014.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "trainer_state.json" }, { "rfilename": "training_args.bin" }, { "rfilename": "vocab.json" } ]
2025-03-11T18:08:11
null
678e11922b39b4ed1381531b
deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
deepseek-ai
{"license": "mit", "library_name": "transformers"}
[ { "provider": "hf-inference", "providerId": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "status": "live", "task": "conversational" } ]
2025-02-24T03:32:35
1,030
44
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}}
1,566,515
2,193,634
{ "parameters": { "BF16": 1777088000, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 1777088000 }
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2501.12948", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "generation_config.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-01-20T09:04:18
null
67c675f2a87c8e90e3a4144e
qihoo360/Light-R1-32B
qihoo360
{"license": "apache-2.0", "base_model": ["Qwen/Qwen2.5-32B-Instruct"]}
null
2025-03-05T13:28:56
57
43
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}}
436
436
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "safetensors", "qwen2", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "evaluation-results.aime24.json" }, { "rfilename": "evaluation-results.aime25.json" }, { "rfilename": "evaluation-results.gpqa.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00014.safetensors" }, { "rfilename": "model-00002-of-00014.safetensors" }, { "rfilename": "model-00003-of-00014.safetensors" }, { "rfilename": "model-00004-of-00014.safetensors" }, { "rfilename": "model-00005-of-00014.safetensors" }, { "rfilename": "model-00006-of-00014.safetensors" }, { "rfilename": "model-00007-of-00014.safetensors" }, { "rfilename": "model-00008-of-00014.safetensors" }, { "rfilename": "model-00009-of-00014.safetensors" }, { "rfilename": "model-00010-of-00014.safetensors" }, { "rfilename": "model-00011-of-00014.safetensors" }, { "rfilename": "model-00012-of-00014.safetensors" }, { "rfilename": "model-00013-of-00014.safetensors" }, { "rfilename": "model-00014-of-00014.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-04T03:39:30
null
6712c76c6757313a2bf70d4b
peakji/steiner-32b-preview
peakji
{"license": "apache-2.0", "language": ["en", "zh"]}
null
2024-10-21T16:46:13
85
42
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
41
215
{ "parameters": { "BF16": 32759944192, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32759944192 }
[ "safetensors", "qwen2", "en", "zh", "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00017.safetensors" }, { "rfilename": "model-00002-of-00017.safetensors" }, { "rfilename": "model-00003-of-00017.safetensors" }, { "rfilename": "model-00004-of-00017.safetensors" }, { "rfilename": "model-00005-of-00017.safetensors" }, { "rfilename": "model-00006-of-00017.safetensors" }, { "rfilename": "model-00007-of-00017.safetensors" }, { "rfilename": "model-00008-of-00017.safetensors" }, { "rfilename": "model-00009-of-00017.safetensors" }, { "rfilename": "model-00010-of-00017.safetensors" }, { "rfilename": "model-00011-of-00017.safetensors" }, { "rfilename": "model-00012-of-00017.safetensors" }, { "rfilename": "model-00013-of-00017.safetensors" }, { "rfilename": "model-00014-of-00017.safetensors" }, { "rfilename": "model-00015-of-00017.safetensors" }, { "rfilename": "model-00016-of-00017.safetensors" }, { "rfilename": "model-00017-of-00017.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2024-10-18T20:39:08
null
67aa311a52161362fa756fe6
agents-course/notebooks
agents-course
{"license": "apache-2.0"}
null
2025-03-04T15:42:35
244
42
null
0
0
null
[ "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "bonus-unit1/.DS_Store" }, { "rfilename": "bonus-unit1/bonus-unit1.ipynb" }, { "rfilename": "dummy_agent_library.ipynb" }, { "rfilename": "unit2/llama-index/agents.ipynb" }, { "rfilename": "unit2/llama-index/components.ipynb" }, { "rfilename": "unit2/llama-index/tools.ipynb" }, { "rfilename": "unit2/llama-index/workflows.ipynb" }, { "rfilename": "unit2/smolagents/code_agents.ipynb" }, { "rfilename": "unit2/smolagents/multiagent_notebook.ipynb" }, { "rfilename": "unit2/smolagents/retrieval_agents.ipynb" }, { "rfilename": "unit2/smolagents/tool_calling_agents.ipynb" }, { "rfilename": "unit2/smolagents/tools.ipynb" }, { "rfilename": "unit2/smolagents/vision_agents.ipynb" }, { "rfilename": "unit2/smolagents/vision_web_browser.py" } ]
2025-02-10T17:02:18
null
67be03c930eecba21c83a91e
Kijai/WanVideo_comfy
Kijai
null
null
2025-03-10T13:16:43
280
42
null
0
0
null
[ "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "Wan2_1-I2V-14B-480P_fp8_e4m3fn.safetensors" }, { "rfilename": "Wan2_1-I2V-14B-480P_fp8_e5m2.safetensors" }, { "rfilename": "Wan2_1-I2V-14B-720P_fp8_e4m3fn.safetensors" }, { "rfilename": "Wan2_1-T2V-14B_fp8_e4m3fn.safetensors" }, { "rfilename": "Wan2_1-T2V-14B_fp8_e5m2.safetensors" }, { "rfilename": "Wan2_1-T2V-1_3B_bf16.safetensors" }, { "rfilename": "Wan2_1-T2V-1_3B_fp8_e4m3fn.safetensors" }, { "rfilename": "Wan2_1_VAE_bf16.safetensors" }, { "rfilename": "Wan2_1_VAE_fp32.safetensors" }, { "rfilename": "open-clip-xlm-roberta-large-vit-huge-14_visual_fp16.safetensors" }, { "rfilename": "open-clip-xlm-roberta-large-vit-huge-14_visual_fp32.safetensors" }, { "rfilename": "umt5-xxl-enc-bf16.safetensors" }, { "rfilename": "umt5-xxl-enc-fp8_e4m3fn.safetensors" } ]
2025-02-25T17:54:17
null
66aa974d1f83b210ae7f74ae
black-forest-labs/FLUX.1-schnell
black-forest-labs
{"language": ["en"], "license": "apache-2.0", "tags": ["text-to-image", "image-generation", "flux"]}
[ { "provider": "fal-ai", "providerId": "fal-ai/flux/schnell", "status": "live", "task": "text-to-image" }, { "provider": "replicate", "providerId": "black-forest-labs/flux-schnell", "status": "live", "task": "text-to-image" }, { "provider": "together", "providerId": "black-forest-labs/FLUX.1-pro", "status": "live", "task": "text-to-image" }, { "provider": "hf-inference", "providerId": "black-forest-labs/FLUX.1-schnell", "status": "live", "task": "text-to-image" }, { "provider": "nebius", "providerId": "black-forest-labs/flux-schnell", "status": "live", "task": "text-to-image" } ]
2024-08-16T14:37:56
3,510
41
{"diffusers": {"_class_name": "FluxPipeline"}}
1,495,078
9,451,200
null
[ "diffusers", "safetensors", "text-to-image", "image-generation", "flux", "en", "license:apache-2.0", "endpoints_compatible", "diffusers:FluxPipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "ae.safetensors" }, { "rfilename": "flux1-schnell.safetensors" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "schnell_grid.jpeg" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model.safetensors" }, { "rfilename": "text_encoder_2/config.json" }, { "rfilename": "text_encoder_2/model-00001-of-00002.safetensors" }, { "rfilename": "text_encoder_2/model-00002-of-00002.safetensors" }, { "rfilename": "text_encoder_2/model.safetensors.index.json" }, { "rfilename": "tokenizer/merges.txt" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "tokenizer/vocab.json" }, { "rfilename": "tokenizer_2/special_tokens_map.json" }, { "rfilename": "tokenizer_2/spiece.model" }, { "rfilename": "tokenizer_2/tokenizer.json" }, { "rfilename": "tokenizer_2/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2024-07-31T19:58:05
null
67cb276e5432f525e8478cd5
BlinkDL/rwkv7-g1
BlinkDL
{"language": ["en", "zh", "fr", "es", "de", "pt", "ru", "it", "ja", "ko", "vi", "ar"], "tags": ["pytorch", "text-generation", "causal-lm", "rwkv"], "license": "apache-2.0", "datasets": ["HuggingFaceFW/fineweb-edu", "mlfoundations/dclm-baseline-1.0", "cerebras/SlimPajama-627B", "EleutherAI/pile", "bigcode/starcoderdata", "oscar-corpus/OSCAR-2301"]}
null
2025-03-09T03:26:43
41
41
null
0
0
null
[ "pytorch", "text-generation", "causal-lm", "rwkv", "en", "zh", "fr", "es", "de", "pt", "ru", "it", "ja", "ko", "vi", "ar", "dataset:HuggingFaceFW/fineweb-edu", "dataset:mlfoundations/dclm-baseline-1.0", "dataset:cerebras/SlimPajama-627B", "dataset:EleutherAI/pile", "dataset:bigcode/starcoderdata", "dataset:oscar-corpus/OSCAR-2301", "license:apache-2.0", "region:us" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "rwkv7-g1-0.1b-20250307-ctx4096.pth" } ]
2025-03-07T17:05:50
null
6698d8a0653e4babe21e1e7d
meta-llama/Llama-3.1-8B-Instruct
meta-llama
{"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "license": "llama3.1", "base_model": "meta-llama/Meta-Llama-3.1-8B", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "extra_gated_prompt": "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.1 is licensed under the Llama 3.1 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement.\n2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n#### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/llama-v3p1-8b-instruct", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "Meta-Llama-3.1-8B-Instruct", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "meta-llama/Llama-3.1-8B-Instruct", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "meta-llama/Meta-Llama-3.1-8B-Instruct-fast", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "meta-llama/llama-3.1-8b-instruct", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "meta-llama/Meta-Llama-3.1-8B-Instruct", "status": "staging", "task": "conversational" } ]
2024-09-25T17:00:57
3,741
40
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}}
6,181,229
35,385,850
{ "parameters": { "BF16": 8030261248, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8030261248 }
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "base_model:meta-llama/Llama-3.1-8B", "base_model:finetune:meta-llama/Llama-3.1-8B", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "USE_POLICY.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "original/consolidated.00.pth" }, { "rfilename": "original/params.json" }, { "rfilename": "original/tokenizer.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-07-18T08:56:00
null
67cb10ea74f0d88c3243384b
huihui-ai/QwQ-32B-abliterated
huihui-ai
{"license": "apache-2.0", "license_link": "https://huggingface.co/huihui-ai/QwQ-32B-abliterated/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat", "abliterated", "uncensored"], "library_name": "transformers"}
null
2025-03-12T04:47:38
39
39
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
768
768
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "abliterated", "uncensored", "conversational", "en", "base_model:Qwen/QwQ-32B", "base_model:finetune:Qwen/QwQ-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00014.safetensors" }, { "rfilename": "model-00002-of-00014.safetensors" }, { "rfilename": "model-00003-of-00014.safetensors" }, { "rfilename": "model-00004-of-00014.safetensors" }, { "rfilename": "model-00005-of-00014.safetensors" }, { "rfilename": "model-00006-of-00014.safetensors" }, { "rfilename": "model-00007-of-00014.safetensors" }, { "rfilename": "model-00008-of-00014.safetensors" }, { "rfilename": "model-00009-of-00014.safetensors" }, { "rfilename": "model-00010-of-00014.safetensors" }, { "rfilename": "model-00011-of-00014.safetensors" }, { "rfilename": "model-00012-of-00014.safetensors" }, { "rfilename": "model-00013-of-00014.safetensors" }, { "rfilename": "model-00014-of-00014.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-07T15:29:46
null
67c08c5efe55e4ad077e27c6
ai21labs/AI21-Jamba-Mini-1.6
ai21labs
{"license": "other", "license_name": "jamba-open-model-license", "license_link": "https://www.ai21.com/jamba-open-model-license/", "library_name": "transformers"}
null
2025-03-06T12:44:52
38
38
{"architectures": ["JambaForCausalLM"], "model_type": "jamba", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{# Variables #}\n{% set ns = namespace(message_count=0, is_last_checked_defined=False) %}\n{##}\n{% set bom_str = bom_str or \"<|bom|>\" %}\n{% set eom_str = eom_str or \"<|eom|>\" %}\n{% set default_system_message = default_system_message or \"\" %}\n{##}\n{% set documents_prefix = \"<documents>\" %}\n{% set documents_suffix = \"</documents>\" %}\n{% set tool_definitions_prefix = \"<tool_definitions>\" %}\n{% set tool_definitions_suffix = \"</tool_definitions>\" %}\n{% set active_modes_prefix = \"<active_output_modes>\" %}\n{% set active_modes_suffix = \"</active_output_modes>\" %}\n{##}\n{% set tool_calls_prefix = \"<tool_calls>\" %}\n{% set tool_calls_suffix = \"</tool_calls>\" %}\n{% set citations_prefix = \"<citations>\" %}\n{% set citations_suffix = \"</citations>\" %}\n{##}\n{% if add_generation_prompt is not defined %}\n {% set add_generation_prompt = True %}\n{% endif %}\n{% set role_to_predict = role_to_predict or \"assistant\" %}\n{% if messages|length > 0 and messages[0].role == \"system\" %}\n {% set system_message = messages[0].content %}\n {% set loop_messages = messages[1:] %}\n{% else %}\n {% set system_message = default_system_message %}\n {% set loop_messages = messages %}\n{% endif %}\n{##}\n{##}\n{# Macros #}\n{% macro handle_tool_definitions(tools) %}\n {{- tool_definitions_prefix -}}\n {{- \"\\n# Tools\" -}}\n {{- \"\\n\\n## Functions\" -}}\n {% for tool in tools %}\n {% set _ = is_param_set(tool, field=\"type\") %}\n {% set is_tool_type_set = ns.is_last_checked_defined %}\n {% if is_tool_type_set %}\n {% if tool.type == \"function\" %}\n {% set tool = tool.function %}\n {% else %}\n {{ raise_exception(\"Currently, the only supported tool type is `function`\") }}\n {% endif %}\n {% endif %}\n {{- \"\\n\\n\" + (tool|tojson(indent=2)) -}}\n {% endfor %}\n {{- \"\\n\" + tool_definitions_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_first_system_message(system_message, tools) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set _ = is_param_set(system_message) %}\n {% set is_system_message_set = ns.is_last_checked_defined %}\n {% if is_system_message_set %}\n {{- system_message -}}\n {% endif %}\n {% set _ = is_param_set(tools, check_length=True) %}\n {% set is_tools_set = ns.is_last_checked_defined %}\n {% if is_tools_set %}\n {% if system_message %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- handle_tool_definitions(tools) -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_tool_calls(tool_calls) %}\n {{- tool_calls_prefix + \"[\\n\" -}}\n {% for tool_call in tool_calls %}\n {% set _ = is_param_set(tool_call, field=\"function\") %}\n {% set is_tool_call_function_set = ns.is_last_checked_defined %}\n {% if is_tool_call_function_set %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {% set arguments = tool_call.arguments %}\n {% if arguments is not string %}\n {%- set arguments = arguments|tojson -%}\n {%- endif %}\n {{ \"{\\\"name\\\": \\\"\" + tool_call.name + \"\\\", \\\"arguments\\\": \" + arguments + \"}\" -}}\n {% if not loop.last %}\n {{- \",\" }}\n {% endif %}\n {% endfor %}\n {{- \"\\n]\" + tool_calls_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_documents(documents) %}\n {{- documents_prefix -}}\n {{- \"\\n# Documents\" -}}\n {{- \"\\n\\nYou can use the following documents for reference:\" -}}\n {% for doc in documents %}\n {{- \"\\n\\n## Document ID: \" + loop.index0|string -}}\n {% set _ = is_param_set(doc, field=\"title\") %}\n {% set is_doc_title_set = ns.is_last_checked_defined %}\n {% if is_doc_title_set %}\n {{- \"\\nTitle: \" + doc.title -}}\n {% endif %}\n {% for key, value in doc.items() %}\n {% if key not in [\"title\", \"text\"] %}\n {{- \"\\n\" + key|title + \": \" + value|string -}}\n {% endif %}\n {% endfor %}\n {{- \"\\nText: \" + doc.text -}}\n {% endfor %}\n {{- \"\\n\" + documents_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_knobs(knobs) %}\n {{- active_modes_prefix -}}\n {{- \"\\n# Active Modes\" -}}\n {{ \"\\n\\nThe following modes configure the format or style of your responses. You should adhere to all currently\" -}}\n {{ \" active modes simultaneously.\" -}}\n {% if knobs.citation_mode == \"fast\" %}\n {{- \"\\n\\n## Citation Mode\" -}}\n {{- \"\\n\\nProvide a list of references only for the documents you base your response on. Format your response\" -}}\n {{ \" with the original answer followed by a citation section. Use this template:\" -}}\n {{ \" `{answer}\" + citations_prefix + \"DOCUMENT_IDS\" + citations_suffix + \"`, where DOCUMENT_IDS are the relevant document numbers\" -}}\n {{ \" (e.g. [2, 5, 9]), or [] if the answer cannot be supported by the provided documents.\" -}}\n {% endif %}\n {% if knobs.response_format == \"json_object\" %}\n {{- \"\\n\\n## JSON Mode\" -}}\n {{ \"\\n\\nProvide your response in JSON format. Adhere strictly to any schema given by the user.\" -}}\n {{ \" If an appropriate JSON format exists, use it without modification.\" -}}\n {% endif %}\n {{- \"\\n\" + active_modes_suffix -}}\n{% endmacro %}\n{##}\n{% macro get_last_user_index(messages) %}\n {% set ns.last_user_index = 0 %}\n {% for message in messages %}\n {% if message.role == 'user' %}\n {% set ns.last_user_index = loop.index0 %}\n {% endif %}\n {% endfor %}\n {{- ns.last_user_index -}}\n{% endmacro %}\n{##}\n{% macro handle_last_system_message(documents, knobs, use_documents, use_knobs) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set macros_to_call = [] %}\n {% set params_for_macros = [] %}\n {% if use_documents %}\n {% set macros_to_call = macros_to_call + [handle_documents] %}\n {% set params_for_macros = params_for_macros + [[documents]] %}\n {% endif %}\n {% if use_knobs %}\n {% set macros_to_call = macros_to_call + [handle_knobs] %}\n {% set params_for_macros = params_for_macros + [[knobs]] %}\n {% endif %}\n {% for i in range(macros_to_call|length) %}\n {% if i > 0 %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- macros_to_call[i](*params_for_macros[i]) -}}\n {% endfor %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_role(role, add_space=True) %}\n {{- \"<|\" + role + \"|>\" -}}\n {% if add_space %}\n {{- \" \" -}}\n {% endif %}\n{% endmacro %}\n{##}\n{% macro is_param_set(param, field=none, check_length=False) %}\n {% if field is not none %}\n {% if field in param %}\n {% set param = param[field] %}\n {% else %}\n {% set param = none %}\n {% endif %}\n {% endif %}\n {% set is_defined = param is defined and param is not none %}\n {% if check_length %}\n {% set ns.is_last_checked_defined = is_defined and param|length > 0 %}\n {% else %}\n {% set ns.is_last_checked_defined = is_defined %}\n {% endif %}\n{% endmacro %}\n{##}\n{##}\n{# Template #}\n{% if bos_token is defined and bos_token is not none %}\n {{- bos_token -}}\n{% endif %}\n{% set _ = is_param_set(system_message) %}\n{% set is_system_message_set = ns.is_last_checked_defined %}\n{% set _ = is_param_set(tools, check_length=True) %}\n{% set is_tools_set = ns.is_last_checked_defined %}\n{% set has_system_message = (is_system_message_set or is_tools_set) %}\n{% if has_system_message %}\n {{- handle_first_system_message(system_message, tools) -}}\n{% endif %}\n{% set last_user_index = get_last_user_index(loop_messages)|int %}\n{% for message in loop_messages %}\n {% if loop.index0 == last_user_index %}\n {% set _ = is_param_set(documents, check_length=True) %}\n {% set use_documents = ns.is_last_checked_defined %}\n {% set _ = is_param_set(knobs) %}\n {% set use_knobs = ns.is_last_checked_defined and knobs.is_set %}\n {% set add_last_system_message = use_documents or use_knobs %}\n {% if add_last_system_message %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- handle_last_system_message(documents, knobs, use_documents, use_knobs) -}}\n {% endif %}\n {% endif %}\n {% set role = message.role %}\n {% set _ = is_param_set(message, field=\"name\") %}\n {% set is_message_name_set = ns.is_last_checked_defined %}\n {% if is_message_name_set %}\n {% set message_prefix = handle_role(role) + \"(\" + message.name + \")\" %}\n {% else %}\n {% set message_prefix = handle_role(role) %}\n {% endif %}\n {% set content = (message.content or \"\") %}\n {% if content is not string %}\n {% set content = content|tojson %}\n {% endif %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + message_prefix + content -}}\n {% set _ = is_param_set(message, field=\"tool_calls\", check_length=True) %}\n {% set is_tool_calls_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_tool_calls_set %}\n {{- handle_tool_calls(message.tool_calls) -}}\n {% endif %}\n {% set _ = is_param_set(message, field=\"citations\", check_length=False) %}\n {% set is_citations_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_citations_set and knobs.is_set and knobs.citation_mode != \"off\" %}\n {{- citations_prefix + message.citations|map(attribute=\"document_id\")|list|string + citations_suffix -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endfor %}\n{% if add_generation_prompt %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + handle_role(role_to_predict, add_space=False) -}}\n {% set _ = is_param_set(generation_preamble) %}\n {% set is_generation_preamble_set = ns.is_last_checked_defined %}\n {% if is_generation_preamble_set and generation_preamble.strip() != \"\" %}\n {{- \" \" + generation_preamble -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% else %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n{% endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|pad|>", "unk_token": "<|unk|>", "use_default_system_prompt": false}}
1,631
1,631
{ "parameters": { "BF16": 51570323328, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 51570323328 }
[ "transformers", "safetensors", "jamba", "text-generation", "conversational", "arxiv:2305.14314", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00021.safetensors" }, { "rfilename": "model-00002-of-00021.safetensors" }, { "rfilename": "model-00003-of-00021.safetensors" }, { "rfilename": "model-00004-of-00021.safetensors" }, { "rfilename": "model-00005-of-00021.safetensors" }, { "rfilename": "model-00006-of-00021.safetensors" }, { "rfilename": "model-00007-of-00021.safetensors" }, { "rfilename": "model-00008-of-00021.safetensors" }, { "rfilename": "model-00009-of-00021.safetensors" }, { "rfilename": "model-00010-of-00021.safetensors" }, { "rfilename": "model-00011-of-00021.safetensors" }, { "rfilename": "model-00012-of-00021.safetensors" }, { "rfilename": "model-00013-of-00021.safetensors" }, { "rfilename": "model-00014-of-00021.safetensors" }, { "rfilename": "model-00015-of-00021.safetensors" }, { "rfilename": "model-00016-of-00021.safetensors" }, { "rfilename": "model-00017-of-00021.safetensors" }, { "rfilename": "model-00018-of-00021.safetensors" }, { "rfilename": "model-00019-of-00021.safetensors" }, { "rfilename": "model-00020-of-00021.safetensors" }, { "rfilename": "model-00021-of-00021.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-27T16:01:34
null
654a84cadff2f49007ce6c37
openai/whisper-large-v3
openai
{"language": ["en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su"], "tags": ["audio", "automatic-speech-recognition", "hf-asr-leaderboard"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "pipeline_tag": "automatic-speech-recognition", "license": "apache-2.0"}
[ { "provider": "fal-ai", "providerId": "fal-ai/whisper", "status": "live", "task": "automatic-speech-recognition" }, { "provider": "hf-inference", "providerId": "openai/whisper-large-v3", "status": "live", "task": "automatic-speech-recognition" } ]
2024-08-12T10:20:10
4,151
37
{"architectures": ["WhisperForConditionalGeneration"], "model_type": "whisper", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}
4,110,742
50,670,917
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 1543490560, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 1543490560 }
[ "transformers", "pytorch", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
{ "auto_model": "AutoModelForSpeechSeq2Seq", "custom_class": null, "pipeline_tag": "automatic-speech-recognition", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "flax_model.msgpack" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model.fp32-00001-of-00002.safetensors" }, { "rfilename": "model.fp32-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors" }, { "rfilename": "model.safetensors.index.fp32.json" }, { "rfilename": "normalizer.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "pytorch_model.bin.index.fp32.json" }, { "rfilename": "pytorch_model.fp32-00001-of-00002.bin" }, { "rfilename": "pytorch_model.fp32-00002-of-00002.bin" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2023-11-07T18:41:14
null
67b87cc75a5d119f5c6febb6
EuroBERT/EuroBERT-2.1B
EuroBERT
{"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]}
null
2025-03-11T13:17:50
37
37
{"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}}
317
317
null
[ "transformers", "pytorch", "eurobert", "fill-mask", "code", "custom_code", "en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi", "arxiv:2503.05500", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
{ "auto_model": "AutoModelForMaskedLM", "custom_class": "modeling_eurobert.EuroBertForMaskedLM", "pipeline_tag": "fill-mask", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_eurobert.py" }, { "rfilename": "img/banner.png" }, { "rfilename": "img/code_math.png" }, { "rfilename": "img/long_context.png" }, { "rfilename": "img/multilingual.png" }, { "rfilename": "modeling_eurobert.py" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-21T13:16:55
null
6745f28f9333dfcc06268b1e
meta-llama/Llama-3.3-70B-Instruct
meta-llama
{"library_name": "transformers", "language": ["en", "fr", "it", "pt", "hi", "es", "th", "de"], "base_model": ["meta-llama/Llama-3.1-70B"], "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "extra_gated_prompt": "### LLAMA 3.3 COMMUNITY LICENSE AGREEMENT\nLlama 3.3 Version Release Date: December 6, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\u00a0\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.3 is licensed under the Llama 3.3 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement. \n2. Additional Commercial Terms. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy).\nProhibited Uses\nWe want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:\n1. Violate the law or others\u2019 rights, including to:\n\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material \n 3. Human trafficking, exploitation, and sexual violence \n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. \n 5. Sexual solicitation \n 6. Any other criminal activity\n\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\n 5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n\n 8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\n\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:\n\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n\n 2. Guns and illegal weapons (including weapon development)\n\n 3. Illegal drugs and regulated/controlled substances\n\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\n3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:\n\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\n 3. Generating, promoting, or further distributing spam\n\n 4. Impersonating another individual without consent, authorization, or legal right\n\n 5. Representing that the use of Llama 3.3 or outputs are human-generated\n\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\n4. Fail to appropriately disclose to end users any known dangers of your AI system\n5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3\nWith respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama\\_output\\_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: [email protected] ", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "license": "llama3.3"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/llama-v3p3-70b-instruct", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "Meta-Llama-3.3-70B-Instruct", "status": "live", "task": "conversational" }, { "provider": "together", "providerId": "meta-llama/Llama-3.3-70B-Instruct-Turbo", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "meta-llama/Llama-3.3-70B-Instruct", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "meta-llama/Llama-3.3-70B-Instruct-fast", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "meta-llama/llama-3.3-70b-instruct", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "meta-llama/Llama-3.3-70B-Instruct", "status": "live", "task": "conversational" }, { "provider": "cerebras", "providerId": "llama-3.3-70b", "status": "live", "task": "conversational" } ]
2024-12-21T18:28:01
2,128
36
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>", "pad_token": "<|finetune_right_pad_id|>"}}
820,652
1,948,947
{ "parameters": { "BF16": 70553706496, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 70553706496 }
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "fr", "it", "pt", "hi", "es", "th", "de", "arxiv:2204.05149", "base_model:meta-llama/Llama-3.1-70B", "base_model:finetune:meta-llama/Llama-3.1-70B", "license:llama3.3", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "USE_POLICY.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00030.safetensors" }, { "rfilename": "model-00002-of-00030.safetensors" }, { "rfilename": "model-00003-of-00030.safetensors" }, { "rfilename": "model-00004-of-00030.safetensors" }, { "rfilename": "model-00005-of-00030.safetensors" }, { "rfilename": "model-00006-of-00030.safetensors" }, { "rfilename": "model-00007-of-00030.safetensors" }, { "rfilename": "model-00008-of-00030.safetensors" }, { "rfilename": "model-00009-of-00030.safetensors" }, { "rfilename": "model-00010-of-00030.safetensors" }, { "rfilename": "model-00011-of-00030.safetensors" }, { "rfilename": "model-00012-of-00030.safetensors" }, { "rfilename": "model-00013-of-00030.safetensors" }, { "rfilename": "model-00014-of-00030.safetensors" }, { "rfilename": "model-00015-of-00030.safetensors" }, { "rfilename": "model-00016-of-00030.safetensors" }, { "rfilename": "model-00017-of-00030.safetensors" }, { "rfilename": "model-00018-of-00030.safetensors" }, { "rfilename": "model-00019-of-00030.safetensors" }, { "rfilename": "model-00020-of-00030.safetensors" }, { "rfilename": "model-00021-of-00030.safetensors" }, { "rfilename": "model-00022-of-00030.safetensors" }, { "rfilename": "model-00023-of-00030.safetensors" }, { "rfilename": "model-00024-of-00030.safetensors" }, { "rfilename": "model-00025-of-00030.safetensors" }, { "rfilename": "model-00026-of-00030.safetensors" }, { "rfilename": "model-00027-of-00030.safetensors" }, { "rfilename": "model-00028-of-00030.safetensors" }, { "rfilename": "model-00029-of-00030.safetensors" }, { "rfilename": "model-00030-of-00030.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "original/.gitattributes" }, { "rfilename": "original/README.md" }, { "rfilename": "original/checklist.chk" }, { "rfilename": "original/consolidated.00.pth" }, { "rfilename": "original/consolidated.01.pth" }, { "rfilename": "original/consolidated.02.pth" }, { "rfilename": "original/consolidated.03.pth" }, { "rfilename": "original/consolidated.04.pth" }, { "rfilename": "original/consolidated.05.pth" }, { "rfilename": "original/consolidated.06.pth" }, { "rfilename": "original/consolidated.07.pth" }, { "rfilename": "original/params.json" }, { "rfilename": "original/tokenizer.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-11-26T16:08:47
null
66fba7309482f97131bf08d6
openai/whisper-large-v3-turbo
openai
{"language": ["en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su"], "license": "mit", "tags": ["audio", "automatic-speech-recognition"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "pipeline_tag": "automatic-speech-recognition", "base_model": ["openai/whisper-large-v3"], "library_name": "transformers"}
[ { "provider": "hf-inference", "providerId": "openai/whisper-large-v3-turbo", "status": "live", "task": "automatic-speech-recognition" } ]
2024-10-04T14:51:11
2,102
34
{"architectures": ["WhisperForConditionalGeneration"], "model_type": "whisper", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}
7,896,503
20,872,661
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 808878080, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 808878080 }
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "audio", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "arxiv:2212.04356", "base_model:openai/whisper-large-v3", "base_model:finetune:openai/whisper-large-v3", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
{ "auto_model": "AutoModelForSpeechSeq2Seq", "custom_class": null, "pipeline_tag": "automatic-speech-recognition", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model.safetensors" }, { "rfilename": "normalizer.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2024-10-01T07:39:28
null
67597bd1b9cdca50cb621f94
microsoft/phi-4
microsoft
{"license": "mit", "license_link": "https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "tags": ["phi", "nlp", "math", "code", "chat", "conversational"], "inference": {"parameters": {"temperature": 0}}, "widget": [{"messages": [{"role": "user", "content": "How should I explain the Internet?"}]}], "library_name": "transformers"}
[ { "provider": "nebius", "providerId": "microsoft/phi-4", "status": "live", "task": "conversational" } ]
2025-02-24T11:53:58
1,893
34
{"architectures": ["Phi3ForCausalLM"], "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'assistant') %}{{'<|im_start|>assistant<|im_sep|>' + message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant<|im_sep|>' }}{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|dummy_85|>"}}
509,500
1,112,931
{ "parameters": { "BF16": 14659507200, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 14659507200 }
[ "transformers", "safetensors", "phi3", "text-generation", "phi", "nlp", "math", "code", "chat", "conversational", "en", "arxiv:2412.08905", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "CODE_OF_CONDUCT.md" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "SECURITY.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00006.safetensors" }, { "rfilename": "model-00002-of-00006.safetensors" }, { "rfilename": "model-00003-of-00006.safetensors" }, { "rfilename": "model-00004-of-00006.safetensors" }, { "rfilename": "model-00005-of-00006.safetensors" }, { "rfilename": "model-00006-of-00006.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2024-12-11T11:47:29
null
67c901b9dd505e6a4da1477f
OpenPipe/Deductive-Reasoning-Qwen-32B
OpenPipe
{"license": "mit", "license_link": "https://huggingface.co/OpenPipe/Deductive-Reasoning-Qwen-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": ["Qwen/Qwen2.5-32B-Instruct"], "tags": ["chat"], "library_name": "transformers"}
null
2025-03-06T18:31:21
34
34
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
623
623
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "chat", "conversational", "en", "base_model:Qwen/Qwen2.5-32B-Instruct", "base_model:finetune:Qwen/Qwen2.5-32B-Instruct", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.344558.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.348876.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.357567.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.399229.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.400965.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.484201.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.503403.log" }, { "rfilename": "chat-completion-logs/2025-03-04T06:55:30.546760.log" }, { "rfilename": "config.json" }, { "rfilename": "ft-model-00001-of-00017.safetensors" }, { "rfilename": "ft-model-00002-of-00017.safetensors" }, { "rfilename": "ft-model-00003-of-00017.safetensors" }, { "rfilename": "ft-model-00004-of-00017.safetensors" }, { "rfilename": "ft-model-00005-of-00017.safetensors" }, { "rfilename": "ft-model-00006-of-00017.safetensors" }, { "rfilename": "ft-model-00007-of-00017.safetensors" }, { "rfilename": "ft-model-00008-of-00017.safetensors" }, { "rfilename": "ft-model-00009-of-00017.safetensors" }, { "rfilename": "ft-model-00010-of-00017.safetensors" }, { "rfilename": "ft-model-00011-of-00017.safetensors" }, { "rfilename": "ft-model-00012-of-00017.safetensors" }, { "rfilename": "ft-model-00013-of-00017.safetensors" }, { "rfilename": "ft-model-00014-of-00017.safetensors" }, { "rfilename": "ft-model-00015-of-00017.safetensors" }, { "rfilename": "ft-model-00016-of-00017.safetensors" }, { "rfilename": "ft-model-00017-of-00017.safetensors" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-06T02:00:25
null
621ffdc136468d709f180294
sentence-transformers/all-MiniLM-L6-v2
sentence-transformers
{"language": "en", "license": "apache-2.0", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["s2orc", "flax-sentence-embeddings/stackexchange_xml", "ms_marco", "gooaq", "yahoo_answers_topics", "code_search_net", "search_qa", "eli5", "snli", "multi_nli", "wikihow", "natural_questions", "trivia_qa", "embedding-data/sentence-compression", "embedding-data/flickr30k-captions", "embedding-data/altlex", "embedding-data/simple-wiki", "embedding-data/QQP", "embedding-data/SPECTER", "embedding-data/PAQ_pairs", "embedding-data/WikiAnswers"], "pipeline_tag": "sentence-similarity"}
[ { "provider": "hf-inference", "providerId": "sentence-transformers/all-MiniLM-L6-v2", "status": "live", "task": "sentence-similarity" } ]
2025-03-06T13:37:44
3,110
33
{"architectures": ["BertModel"], "model_type": "bert", "tokenizer_config": {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}}
100,200,868
802,765,787
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": null, "F32": 22713216, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": 512, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 22713728 }
[ "sentence-transformers", "pytorch", "tf", "rust", "onnx", "safetensors", "openvino", "bert", "feature-extraction", "sentence-similarity", "transformers", "en", "dataset:s2orc", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:code_search_net", "dataset:search_qa", "dataset:eli5", "dataset:snli", "dataset:multi_nli", "dataset:wikihow", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/QQP", "dataset:embedding-data/SPECTER", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/WikiAnswers", "arxiv:1904.06472", "arxiv:2102.07033", "arxiv:2104.08727", "arxiv:1704.05179", "arxiv:1810.09305", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
{ "auto_model": "AutoModel", "custom_class": null, "pipeline_tag": "feature-extraction", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "1_Pooling/config.json" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "config_sentence_transformers.json" }, { "rfilename": "data_config.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "modules.json" }, { "rfilename": "onnx/model.onnx" }, { "rfilename": "onnx/model_O1.onnx" }, { "rfilename": "onnx/model_O2.onnx" }, { "rfilename": "onnx/model_O3.onnx" }, { "rfilename": "onnx/model_O4.onnx" }, { "rfilename": "onnx/model_qint8_arm64.onnx" }, { "rfilename": "onnx/model_qint8_avx512.onnx" }, { "rfilename": "onnx/model_qint8_avx512_vnni.onnx" }, { "rfilename": "onnx/model_quint8_avx2.onnx" }, { "rfilename": "openvino/openvino_model.bin" }, { "rfilename": "openvino/openvino_model.xml" }, { "rfilename": "openvino/openvino_model_qint8_quantized.bin" }, { "rfilename": "openvino/openvino_model_qint8_quantized.xml" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "rust_model.ot" }, { "rfilename": "sentence_bert_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tf_model.h5" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "train_script.py" }, { "rfilename": "vocab.txt" } ]
2022-03-02T23:29:05
null
67ba91ad7446c0c46041de5e
microsoft/Magma-8B
microsoft
{"library_name": "transformers", "pipeline_tag": "image-text-to-text", "license": "mit"}
null
2025-03-05T17:42:13
330
33
{"architectures": ["MagmaForCausalLM"], "auto_map": {"AutoConfig": "microsoft/Magma-8B--configuration_magma.MagmaConfig", "AutoModelForCausalLM": "microsoft/Magma-8B--modeling_magma.MagmaForCausalLM"}, "model_type": "magma", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", "eos_token": "<|eot_id|>", "pad_token": "<pad>"}}
11,874
11,874
{ "parameters": { "BF16": 8906218368, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8906218368 }
[ "transformers", "safetensors", "magma", "text-generation", "image-text-to-text", "conversational", "custom_code", "arxiv:2502.13130", "arxiv:2310.11441", "license:mit", "autotrain_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForCausalLM", "custom_class": "microsoft/Magma-8B--modeling_magma.MagmaForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_magma.py" }, { "rfilename": "generation_config.json" }, { "rfilename": "image_processing_magma.py" }, { "rfilename": "image_tower_magma.py" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_magma.py" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processing_magma.py" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-23T03:10:37
null
67c8a37781c4f89e2d7132a6
amd/Instella-3B-Instruct
amd
{"license": "other", "license_link": "LICENSE", "pipeline_tag": "text-generation", "library_name": "transformers"}
null
2025-03-07T00:00:18
33
33
{"architectures": ["InstellaForCausalLM"], "auto_map": {"AutoConfig": "modeling_instella.InstellaConfig", "AutoModelForCausalLM": "modeling_instella.InstellaForCausalLM"}, "model_type": "instella", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'system' %}{{ '<|system|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' %}{% if not loop.last %}{{ '<|assistant|>\n' + message['content'] + eos_token + '\n' }}{% else %}{{ '<|assistant|>\n' + message['content'] + eos_token }}{% endif %}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}{% endfor %}", "eos_token": "<|endoftext|>", "pad_token": "<padding>", "unk_token": "<|endoftext|>"}}
1,021
1,021
{ "parameters": { "BF16": 3112675840, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 3112675840 }
[ "transformers", "safetensors", "instella", "text-generation", "conversational", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_instella.InstellaForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "NOTICES" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_instella.py" }, { "rfilename": "scaling_perf_instruct.png" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-05T19:18:15
null
65b53851e602b6c2c96e78da
BAAI/bge-m3
BAAI
{"pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "license": "mit"}
[ { "provider": "hf-inference", "providerId": "BAAI/bge-m3", "status": "live", "task": "sentence-similarity" } ]
2024-07-03T14:50:10
1,839
32
{"architectures": ["XLMRobertaModel"], "model_type": "xlm-roberta", "tokenizer_config": {"bos_token": "<s>", "cls_token": "<s>", "eos_token": "</s>", "mask_token": {"__type": "AddedToken", "content": "<mask>", "lstrip": true, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": "<pad>", "sep_token": "</s>", "unk_token": "<unk>"}}
2,870,886
22,916,257
null
[ "sentence-transformers", "pytorch", "onnx", "xlm-roberta", "feature-extraction", "sentence-similarity", "arxiv:2402.03216", "arxiv:2004.04906", "arxiv:2106.14807", "arxiv:2107.05720", "arxiv:2004.12832", "license:mit", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "1_Pooling/config.json" }, { "rfilename": "README.md" }, { "rfilename": "colbert_linear.pt" }, { "rfilename": "config.json" }, { "rfilename": "config_sentence_transformers.json" }, { "rfilename": "imgs/.DS_Store" }, { "rfilename": "imgs/bm25.jpg" }, { "rfilename": "imgs/long.jpg" }, { "rfilename": "imgs/miracl.jpg" }, { "rfilename": "imgs/mkqa.jpg" }, { "rfilename": "imgs/nqa.jpg" }, { "rfilename": "imgs/others.webp" }, { "rfilename": "long.jpg" }, { "rfilename": "modules.json" }, { "rfilename": "onnx/Constant_7_attr__value" }, { "rfilename": "onnx/config.json" }, { "rfilename": "onnx/model.onnx" }, { "rfilename": "onnx/model.onnx_data" }, { "rfilename": "onnx/sentencepiece.bpe.model" }, { "rfilename": "onnx/special_tokens_map.json" }, { "rfilename": "onnx/tokenizer.json" }, { "rfilename": "onnx/tokenizer_config.json" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "sentence_bert_config.json" }, { "rfilename": "sentencepiece.bpe.model" }, { "rfilename": "sparse_linear.pt" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-01-27T17:07:29
null
67c35b8b87a7f49a82593992
google/gemma-3-27b-pt
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"}
null
2025-03-12T08:30:44
32
32
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
80
80
{ "parameters": { "BF16": 27432406640, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 27432406640 }
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00012.safetensors" }, { "rfilename": "model-00002-of-00012.safetensors" }, { "rfilename": "model-00003-of-00012.safetensors" }, { "rfilename": "model-00004-of-00012.safetensors" }, { "rfilename": "model-00005-of-00012.safetensors" }, { "rfilename": "model-00006-of-00012.safetensors" }, { "rfilename": "model-00007-of-00012.safetensors" }, { "rfilename": "model-00008-of-00012.safetensors" }, { "rfilename": "model-00009-of-00012.safetensors" }, { "rfilename": "model-00010-of-00012.safetensors" }, { "rfilename": "model-00011-of-00012.safetensors" }, { "rfilename": "model-00012-of-00012.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-01T19:10:03
null
664dc170474f2283fa5c8659
mistralai/Mistral-7B-Instruct-v0.3
mistralai
{"license": "apache-2.0", "base_model": "mistralai/Mistral-7B-v0.3", "extra_gated_description": "If you want to learn more about how we process your personal data, please read our <a href=\"https://mistral.ai/terms/\">Privacy Policy</a>."}
[ { "provider": "together", "providerId": "mistralai/Mistral-7B-Instruct-v0.3", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "mistralai/Mistral-7B-Instruct-v0.3", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "mistralai/mistral-7b-instruct", "status": "live", "task": "conversational" } ]
2024-08-21T12:18:25
1,475
31
{"architectures": ["MistralForCausalLM"], "model_type": "mistral", "tokenizer_config": {"bos_token": "<s>", "chat_template": "{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS] [\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- \"[TOOL_CALLS] [\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- \" \" + message[\"content\"]|trim + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n", "eos_token": "</s>", "pad_token": null, "unk_token": "<unk>", "use_default_system_prompt": false}}
866,657
10,257,769
{ "parameters": { "BF16": 7248023552, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 7248023552 }
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-v0.3", "base_model:finetune:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "consolidated.safetensors" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00003.safetensors" }, { "rfilename": "model-00002-of-00003.safetensors" }, { "rfilename": "model-00003-of-00003.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "params.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer.model.v3" }, { "rfilename": "tokenizer_config.json" } ]
2024-05-22T09:57:04
null
674bfb827d6748def2e80ef9
tencent/HunyuanVideo
tencent
{"pipeline_tag": "text-to-video", "license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"}
[ { "provider": "fal-ai", "providerId": "fal-ai/hunyuan-video", "status": "live", "task": "text-to-video" } ]
2025-03-06T15:39:29
1,750
31
null
5,682
24,886
null
[ "text-to-video", "arxiv:2412.03603", "arxiv:2405.07719", "license:other", "region:us" ]
text-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "Notice" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt" }, { "rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt" }, { "rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8_map.pt" }, { "rfilename": "hunyuan-video-t2v-720p/vae/config.json" }, { "rfilename": "hunyuan-video-t2v-720p/vae/pytorch_model.pt" } ]
2024-12-01T06:00:34
null
67b442dad2004688ce99d314
dnotitia/DNA-R1
dnotitia
{"language": ["en", "ko"], "license": "cc-by-nc-4.0", "tags": ["dnotitia", "nlp", "llm", "slm", "conversation", "chat", "reasoning", "r1"], "base_model": ["microsoft/phi-4"], "library_name": "transformers", "pipeline_tag": "text-generation"}
null
2025-03-11T07:47:55
31
31
{"architectures": ["Phi3ForCausalLM"], "auto_map": {}, "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{'<|im_start|>system<|im_sep|>' + system_message + '<|im_end|>'}}{% endif %}{% for message in loop_messages %}{% if message['role'] == 'user' %}{{'<|im_start|>user<|im_sep|>\\n' + message['content'] + '\\n<|im_end|>'}}{% endif %}{% if message['role'] == 'assistant' and message['content'] is not none %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|im_start|>assistant<|im_sep|>' + content + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<|im_start|>assistant<|im_sep|><think>'}}{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|dummy_85|>", "unk_token": "<|endoftext|>"}}
771
771
{ "parameters": { "BF16": 14659548160, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 14659548160 }
[ "transformers", "safetensors", "phi3", "text-generation", "dnotitia", "nlp", "llm", "slm", "conversation", "chat", "reasoning", "r1", "conversational", "custom_code", "en", "ko", "base_model:microsoft/phi-4", "base_model:finetune:microsoft/phi-4", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "assets/dna-r1-logo.png" }, { "rfilename": "assets/dna-r1-pipeline.png" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00006.safetensors" }, { "rfilename": "model-00002-of-00006.safetensors" }, { "rfilename": "model-00003-of-00006.safetensors" }, { "rfilename": "model-00004-of-00006.safetensors" }, { "rfilename": "model-00005-of-00006.safetensors" }, { "rfilename": "model-00006-of-00006.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-02-18T08:20:42
null
67b79cc230e38c400f496b93
google/gemma-3-1b-pt
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "text-generation", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"}
null
2025-03-12T08:29:10
31
31
{"architectures": ["Gemma3ForCausalLM"], "model_type": "gemma3_text", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
2,139
2,139
{ "parameters": { "BF16": 999885952, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 999885952 }
[ "transformers", "safetensors", "gemma3_text", "text-generation", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "license:gemma", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-20T21:21:06
null
67c17297ca31d05dcf0f8ca2
Tower-Babel/Babel-9B-Chat
Tower-Babel
{"license": "other", "license_name": "seallm", "license_link": "https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE", "language": ["en", "zh", "hi", "es", "fr", "ar", "bn", "ru", "pt", "id", "ur", "de", "ja", "sw", "ta", "tr", "ko", "vi", "jv", "it", "ha", "th", "fa", "tl", "my"], "tags": ["multilingual", "babel"]}
null
2025-03-05T14:47:08
35
31
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": null}}
976
976
{ "parameters": { "BF16": 9013963264, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 9013963264 }
[ "safetensors", "qwen2", "multilingual", "babel", "en", "zh", "hi", "es", "fr", "ar", "bn", "ru", "pt", "id", "ur", "de", "ja", "sw", "ta", "tr", "ko", "vi", "jv", "it", "ha", "th", "fa", "tl", "my", "arxiv:2503.00865", "arxiv:2009.03300", "arxiv:2306.05179", "arxiv:2210.03057", "arxiv:1809.05053", "arxiv:2207.04672", "license:other", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-02-28T08:23:51
null
67ad564d95228d8fa2f1a0b0
ALLaM-AI/ALLaM-7B-Instruct-preview
ALLaM-AI
{"license": "apache-2.0", "language": ["ar", "en"], "pipeline_tag": "text-generation", "tags": ["pytorch"], "library_name": "transformers"}
null
2025-03-12T13:20:03
92
30
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}", "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "pad_token": null, "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}}}
8,913
8,913
{ "parameters": { "BF16": 7000559616, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 7000559616 }
[ "transformers", "safetensors", "llama", "text-generation", "pytorch", "conversational", "ar", "en", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Allam-7b-instruct-preview/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Falcon3-7B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/acva_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/gat_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-13b-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-70b-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-adapted-7b-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-13b-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-16k-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-30b-8k-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/acva_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/ar_ifeval_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/araMath_v3_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/araPro_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/arabicmmlu_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/etec_v2_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/exams_ar_5_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/gat_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/moe_ien_mcq_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/moe_ien_tf_0_shot.json" }, { "rfilename": "evaluations/ar/jais-family-6p7b-chat/openaimmlu_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-32B-Chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/AceGPT-v2-8B-Chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Allam-7b-instruct-preview/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Falcon3-7B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Llama-3.3-70B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Mistral-Small-Instruct-2409/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-14B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-72B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/agieval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/Qwen2.5-7B-Instruct/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-13b-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-70b-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-adapted-7b-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-13b-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-16k-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-30b-8k-chat/winogrande_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/agieval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/arc_challenge_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/gpqa_main_n_shot_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/gsm8k_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/hellaswag_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/hendrycks_ethics_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/ifeval_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/minerva_math_4_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/mmlu_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/mmlu_pro_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/triviaqa_5_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/truthfulqa_mc2_0_shot.json" }, { "rfilename": "evaluations/en/jais-family-6p7b-chat/winogrande_0_shot.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00003.safetensors" }, { "rfilename": "model-00002-of-00003.safetensors" }, { "rfilename": "model-00003-of-00003.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-13T02:17:49
null
67c72cb026926d1f08fe56b1
google/shieldgemma-2-4b-it
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-4b-pt"}
null
2025-03-12T15:34:43
30
30
{"architectures": ["ShieldGemma2ForImageClassification"], "model_type": "shieldgemma2", "processor_config": {"chat_template": "{{ bos_token }}\n{%- for message in messages -%}\n {%- if message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {{ '<start_of_turn>user\n' }}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ 'You are a policy expert trying to help determine whether a generated or real image is in' }}\n {{ ' violation of the safety policy below. Your decision must very clearly follow the specific'}}\n {{ ' language used in the safety policy and should not include any interpretation outside of the' }}\n {{ ' safety policy.\n\n' }}\n {{ '<BEGIN_SAFETY_POLICY>\n' }}\n {{ item['text'] + '\n' }}\n {{ '</END_SAFETY_POLICY>\n\n' }}\n {{ 'Does the image violate the above policy? Your Answer must start with \\'Yes\\' or \\'No\\'.' }}\n {{ '<end_of_turn>\n' }}\n {%- endif -%}\n {%- endfor -%}\n {{'<start_of_turn>model\n'}}\n {%- else -%}\n {{ raise_exception(\"Conversation messages must contain iterable content containing images and policy definitions in text.\") }}\n {%- endif -%}\n{%- endfor -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- for message in messages -%}\n {%- if message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {{ '<start_of_turn>user\n' }}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ 'You are a policy expert trying to help determine whether a generated or real image is in' }}\n {{ ' violation of the safety policy below. Your decision must very clearly follow the specific'}}\n {{ ' language used in the safety policy and should not include any interpretation outside of the' }}\n {{ ' safety policy.\n\n' }}\n {{ '<BEGIN_SAFETY_POLICY>\n' }}\n {{ item['text'] + '\n' }}\n {{ '</END_SAFETY_POLICY>\n\n' }}\n {{ 'Does the image violate the above policy? Your Answer must start with \\'Yes\\' or \\'No\\'.' }}\n {{ '<end_of_turn>\n' }}\n {%- endif -%}\n {%- endfor -%}\n {{'<start_of_turn>model\n'}}\n {%- else -%}\n {{ raise_exception(\"Conversation messages must contain iterable content containing images and policy definitions in text.\") }}\n {%- endif -%}\n{%- endfor -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
0
0
{ "parameters": { "BF16": 4300079472, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 4300079472 }
[ "transformers", "safetensors", "shieldgemma2", "image-text-to-text", "conversational", "arxiv:2209.06794", "base_model:google/gemma-3-4b-pt", "base_model:finetune:google/gemma-3-4b-pt", "license:gemma", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "ShieldGemma2ForImageClassification", "custom_class": null, "pipeline_tag": null, "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-04T16:39:12
null
67c74d900d5b8345f9d2bbf3
TheDrummer/Cydonia-24B-v2.1
TheDrummer
{"license": "other"}
null
2025-03-07T17:55:33
30
30
{"architectures": ["MistralForCausalLM"], "model_type": "mistral", "tokenizer_config": {"bos_token": "<s>", "chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- elif message['role'] == 'system' %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- elif message['role'] == 'assistant' %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}", "eos_token": "</s>", "unk_token": "<unk>", "use_default_system_prompt": false}}
346
346
{ "parameters": { "BF16": 23572403200, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 23572403200 }
[ "safetensors", "mistral", "license:other", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "model-00001-of-00010.safetensors" }, { "rfilename": "model-00002-of-00010.safetensors" }, { "rfilename": "model-00003-of-00010.safetensors" }, { "rfilename": "model-00004-of-00010.safetensors" }, { "rfilename": "model-00005-of-00010.safetensors" }, { "rfilename": "model-00006-of-00010.safetensors" }, { "rfilename": "model-00007-of-00010.safetensors" }, { "rfilename": "model-00008-of-00010.safetensors" }, { "rfilename": "model-00009-of-00010.safetensors" }, { "rfilename": "model-00010-of-00010.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-04T18:59:28
null
67c8a34aeca481f7b6cade02
amd/Instella-3B
amd
{"license": "other", "license_link": "LICENSE", "pipeline_tag": "text-generation", "library_name": "transformers"}
null
2025-03-06T23:58:03
30
30
{"architectures": ["InstellaForCausalLM"], "auto_map": {"AutoConfig": "modeling_instella.InstellaConfig", "AutoModelForCausalLM": "modeling_instella.InstellaForCausalLM"}, "model_type": "instella", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|padding|>", "unk_token": "<|endoftext|>"}}
326
326
{ "parameters": { "BF16": 3112675840, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 3112675840 }
[ "transformers", "safetensors", "instella", "text-generation", "custom_code", "license:other", "autotrain_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_instella.InstellaForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "NOTICES" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_instella.py" }, { "rfilename": "scaling_perf_instruct.png" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-03-05T19:17:30
null
676c000762cee1f3abc3ed5f
deepseek-ai/DeepSeek-V3
deepseek-ai
{"library_name": "transformers"}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/deepseek-v3", "status": "live", "task": "conversational" }, { "provider": "fal-ai", "providerId": "deepseek-v3", "status": "staging", "task": "conversational" }, { "provider": "replicate", "providerId": "deepseek-v3", "status": "staging", "task": "conversational" }, { "provider": "together", "providerId": "deepseek-ai/DeepSeek-V3", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "deepseek-ai/DeepSeek-V3", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "deepseek/deepseek-v3-turbo", "status": "live", "task": "conversational" } ]
2025-02-24T03:29:50
3,623
29
{"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "quantization_config": {"quant_method": "fp8"}, "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c>'}}{% endif %}"}}
3,127,646
4,445,017
{ "parameters": { "BF16": 3918786560, "BF69": null, "BOOL": null, "F16": null, "F32": 41555600, "F64": null, "F8_E4M3": 680571043840, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 684531386000 }
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "arxiv:2412.19437", "autotrain_compatible", "fp8", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": "modeling_deepseek.DeepseekV3ForCausalLM", "pipeline_tag": "text-generation", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE-CODE" }, { "rfilename": "LICENSE-MODEL" }, { "rfilename": "README.md" }, { "rfilename": "README_WEIGHTS.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_deepseek.py" }, { "rfilename": "figures/benchmark.png" }, { "rfilename": "figures/niah.png" }, { "rfilename": "inference/configs/config_16B.json" }, { "rfilename": "inference/configs/config_236B.json" }, { "rfilename": "inference/configs/config_671B.json" }, { "rfilename": "inference/convert.py" }, { "rfilename": "inference/fp8_cast_bf16.py" }, { "rfilename": "inference/generate.py" }, { "rfilename": "inference/kernel.py" }, { "rfilename": "inference/model.py" }, { "rfilename": "inference/requirements.txt" }, { "rfilename": "model-00001-of-000163.safetensors" }, { "rfilename": "model-00002-of-000163.safetensors" }, { "rfilename": "model-00003-of-000163.safetensors" }, { "rfilename": "model-00004-of-000163.safetensors" }, { "rfilename": "model-00005-of-000163.safetensors" }, { "rfilename": "model-00006-of-000163.safetensors" }, { "rfilename": "model-00007-of-000163.safetensors" }, { "rfilename": "model-00008-of-000163.safetensors" }, { "rfilename": "model-00009-of-000163.safetensors" }, { "rfilename": "model-00010-of-000163.safetensors" }, { "rfilename": "model-00011-of-000163.safetensors" }, { "rfilename": "model-00012-of-000163.safetensors" }, { "rfilename": "model-00013-of-000163.safetensors" }, { "rfilename": "model-00014-of-000163.safetensors" }, { "rfilename": "model-00015-of-000163.safetensors" }, { "rfilename": "model-00016-of-000163.safetensors" }, { "rfilename": "model-00017-of-000163.safetensors" }, { "rfilename": "model-00018-of-000163.safetensors" }, { "rfilename": "model-00019-of-000163.safetensors" }, { "rfilename": "model-00020-of-000163.safetensors" }, { "rfilename": "model-00021-of-000163.safetensors" }, { "rfilename": "model-00022-of-000163.safetensors" }, { "rfilename": "model-00023-of-000163.safetensors" }, { "rfilename": "model-00024-of-000163.safetensors" }, { "rfilename": "model-00025-of-000163.safetensors" }, { "rfilename": "model-00026-of-000163.safetensors" }, { "rfilename": "model-00027-of-000163.safetensors" }, { "rfilename": "model-00028-of-000163.safetensors" }, { "rfilename": "model-00029-of-000163.safetensors" }, { "rfilename": "model-00030-of-000163.safetensors" }, { "rfilename": "model-00031-of-000163.safetensors" }, { "rfilename": "model-00032-of-000163.safetensors" }, { "rfilename": "model-00033-of-000163.safetensors" }, { "rfilename": "model-00034-of-000163.safetensors" }, { "rfilename": "model-00035-of-000163.safetensors" }, { "rfilename": "model-00036-of-000163.safetensors" }, { "rfilename": "model-00037-of-000163.safetensors" }, { "rfilename": "model-00038-of-000163.safetensors" }, { "rfilename": "model-00039-of-000163.safetensors" }, { "rfilename": "model-00040-of-000163.safetensors" }, { "rfilename": "model-00041-of-000163.safetensors" }, { "rfilename": "model-00042-of-000163.safetensors" }, { "rfilename": "model-00043-of-000163.safetensors" }, { "rfilename": "model-00044-of-000163.safetensors" }, { "rfilename": "model-00045-of-000163.safetensors" }, { "rfilename": "model-00046-of-000163.safetensors" }, { "rfilename": "model-00047-of-000163.safetensors" }, { "rfilename": "model-00048-of-000163.safetensors" }, { "rfilename": "model-00049-of-000163.safetensors" }, { "rfilename": "model-00050-of-000163.safetensors" }, { "rfilename": "model-00051-of-000163.safetensors" }, { "rfilename": "model-00052-of-000163.safetensors" }, { "rfilename": "model-00053-of-000163.safetensors" }, { "rfilename": "model-00054-of-000163.safetensors" }, { "rfilename": "model-00055-of-000163.safetensors" }, { "rfilename": "model-00056-of-000163.safetensors" }, { "rfilename": "model-00057-of-000163.safetensors" }, { "rfilename": "model-00058-of-000163.safetensors" }, { "rfilename": "model-00059-of-000163.safetensors" }, { "rfilename": "model-00060-of-000163.safetensors" }, { "rfilename": "model-00061-of-000163.safetensors" }, { "rfilename": "model-00062-of-000163.safetensors" }, { "rfilename": "model-00063-of-000163.safetensors" }, { "rfilename": "model-00064-of-000163.safetensors" }, { "rfilename": "model-00065-of-000163.safetensors" }, { "rfilename": "model-00066-of-000163.safetensors" }, { "rfilename": "model-00067-of-000163.safetensors" }, { "rfilename": "model-00068-of-000163.safetensors" }, { "rfilename": "model-00069-of-000163.safetensors" }, { "rfilename": "model-00070-of-000163.safetensors" }, { "rfilename": "model-00071-of-000163.safetensors" }, { "rfilename": "model-00072-of-000163.safetensors" }, { "rfilename": "model-00073-of-000163.safetensors" }, { "rfilename": "model-00074-of-000163.safetensors" }, { "rfilename": "model-00075-of-000163.safetensors" }, { "rfilename": "model-00076-of-000163.safetensors" }, { "rfilename": "model-00077-of-000163.safetensors" }, { "rfilename": "model-00078-of-000163.safetensors" }, { "rfilename": "model-00079-of-000163.safetensors" }, { "rfilename": "model-00080-of-000163.safetensors" }, { "rfilename": "model-00081-of-000163.safetensors" }, { "rfilename": "model-00082-of-000163.safetensors" }, { "rfilename": "model-00083-of-000163.safetensors" }, { "rfilename": "model-00084-of-000163.safetensors" }, { "rfilename": "model-00085-of-000163.safetensors" }, { "rfilename": "model-00086-of-000163.safetensors" }, { "rfilename": "model-00087-of-000163.safetensors" }, { "rfilename": "model-00088-of-000163.safetensors" }, { "rfilename": "model-00089-of-000163.safetensors" }, { "rfilename": "model-00090-of-000163.safetensors" }, { "rfilename": "model-00091-of-000163.safetensors" }, { "rfilename": "model-00092-of-000163.safetensors" }, { "rfilename": "model-00093-of-000163.safetensors" }, { "rfilename": "model-00094-of-000163.safetensors" }, { "rfilename": "model-00095-of-000163.safetensors" }, { "rfilename": "model-00096-of-000163.safetensors" }, { "rfilename": "model-00097-of-000163.safetensors" }, { "rfilename": "model-00098-of-000163.safetensors" }, { "rfilename": "model-00099-of-000163.safetensors" }, { "rfilename": "model-00100-of-000163.safetensors" }, { "rfilename": "model-00101-of-000163.safetensors" }, { "rfilename": "model-00102-of-000163.safetensors" }, { "rfilename": "model-00103-of-000163.safetensors" }, { "rfilename": "model-00104-of-000163.safetensors" }, { "rfilename": "model-00105-of-000163.safetensors" }, { "rfilename": "model-00106-of-000163.safetensors" }, { "rfilename": "model-00107-of-000163.safetensors" }, { "rfilename": "model-00108-of-000163.safetensors" }, { "rfilename": "model-00109-of-000163.safetensors" }, { "rfilename": "model-00110-of-000163.safetensors" }, { "rfilename": "model-00111-of-000163.safetensors" }, { "rfilename": "model-00112-of-000163.safetensors" }, { "rfilename": "model-00113-of-000163.safetensors" }, { "rfilename": "model-00114-of-000163.safetensors" }, { "rfilename": "model-00115-of-000163.safetensors" }, { "rfilename": "model-00116-of-000163.safetensors" }, { "rfilename": "model-00117-of-000163.safetensors" }, { "rfilename": "model-00118-of-000163.safetensors" }, { "rfilename": "model-00119-of-000163.safetensors" }, { "rfilename": "model-00120-of-000163.safetensors" }, { "rfilename": "model-00121-of-000163.safetensors" }, { "rfilename": "model-00122-of-000163.safetensors" }, { "rfilename": "model-00123-of-000163.safetensors" }, { "rfilename": "model-00124-of-000163.safetensors" }, { "rfilename": "model-00125-of-000163.safetensors" }, { "rfilename": "model-00126-of-000163.safetensors" }, { "rfilename": "model-00127-of-000163.safetensors" }, { "rfilename": "model-00128-of-000163.safetensors" }, { "rfilename": "model-00129-of-000163.safetensors" }, { "rfilename": "model-00130-of-000163.safetensors" }, { "rfilename": "model-00131-of-000163.safetensors" }, { "rfilename": "model-00132-of-000163.safetensors" }, { "rfilename": "model-00133-of-000163.safetensors" }, { "rfilename": "model-00134-of-000163.safetensors" }, { "rfilename": "model-00135-of-000163.safetensors" }, { "rfilename": "model-00136-of-000163.safetensors" }, { "rfilename": "model-00137-of-000163.safetensors" }, { "rfilename": "model-00138-of-000163.safetensors" }, { "rfilename": "model-00139-of-000163.safetensors" }, { "rfilename": "model-00140-of-000163.safetensors" }, { "rfilename": "model-00141-of-000163.safetensors" }, { "rfilename": "model-00142-of-000163.safetensors" }, { "rfilename": "model-00143-of-000163.safetensors" }, { "rfilename": "model-00144-of-000163.safetensors" }, { "rfilename": "model-00145-of-000163.safetensors" }, { "rfilename": "model-00146-of-000163.safetensors" }, { "rfilename": "model-00147-of-000163.safetensors" }, { "rfilename": "model-00148-of-000163.safetensors" }, { "rfilename": "model-00149-of-000163.safetensors" }, { "rfilename": "model-00150-of-000163.safetensors" }, { "rfilename": "model-00151-of-000163.safetensors" }, { "rfilename": "model-00152-of-000163.safetensors" }, { "rfilename": "model-00153-of-000163.safetensors" }, { "rfilename": "model-00154-of-000163.safetensors" }, { "rfilename": "model-00155-of-000163.safetensors" }, { "rfilename": "model-00156-of-000163.safetensors" }, { "rfilename": "model-00157-of-000163.safetensors" }, { "rfilename": "model-00158-of-000163.safetensors" }, { "rfilename": "model-00159-of-000163.safetensors" }, { "rfilename": "model-00160-of-000163.safetensors" }, { "rfilename": "model-00161-of-000163.safetensors" }, { "rfilename": "model-00162-of-000163.safetensors" }, { "rfilename": "model-00163-of-000163.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "modeling_deepseek.py" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-12-25T12:52:23
null
6796251e22990ae89b1f60f1
deepseek-ai/Janus-Pro-7B
deepseek-ai
{"license": "mit", "license_name": "deepseek", "license_link": "LICENSE", "pipeline_tag": "any-to-any", "library_name": "transformers", "tags": ["muiltimodal", "text-to-image", "unified-model"]}
null
2025-02-01T08:00:16
3,206
29
{"model_type": "multi_modality", "tokenizer_config": {"bos_token": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "eos_token": "<\uff5cend\u2581of\u2581sentence\uff5c>", "pad_token": null, "unk_token": null, "use_default_system_prompt": true}}
262,095
628,802
null
[ "transformers", "pytorch", "multi_modality", "muiltimodal", "text-to-image", "unified-model", "any-to-any", "arxiv:2501.17811", "license:mit", "endpoints_compatible", "region:us" ]
any-to-any
{ "auto_model": "AutoModel", "custom_class": null, "pipeline_tag": null, "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "janus_pro_teaser1.png" }, { "rfilename": "janus_pro_teaser2.png" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "pytorch_model-00001-of-00002.bin" }, { "rfilename": "pytorch_model-00002-of-00002.bin" }, { "rfilename": "pytorch_model.bin.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-01-26T12:05:50
null
6540d2d50cb8e9d8e63a1e1f
coqui/XTTS-v2
coqui
{"license": "other", "license_name": "coqui-public-model-license", "license_link": "https://coqui.ai/cpml", "library_name": "coqui", "pipeline_tag": "text-to-speech", "widget": [{"text": "Once when I was six years old I saw a magnificent picture"}]}
null
2023-12-11T17:50:00
2,473
28
null
2,616,311
15,500,710
null
[ "coqui", "text-to-speech", "license:other", "region:us" ]
text-to-speech
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.txt" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "dvae.pth" }, { "rfilename": "hash.md5" }, { "rfilename": "mel_stats.pth" }, { "rfilename": "model.pth" }, { "rfilename": "samples/de_sample.wav" }, { "rfilename": "samples/en_sample.wav" }, { "rfilename": "samples/es_sample.wav" }, { "rfilename": "samples/fr_sample.wav" }, { "rfilename": "samples/ja-sample.wav" }, { "rfilename": "samples/pt_sample.wav" }, { "rfilename": "samples/tr_sample.wav" }, { "rfilename": "samples/zh-cn-sample.wav" }, { "rfilename": "speakers_xtts.pth" }, { "rfilename": "vocab.json" } ]
2023-10-31T10:11:33
null
678e15048143a819dd01a3c1
deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
deepseek-ai
{"license": "mit", "library_name": "transformers"}
[ { "provider": "hf-inference", "providerId": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "deepseek/deepseek-r1-distill-qwen-32b", "status": "live", "task": "conversational" } ]
2025-02-24T03:31:29
1,252
28
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}}
1,561,175
2,087,410
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2501.12948", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "figures/benchmark.jpg" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-000008.safetensors" }, { "rfilename": "model-00002-of-000008.safetensors" }, { "rfilename": "model-00003-of-000008.safetensors" }, { "rfilename": "model-00004-of-000008.safetensors" }, { "rfilename": "model-00005-of-000008.safetensors" }, { "rfilename": "model-00006-of-000008.safetensors" }, { "rfilename": "model-00007-of-000008.safetensors" }, { "rfilename": "model-00008-of-000008.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-01-20T09:19:00
null
67bda5ec3a3a100900815991
Wan-AI/Wan2.1-T2V-1.3B
Wan-AI
{"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "text-to-video", "library_name": "diffusers", "tags": ["video", "video-generation"]}
[ { "provider": "replicate", "providerId": "wan-video/wan-2.1-1.3b", "status": "live", "task": "text-to-video" }, { "provider": "fal-ai", "providerId": "fal-ai/wan/v2.1/1.3b/text-to-video", "status": "live", "task": "text-to-video" } ]
2025-03-01T09:31:33
270
28
{"model_type": "t2v"}
21,173
21,173
null
[ "diffusers", "safetensors", "t2v", "video", "video-generation", "text-to-video", "en", "zh", "license:apache-2.0", "region:us" ]
text-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.txt" }, { "rfilename": "README.md" }, { "rfilename": "Wan2.1_VAE.pth" }, { "rfilename": "assets/.DS_Store" }, { "rfilename": "assets/comp_effic.png" }, { "rfilename": "assets/data_for_diff_stage.jpg" }, { "rfilename": "assets/i2v_res.png" }, { "rfilename": "assets/logo.png" }, { "rfilename": "assets/t2v_res.jpg" }, { "rfilename": "assets/vben_1.3b_vs_sota.png" }, { "rfilename": "assets/vben_vs_sota.png" }, { "rfilename": "assets/video_dit_arch.jpg" }, { "rfilename": "assets/video_vae_res.jpg" }, { "rfilename": "config.json" }, { "rfilename": "diffusion_pytorch_model.safetensors" }, { "rfilename": "examples/i2v_input.JPG" }, { "rfilename": "google/umt5-xxl/special_tokens_map.json" }, { "rfilename": "google/umt5-xxl/spiece.model" }, { "rfilename": "google/umt5-xxl/tokenizer.json" }, { "rfilename": "google/umt5-xxl/tokenizer_config.json" }, { "rfilename": "models_t5_umt5-xxl-enc-bf16.pth" } ]
2025-02-25T11:13:48
null
67c6bafabc746f6280f7d2d1
tensorart/stable-diffusion-3.5-large-TurboX
tensorart
{"license": "other", "license_name": "stabilityai-ai-community", "license_link": "LICENSE"}
null
2025-03-06T10:19:42
47
27
{"diffusers": {"_class_name": "StableDiffusion3Pipeline"}}
7,448
7,448
null
[ "diffusers", "safetensors", "gguf", "license:other", "diffusers:StableDiffusion3Pipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "TensorArt-SD3.5-Large-TurboX-Q4_1-8steps.gguf" }, { "rfilename": "TensorArt-SD3.5-Large-TurboX-Q8_0-8steps.gguf" }, { "rfilename": "TensorArt-SD3.5-Large-TurboX.safetensors" }, { "rfilename": "Tensorart_TurboX_sd3.5L_8steps.safetensors" }, { "rfilename": "ckpt_ad.webp" }, { "rfilename": "contrast_imgs/1-1.jpg" }, { "rfilename": "contrast_imgs/1-2.jpg" }, { "rfilename": "contrast_imgs/2-1.jpg" }, { "rfilename": "contrast_imgs/2-2.jpg" }, { "rfilename": "contrast_imgs/3-1.jpg" }, { "rfilename": "contrast_imgs/3-2.jpg" }, { "rfilename": "contrast_sd3.5L_TurboX_turbo_diff_cfg.json" }, { "rfilename": "contrast_sd3.5L_normal_TurboX.json" }, { "rfilename": "model_index.json" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/model.safetensors" }, { "rfilename": "text_encoder_2/config.json" }, { "rfilename": "text_encoder_2/model.safetensors" }, { "rfilename": "text_encoder_3/config.json" }, { "rfilename": "text_encoder_3/model-00001-of-00003.safetensors" }, { "rfilename": "text_encoder_3/model-00002-of-00003.safetensors" }, { "rfilename": "text_encoder_3/model-00003-of-00003.safetensors" }, { "rfilename": "text_encoder_3/model.safetensors.index.json" }, { "rfilename": "tokenizer/merges.txt" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "tokenizer/vocab.json" }, { "rfilename": "tokenizer_2/merges.txt" }, { "rfilename": "tokenizer_2/special_tokens_map.json" }, { "rfilename": "tokenizer_2/tokenizer_config.json" }, { "rfilename": "tokenizer_2/vocab.json" }, { "rfilename": "tokenizer_3/special_tokens_map.json" }, { "rfilename": "tokenizer_3/spiece.model" }, { "rfilename": "tokenizer_3/tokenizer.json" }, { "rfilename": "tokenizer_3/tokenizer_config.json" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" } ]
2025-03-04T08:34:02
{ "architecture": "sd3", "bos_token": null, "causal": null, "chat_template": null, "context_length": null, "eos_token": null, "quantize_imatrix_file": null, "total": 8146280768 }
67cdb388999766d8cd8115f3
zer0int/CLIP-Registers-Gated_MLP-ViT-L-14
zer0int
{"license": "mit", "datasets": ["SPRIGHT-T2I/spright_coco"], "base_model": ["openai/clip-vit-large-patch14"]}
null
2025-03-12T19:50:02
27
27
null
0
0
null
[ "dataset:SPRIGHT-T2I/spright_coco", "base_model:openai/clip-vit-large-patch14", "base_model:finetune:openai/clip-vit-large-patch14", "license:mit", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "ViT-L-14-REG-GATED-balanced-ckpt12.pt" }, { "rfilename": "ViT-L-14-REG-GATED-balanced-ckpt12.safetensors" }, { "rfilename": "ViT-L-14-REG-GATED-xtreme-ckpt20.pt" }, { "rfilename": "ViT-L-14-REG-GATED-xtreme-ckpt20.safetensors" }, { "rfilename": "ViT-L-14-REG-TE-only-balanced-HF-format-ckpt12.safetensors" }, { "rfilename": "ViT-L-14-REG-TE-only-xtreme-HF-format-ckpt20.safetensors" } ]
2025-03-09T15:28:08
null
67c878fb4b48288e074dc3c9
lmstudio-community/QwQ-32B-GGUF
lmstudio-community
{"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "base_model": "Qwen/QwQ-32B", "tags": ["chat"], "language": ["en"]}
null
2025-03-05T19:43:22
32
26
null
96,902
96,902
null
[ "gguf", "chat", "text-generation", "en", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "QwQ-32B-Q3_K_L.gguf" }, { "rfilename": "QwQ-32B-Q4_K_M.gguf" }, { "rfilename": "QwQ-32B-Q6_K.gguf" }, { "rfilename": "QwQ-32B-Q8_0.gguf" }, { "rfilename": "README.md" } ]
2025-03-05T16:16:59
{ "architecture": "qwen2", "bos_token": "<|endoftext|>", "causal": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = (message.content.split('</think>')|last).lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = (message.content.split('</think>')|last).lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "context_length": 131072, "eos_token": "<|im_end|>", "quantize_imatrix_file": null, "total": 32763876352 }
67ce4c20733c1bea6bce2e86
StarJiaxing/R1-Omni-0.5B
StarJiaxing
{"license": "apache-2.0"}
null
2025-03-10T11:43:51
26
26
{"architectures": ["HumanOmniQwen2ForCausalLM"], "model_type": "HumanOmni_qwen2", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
27
27
{ "parameters": { "BF16": 1373177925, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 1373177925 }
[ "safetensors", "HumanOmni_qwen2", "arxiv:2503.05379", "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "chat_template.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model.safetensors" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-10T02:19:12
null
672b1f9e956e6880fdb8c1e5
Qwen/Qwen2.5-Coder-32B-Instruct
Qwen
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE", "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-32B"], "pipeline_tag": "text-generation", "library_name": "transformers", "tags": ["code", "codeqwen", "chat", "qwen", "qwen-coder"]}
[ { "provider": "fireworks-ai", "providerId": "accounts/fireworks/models/qwen2p5-coder-32b-instruct", "status": "live", "task": "conversational" }, { "provider": "sambanova", "providerId": "Qwen2.5-Coder-32B-Instruct", "status": "live", "task": "conversational" }, { "provider": "together", "providerId": "Qwen/Qwen2.5-Coder-32B-Instruct", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "Qwen/Qwen2.5-Coder-32B-Instruct", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "Qwen/Qwen2.5-Coder-32B-Instruct-fast", "status": "live", "task": "conversational" }, { "provider": "hyperbolic", "providerId": "Qwen/Qwen2.5-Coder-32B-Instruct", "status": "live", "task": "conversational" } ]
2025-01-12T02:02:22
1,707
25
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
209,241
891,380
{ "parameters": { "BF16": 32763876352, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32763876352 }
[ "transformers", "safetensors", "qwen2", "text-generation", "code", "codeqwen", "chat", "qwen", "qwen-coder", "conversational", "en", "arxiv:2409.12186", "arxiv:2309.00071", "arxiv:2407.10671", "base_model:Qwen/Qwen2.5-Coder-32B", "base_model:finetune:Qwen/Qwen2.5-Coder-32B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00014.safetensors" }, { "rfilename": "model-00002-of-00014.safetensors" }, { "rfilename": "model-00003-of-00014.safetensors" }, { "rfilename": "model-00004-of-00014.safetensors" }, { "rfilename": "model-00005-of-00014.safetensors" }, { "rfilename": "model-00006-of-00014.safetensors" }, { "rfilename": "model-00007-of-00014.safetensors" }, { "rfilename": "model-00008-of-00014.safetensors" }, { "rfilename": "model-00009-of-00014.safetensors" }, { "rfilename": "model-00010-of-00014.safetensors" }, { "rfilename": "model-00011-of-00014.safetensors" }, { "rfilename": "model-00012-of-00014.safetensors" }, { "rfilename": "model-00013-of-00014.safetensors" }, { "rfilename": "model-00014-of-00014.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2024-11-06T07:49:50
null
678df3695dec6df8ec20e664
tencent/Hunyuan3D-2
tencent
{"library_name": "hunyuan3d-2", "license": "other", "license_name": "tencent-hunyuan-community", "license_link": "https://huggingface.co/tencent/Hunyuan3D-2/blob/main/LICENSE.txt", "language": ["en", "zh"], "tags": ["image-to-3d", "text-to-3d"], "pipeline_tag": "image-to-3d"}
null
2025-02-28T05:51:36
1,051
25
null
32,975
81,244
null
[ "hunyuan3d-2", "diffusers", "safetensors", "image-to-3d", "text-to-3d", "en", "zh", "arxiv:2501.12202", "arxiv:2411.02293", "license:other", "region:us" ]
image-to-3d
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "NOTICE" }, { "rfilename": "README.md" }, { "rfilename": "assets/demo.png" }, { "rfilename": "assets/images/arch.jpg" }, { "rfilename": "assets/images/e2e-1.gif" }, { "rfilename": "assets/images/e2e-2.gif" }, { "rfilename": "assets/images/system.jpg" }, { "rfilename": "assets/images/teaser.jpg" }, { "rfilename": "config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/feature_extractor/preprocessor_config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/model_index.json" }, { "rfilename": "hunyuan3d-delight-v2-0/scheduler/scheduler_config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/text_encoder/config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/text_encoder/model.safetensors" }, { "rfilename": "hunyuan3d-delight-v2-0/tokenizer/merges.txt" }, { "rfilename": "hunyuan3d-delight-v2-0/tokenizer/special_tokens_map.json" }, { "rfilename": "hunyuan3d-delight-v2-0/tokenizer/tokenizer_config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/tokenizer/vocab.json" }, { "rfilename": "hunyuan3d-delight-v2-0/unet/config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/unet/diffusion_pytorch_model.safetensors" }, { "rfilename": "hunyuan3d-delight-v2-0/vae/config.json" }, { "rfilename": "hunyuan3d-delight-v2-0/vae/diffusion_pytorch_model.safetensors" }, { "rfilename": "hunyuan3d-dit-v2-0-fast/config.yaml" }, { "rfilename": "hunyuan3d-dit-v2-0-fast/model.fp16.ckpt" }, { "rfilename": "hunyuan3d-dit-v2-0-fast/model.fp16.safetensors" }, { "rfilename": "hunyuan3d-dit-v2-0/config.yaml" }, { "rfilename": "hunyuan3d-dit-v2-0/model.ckpt" }, { "rfilename": "hunyuan3d-dit-v2-0/model.safetensors" }, { "rfilename": "hunyuan3d-dit-v2-0/model_fp16.ckpt" }, { "rfilename": "hunyuan3d-paint-v2-0/.gitattributes" }, { "rfilename": "hunyuan3d-paint-v2-0/feature_extractor/preprocessor_config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/model_index.json" }, { "rfilename": "hunyuan3d-paint-v2-0/scheduler/scheduler_config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/text_encoder/config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/text_encoder/pytorch_model.bin" }, { "rfilename": "hunyuan3d-paint-v2-0/tokenizer/merges.txt" }, { "rfilename": "hunyuan3d-paint-v2-0/tokenizer/special_tokens_map.json" }, { "rfilename": "hunyuan3d-paint-v2-0/tokenizer/tokenizer_config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/tokenizer/vocab.json" }, { "rfilename": "hunyuan3d-paint-v2-0/unet/config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.bin" }, { "rfilename": "hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.safetensors" }, { "rfilename": "hunyuan3d-paint-v2-0/unet/modules.py" }, { "rfilename": "hunyuan3d-paint-v2-0/vae/config.json" }, { "rfilename": "hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.bin" }, { "rfilename": "hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.safetensors" } ]
2025-01-20T06:55:37
null
66944f1fe0c5c2e493a804f5
meta-llama/Llama-3.1-8B
meta-llama
{"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.1", "extra_gated_prompt": "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.1 is licensed under the Llama 3.1 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement.\n2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n#### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "library_name": "transformers"}
null
2024-10-16T22:00:37
1,486
23
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "eos_token": "<|end_of_text|>"}}
1,299,624
6,655,491
{ "parameters": { "BF16": 8030261248, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 8030261248 }
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "license:llama3.1", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "USE_POLICY.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "original/consolidated.00.pth" }, { "rfilename": "original/params.json" }, { "rfilename": "original/tokenizer.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-07-14T22:20:15
null
67613064cf3eda466ab41b6f
Comfy-Org/HunyuanVideo_repackaged
Comfy-Org
null
null
2025-03-09T09:29:56
150
23
null
0
0
null
[ "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "split_files/clip_vision/llava_llama3_vision.safetensors" }, { "rfilename": "split_files/diffusion_models/hunyuan_video_image_to_video_720p_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/hunyuan_video_t2v_720p_bf16.safetensors" }, { "rfilename": "split_files/diffusion_models/hunyuan_video_v2_replace_image_to_video_720p_bf16.safetensors" }, { "rfilename": "split_files/text_encoders/clip_l.safetensors" }, { "rfilename": "split_files/text_encoders/llava_llama3_fp16.safetensors" }, { "rfilename": "split_files/text_encoders/llava_llama3_fp8_scaled.safetensors" }, { "rfilename": "split_files/vae/hunyuan_video_vae_bf16.safetensors" } ]
2024-12-17T08:03:48
null
67a093ec8f047b67c314351b
lerobot/pi0
lerobot
{"license": "apache-2.0", "library_name": "lerobot", "pipeline_tag": "robotics"}
null
2025-03-06T17:00:18
157
23
{"tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
8,910
10,672
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": null, "F32": 3501372176, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 3501372176 }
[ "lerobot", "safetensors", "robotics", "arxiv:2410.24164", "license:apache-2.0", "region:us" ]
robotics
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "model-00001-of-00003.safetensors" }, { "rfilename": "model-00002-of-00003.safetensors" }, { "rfilename": "model-00003-of-00003.safetensors" }, { "rfilename": "model.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-03T10:01:16
null
67bda7564d1a6d38f8189107
EuroBERT/EuroBERT-610m
EuroBERT
{"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]}
null
2025-03-11T13:21:16
23
23
{"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}}
770
770
null
[ "transformers", "pytorch", "eurobert", "fill-mask", "code", "custom_code", "en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi", "arxiv:2503.05500", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
{ "auto_model": "AutoModelForMaskedLM", "custom_class": "modeling_eurobert.EuroBertForMaskedLM", "pipeline_tag": "fill-mask", "processor": null }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "configuration_eurobert.py" }, { "rfilename": "img/banner.png" }, { "rfilename": "img/code_math.png" }, { "rfilename": "img/long_context.png" }, { "rfilename": "img/multilingual.png" }, { "rfilename": "modeling_eurobert.py" }, { "rfilename": "pytorch_model.bin" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-25T11:19:50
null
67c8a13c5360c9649186e9fd
mlx-community/QwQ-32B-4bit
mlx-community
{"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat", "mlx"]}
null
2025-03-05T19:55:39
23
23
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "quantization_config": {"bits": 4}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
3,078
3,078
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": 1024955392, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": 4095344640, "U8": null, "miku": null }, "total": 5120300032 }
[ "mlx", "safetensors", "qwen2", "chat", "text-generation", "conversational", "en", "base_model:Qwen/QwQ-32B", "base_model:quantized:Qwen/QwQ-32B", "license:apache-2.0", "4-bit", "region:us" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00004.safetensors" }, { "rfilename": "model-00002-of-00004.safetensors" }, { "rfilename": "model-00003-of-00004.safetensors" }, { "rfilename": "model-00004-of-00004.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-05T19:08:44
null
64bfcd5ff462a99a04fd1ec8
stabilityai/stable-diffusion-xl-base-1.0
stabilityai
{"license": "openrail++", "tags": ["text-to-image", "stable-diffusion"]}
[ { "provider": "replicate", "providerId": "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc", "status": "live", "task": "text-to-image" }, { "provider": "together", "providerId": "stabilityai/stable-diffusion-xl-base-1.0", "status": "live", "task": "text-to-image" }, { "provider": "hf-inference", "providerId": "stabilityai/stable-diffusion-xl-base-1.0", "status": "live", "task": "text-to-image" }, { "provider": "nebius", "providerId": "stability-ai/sdxl", "status": "live", "task": "text-to-image" } ]
2023-10-30T16:03:47
6,392
22
{"diffusers": {"_class_name": "StableDiffusionXLPipeline"}}
4,132,748
81,227,140
null
[ "diffusers", "onnx", "safetensors", "text-to-image", "stable-diffusion", "arxiv:2307.01952", "arxiv:2211.01324", "arxiv:2108.01073", "arxiv:2112.10752", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "01.png" }, { "rfilename": "LICENSE.md" }, { "rfilename": "README.md" }, { "rfilename": "comparison.png" }, { "rfilename": "model_index.json" }, { "rfilename": "pipeline.png" }, { "rfilename": "scheduler/scheduler_config.json" }, { "rfilename": "sd_xl_base_1.0.safetensors" }, { "rfilename": "sd_xl_base_1.0_0.9vae.safetensors" }, { "rfilename": "sd_xl_offset_example-lora_1.0.safetensors" }, { "rfilename": "text_encoder/config.json" }, { "rfilename": "text_encoder/flax_model.msgpack" }, { "rfilename": "text_encoder/model.fp16.safetensors" }, { "rfilename": "text_encoder/model.onnx" }, { "rfilename": "text_encoder/model.safetensors" }, { "rfilename": "text_encoder/openvino_model.bin" }, { "rfilename": "text_encoder/openvino_model.xml" }, { "rfilename": "text_encoder_2/config.json" }, { "rfilename": "text_encoder_2/flax_model.msgpack" }, { "rfilename": "text_encoder_2/model.fp16.safetensors" }, { "rfilename": "text_encoder_2/model.onnx" }, { "rfilename": "text_encoder_2/model.onnx_data" }, { "rfilename": "text_encoder_2/model.safetensors" }, { "rfilename": "text_encoder_2/openvino_model.bin" }, { "rfilename": "text_encoder_2/openvino_model.xml" }, { "rfilename": "tokenizer/merges.txt" }, { "rfilename": "tokenizer/special_tokens_map.json" }, { "rfilename": "tokenizer/tokenizer_config.json" }, { "rfilename": "tokenizer/vocab.json" }, { "rfilename": "tokenizer_2/merges.txt" }, { "rfilename": "tokenizer_2/special_tokens_map.json" }, { "rfilename": "tokenizer_2/tokenizer_config.json" }, { "rfilename": "tokenizer_2/vocab.json" }, { "rfilename": "unet/config.json" }, { "rfilename": "unet/diffusion_flax_model.msgpack" }, { "rfilename": "unet/diffusion_pytorch_model.fp16.safetensors" }, { "rfilename": "unet/diffusion_pytorch_model.safetensors" }, { "rfilename": "unet/model.onnx" }, { "rfilename": "unet/model.onnx_data" }, { "rfilename": "unet/openvino_model.bin" }, { "rfilename": "unet/openvino_model.xml" }, { "rfilename": "vae/config.json" }, { "rfilename": "vae/diffusion_flax_model.msgpack" }, { "rfilename": "vae/diffusion_pytorch_model.fp16.safetensors" }, { "rfilename": "vae/diffusion_pytorch_model.safetensors" }, { "rfilename": "vae_1_0/config.json" }, { "rfilename": "vae_1_0/diffusion_pytorch_model.fp16.safetensors" }, { "rfilename": "vae_1_0/diffusion_pytorch_model.safetensors" }, { "rfilename": "vae_decoder/config.json" }, { "rfilename": "vae_decoder/model.onnx" }, { "rfilename": "vae_decoder/openvino_model.bin" }, { "rfilename": "vae_decoder/openvino_model.xml" }, { "rfilename": "vae_encoder/config.json" }, { "rfilename": "vae_encoder/model.onnx" }, { "rfilename": "vae_encoder/openvino_model.bin" }, { "rfilename": "vae_encoder/openvino_model.xml" } ]
2023-07-25T13:25:51
null
6745f026cc4caa5db9508d0e
strangerzonehf/Flux-Midjourney-Mix2-LoRA
strangerzonehf
{"tags": ["text-to-image", "lora", "diffusers", "template:diffusion-lora"], "widget": [{"text": "MJ v6, Portrait photography of a woman in a red dress, in the style of unsplash photography, street photography, dark green background --ar 47:64 --v 6.0 --style raw", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/1.png"}}, {"text": "MJ v6, A portrait of a Bird in the dark, illuminated by an intense yellow light from above, with a soft blue gradient background. This scene evokes a sense of mystery or contemplation, highlighting the beauty of the subjects features against the contrasting backdrop, lens glossy effect, high contrast, star bokeh ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/2.png"}}, {"text": "MJ v6, A photo of an attractive man in his thirties, wearing a black coat and yellow scarf with a brown pattern inside a building talking on a phone standing near a modern glass skyscraper in London, shot from below looking up at him in the style of street photography, cinematic. --ar 85:128 --v 6.0 --style raw", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/3.png"}}, {"text": "MJ v6, banana bread with chocolate chips and pecans, in the style of tabletop photography, y2k aesthetic, spiky mounds, flawless line work, schlieren photography, 8k, natural fibers, minimal --ar 123:185 --v 5 ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/4.png"}}, {"text": "MJ v6, A portrait of Woman, fashion photography, big shapes in the background, on top of colorful squares with stars, in the style of retro vintage photography, pastel colors, soft purple and yellow ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/6.png"}}, {"text": "MJ v6, delicious dipped chocolate pastry japo gallery, white background, in the style of dark brown, close-up intensity, duckcore, rounded, high resolution --ar 2:3 --v 5", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/5.png"}}], "base_model": "black-forest-labs/FLUX.1-dev", "instance_prompt": "MJ v6", "license": "creativeml-openrail-m"}
[ { "provider": "hf-inference", "providerId": "black-forest-labs/FLUX.1-dev", "status": "live", "task": "text-to-image" } ]
2024-11-27T10:48:27
441
22
null
49,471
184,127
null
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:creativeml-openrail-m", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "images/1.png" }, { "rfilename": "images/2.png" }, { "rfilename": "images/3.png" }, { "rfilename": "images/4.png" }, { "rfilename": "images/5.png" }, { "rfilename": "images/6.png" }, { "rfilename": "images/mjv6.png" }, { "rfilename": "mjV6.safetensors" } ]
2024-11-26T15:58:30
null
679a09e0fc4b676ca9103c6f
agentica-org/DeepScaleR-1.5B-Preview
agentica-org
{"license": "mit", "library_name": "transformers", "datasets": ["AI-MO/NuminaMath-CoT", "KbsdJames/Omni-MATH", "RUC-AIBOX/STILL-3-Preview-RL-Data", "hendrycks/competition_math"], "language": ["en"], "base_model": ["deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"], "pipeline_tag": "text-generation"}
[ { "provider": "hf-inference", "providerId": "agentica-org/DeepScaleR-1.5B-Preview", "status": "live", "task": "text-generation" } ]
2025-02-23T03:29:24
520
22
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2"}
73,928
74,027
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": null, "F32": 1777088000, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 1777088000 }
[ "transformers", "safetensors", "qwen2", "text-generation", "en", "dataset:AI-MO/NuminaMath-CoT", "dataset:KbsdJames/Omni-MATH", "dataset:RUC-AIBOX/STILL-3-Preview-RL-Data", "dataset:hendrycks/competition_math", "base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-01-29T10:58:40
null
67b79c6c01ad68cfed14677a
google/gemma-3-4b-pt
google
{"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"}
null
2025-03-12T08:29:53
22
22
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}}
582
582
{ "parameters": { "BF16": 4300079472, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 4300079472 }
[ "transformers", "safetensors", "gemma3", "image-text-to-text", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "license:gemma", "text-generation-inference", "endpoints_compatible", "region:us" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model-00001-of-00002.safetensors" }, { "rfilename": "model-00002-of-00002.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "preprocessor_config.json" }, { "rfilename": "processor_config.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer.model" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-20T21:19:40
null
67c6dcd177ec8abe84bc82e2
primecai/dsd_model
primecai
{"license": "apache-2.0", "language": ["en"], "pinned": true, "tags": ["personalization", "dreambooth", "lora", "customized image"]}
null
2025-03-05T06:09:26
22
22
null
465
465
null
[ "diffusers", "safetensors", "personalization", "dreambooth", "lora", "customized image", "en", "arxiv:2411.18616", "license:apache-2.0", "region:us" ]
null
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "pytorch_lora_weights.safetensors" }, { "rfilename": "transformer/config.json" }, { "rfilename": "transformer/diffusion_pytorch_model.safetensors" } ]
2025-03-04T10:58:25
null
67cbf068771ab966f4a3833c
trashpanda-org/QwQ-32B-Snowdrop-v0
trashpanda-org
{"base_model": ["trashpanda-org/Qwen2.5-32B-Marigold-v0", "Qwen/QwQ-32B", "Qwen/Qwen2.5-32B", "trashpanda-org/Qwen2.5-32B-Marigold-v0-exp"], "library_name": "transformers", "tags": ["mergekit", "mergekitty", "merge"]}
null
2025-03-12T23:19:52
22
22
{"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}}
946
946
{ "parameters": { "BF16": 32759790592, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 32759790592 }
[ "transformers", "safetensors", "qwen2", "text-generation", "mergekit", "mergekitty", "merge", "conversational", "arxiv:2306.01708", "base_model:Qwen/QwQ-32B", "base_model:merge:Qwen/QwQ-32B", "base_model:Qwen/Qwen2.5-32B", "base_model:merge:Qwen/Qwen2.5-32B", "base_model:trashpanda-org/Qwen2.5-32B-Marigold-v0", "base_model:merge:trashpanda-org/Qwen2.5-32B-Marigold-v0", "base_model:trashpanda-org/Qwen2.5-32B-Marigold-v0-exp", "base_model:merge:trashpanda-org/Qwen2.5-32B-Marigold-v0-exp", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "added_tokens.json" }, { "rfilename": "config.json" }, { "rfilename": "mergekitty_config.yml" }, { "rfilename": "merges.txt" }, { "rfilename": "model-00001-of-00007.safetensors" }, { "rfilename": "model-00002-of-00007.safetensors" }, { "rfilename": "model-00003-of-00007.safetensors" }, { "rfilename": "model-00004-of-00007.safetensors" }, { "rfilename": "model-00005-of-00007.safetensors" }, { "rfilename": "model-00006-of-00007.safetensors" }, { "rfilename": "model-00007-of-00007.safetensors" }, { "rfilename": "model.safetensors.index.json" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" }, { "rfilename": "vocab.json" } ]
2025-03-08T07:23:20
null
67d15ebf10a3c2d2b5ec914f
unsloth/gemma-3-27b-it-GGUF
unsloth
{"base_model": "google/gemma-3-27b-it", "language": ["en"], "library_name": "transformers", "license": "gemma", "tags": ["unsloth", "transformers", "gemma3", "gemma", "google"]}
null
2025-03-12T10:24:16
22
22
{"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3"}
0
0
null
[ "transformers", "gguf", "gemma3", "image-text-to-text", "unsloth", "gemma", "google", "en", "arxiv:1905.07830", "arxiv:1905.10044", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1705.03551", "arxiv:1911.01547", "arxiv:1907.10641", "arxiv:1903.00161", "arxiv:2009.03300", "arxiv:2304.06364", "arxiv:2103.03874", "arxiv:2110.14168", "arxiv:2311.12022", "arxiv:2108.07732", "arxiv:2107.03374", "arxiv:2210.03057", "arxiv:2106.03193", "arxiv:1910.11856", "arxiv:2502.12404", "arxiv:2502.21228", "arxiv:2404.16816", "arxiv:2104.12756", "arxiv:2311.16502", "arxiv:2203.10244", "arxiv:2404.12390", "arxiv:1810.12440", "arxiv:1908.02660", "arxiv:2312.11805", "base_model:google/gemma-3-27b-it", "base_model:quantized:google/gemma-3-27b-it", "license:gemma", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
{ "auto_model": "AutoModelForImageTextToText", "custom_class": null, "pipeline_tag": "image-text-to-text", "processor": "AutoProcessor" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "BF16/gemma-3-27b-it.BF16-00001-of-00002.gguf" }, { "rfilename": "BF16/gemma-3-27b-it.BF16-00002-of-00002.gguf" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "gemma-3-27b-it-Q2_K.gguf" }, { "rfilename": "gemma-3-27b-it-Q2_K_L.gguf" }, { "rfilename": "gemma-3-27b-it-Q3_K_M.gguf" }, { "rfilename": "gemma-3-27b-it-Q4_K_M.gguf" }, { "rfilename": "gemma-3-27b-it-Q5_K_M.gguf" }, { "rfilename": "gemma-3-27b-it-Q6_K.gguf" }, { "rfilename": "gemma-3-27b-it.Q8_0.gguf" }, { "rfilename": "params" } ]
2025-03-12T10:15:27
{ "architecture": "gemma3", "bos_token": "<bos>", "causal": null, "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "context_length": 131072, "eos_token": "<end_of_turn>", "quantize_imatrix_file": null, "total": 27009346304 }
67a68e1f9d0295d4578134d8
nomic-ai/nomic-embed-text-v2-moe
nomic-ai
{"base_model": ["nomic-ai/nomic-embed-text-v2-moe-unsupervised"], "library_name": "sentence-transformers", "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction"], "license": "apache-2.0", "language": ["en", "es", "fr", "de", "it", "pt", "pl", "nl", "tr", "ja", "vi", "ru", "id", "ar", "cs", "ro", "sv", "el", "uk", "zh", "hu", "da", "no", "hi", "fi", "bg", "ko", "sk", "th", "he", "ca", "lt", "fa", "ms", "sl", "lv", "mr", "bn", "sq", "cy", "be", "ml", "kn", "mk", "ur", "fy", "te", "eu", "sw", "so", "sd", "uz", "co", "hr", "gu", "ce", "eo", "jv", "la", "zu", "mn", "si", "ga", "ky", "tg", "my", "km", "mg", "pa", "sn", "ha", "ht", "su", "gd", "ny", "ps", "ku", "am", "ig", "lo", "mi", "nn", "sm", "yi", "st", "tl", "xh", "yo", "af", "ta", "tn", "ug", "az", "ba", "bs", "dv", "et", "gl", "gn", "gv", "hy"]}
null
2025-03-11T20:32:20
296
21
{"architectures": ["NomicBertModel"], "auto_map": {"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig", "AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel", "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining", "AutoModelForMultipleChoice": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForMultipleChoice", "AutoModelForQuestionAnswering": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForQuestionAnswering", "AutoModelForSequenceClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForSequenceClassification", "AutoModelForTokenClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForTokenClassification"}, "model_type": "nomic_bert", "tokenizer_config": {"bos_token": "<s>", "cls_token": "<s>", "eos_token": "</s>", "mask_token": "<mask>", "pad_token": "<pad>", "sep_token": "</s>", "unk_token": "<unk>"}}
161,028
161,030
{ "parameters": { "BF16": null, "BF69": null, "BOOL": null, "F16": null, "F32": 475292928, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 475292928 }
[ "sentence-transformers", "safetensors", "nomic_bert", "sentence-similarity", "feature-extraction", "custom_code", "en", "es", "fr", "de", "it", "pt", "pl", "nl", "tr", "ja", "vi", "ru", "id", "ar", "cs", "ro", "sv", "el", "uk", "zh", "hu", "da", "no", "hi", "fi", "bg", "ko", "sk", "th", "he", "ca", "lt", "fa", "ms", "sl", "lv", "mr", "bn", "sq", "cy", "be", "ml", "kn", "mk", "ur", "fy", "te", "eu", "sw", "so", "sd", "uz", "co", "hr", "gu", "ce", "eo", "jv", "la", "zu", "mn", "si", "ga", "ky", "tg", "my", "km", "mg", "pa", "sn", "ha", "ht", "su", "gd", "ny", "ps", "ku", "am", "ig", "lo", "mi", "nn", "sm", "yi", "st", "tl", "xh", "yo", "af", "ta", "tn", "ug", "az", "ba", "bs", "dv", "et", "gl", "gn", "gv", "hy", "arxiv:2502.07972", "arxiv:2205.13147", "base_model:nomic-ai/nomic-embed-text-v2-moe-unsupervised", "base_model:finetune:nomic-ai/nomic-embed-text-v2-moe-unsupervised", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
sentence-similarity
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "1_Pooling/config.json" }, { "rfilename": "README.md" }, { "rfilename": "config.json" }, { "rfilename": "config_sentence_transformers.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "modules.json" }, { "rfilename": "sentence_bert_config.json" }, { "rfilename": "sentencepiece.bpe.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2025-02-07T22:50:07
null
67d05df90d346a0280700185
bartowski/RekaAI_reka-flash-3-GGUF
bartowski
{"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "base_model": "RekaAI/reka-flash-3"}
null
2025-03-12T07:40:45
21
21
null
3,540
3,540
null
[ "gguf", "text-generation", "base_model:RekaAI/reka-flash-3", "base_model:quantized:RekaAI/reka-flash-3", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
text-generation
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "RekaAI_reka-flash-3-IQ2_M.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ2_S.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ2_XS.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ2_XXS.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ3_M.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ3_XS.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ3_XXS.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ4_NL.gguf" }, { "rfilename": "RekaAI_reka-flash-3-IQ4_XS.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q2_K.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q2_K_L.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q3_K_L.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q3_K_M.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q3_K_S.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q3_K_XL.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q4_0.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q4_1.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q4_K_L.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q4_K_M.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q4_K_S.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q5_K_L.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q5_K_M.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q5_K_S.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q6_K.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q6_K_L.gguf" }, { "rfilename": "RekaAI_reka-flash-3-Q8_0.gguf" }, { "rfilename": "RekaAI_reka-flash-3-bf16.gguf" }, { "rfilename": "RekaAI_reka-flash-3.imatrix" } ]
2025-03-11T15:59:53
{ "architecture": "llama", "bos_token": "<|endoftext|>", "causal": null, "chat_template": "{% if messages[0]['role'] == 'system' %}{% set merged_content = messages[0]['content'] + ' ' + messages[1]['content'] %}{% set merged_messages = [{'role': messages[1]['role'], 'content': merged_content}] + messages[2:] %}{% else %}{% set merged_messages = messages %}{% endif %}{% for message in merged_messages %}{{('human' if message['role'] == 'user' else message['role']) + ': ' + (message['content'].split('<reasoning>')|first + message['content'].split('</reasoning>')|last if message['role'] == 'assistant' and '</reasoning>' in message['content'] else message['content'])}}{% if (loop.last and add_generation_prompt and merged_messages[-1]['role'] != 'assistant') or not loop.last %}{{ ' <sep> ' }}{% endif %}{% endfor %}{% if add_generation_prompt and merged_messages[-1]['role'] != 'assistant' %}{{ 'assistant:' }}{% endif %}", "context_length": 32768, "eos_token": "<|endoftext|>", "quantize_imatrix_file": null, "total": 20905482240 }
66c8663a1c056a550878e7d1
Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro
Shakker-Labs
{"license": "other", "license_name": "flux-1-dev-non-commercial-license", "license_link": "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md", "language": ["en"], "library_name": "diffusers", "pipeline_tag": "text-to-image", "tags": ["Text-to-Image", "ControlNet", "Diffusers", "Flux.1-dev", "image-generation", "Stable Diffusion"], "base_model": "black-forest-labs/FLUX.1-dev"}
null
2024-08-29T05:11:08
489
20
{}
50,013
205,108
null
[ "diffusers", "safetensors", "Text-to-Image", "ControlNet", "Diffusers", "Flux.1-dev", "image-generation", "Stable Diffusion", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "assets/blur.jpg" }, { "rfilename": "assets/blur_result.jpg" }, { "rfilename": "assets/canny.jpg" }, { "rfilename": "assets/canny_result.jpg" }, { "rfilename": "assets/depth.jpg" }, { "rfilename": "assets/depth_result.jpg" }, { "rfilename": "assets/gray.jpg" }, { "rfilename": "assets/gray_result.jpg" }, { "rfilename": "assets/noise.jpg" }, { "rfilename": "assets/noise_result.jpg" }, { "rfilename": "assets/openpose.jpg" }, { "rfilename": "assets/openpose_result.jpg" }, { "rfilename": "assets/poster.png" }, { "rfilename": "assets/teaser1.png" }, { "rfilename": "assets/teaser2.png" }, { "rfilename": "assets/teaser3.png" }, { "rfilename": "assets/tile.jpg" }, { "rfilename": "assets/tile_result.jpg" }, { "rfilename": "config.json" }, { "rfilename": "diffusion_pytorch_model.safetensors" } ]
2024-08-23T10:36:42
null
66eaedefece5ee215637cc82
meta-llama/Llama-3.2-1B-Instruct
meta-llama
{"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "library_name": "transformers", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.2", "extra_gated_prompt": "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version Release Date: September 25, 2024\n\n\u201cAgreement\u201d means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\n\u201cDocumentation\u201d means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\n\u201cLicensee\u201d or \u201cyou\u201d means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\n\u201cLlama 3.2\u201d means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads.\n\n\u201cLlama Materials\u201d means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement.\n\n\u201cMeta\u201d or \u201cwe\u201d means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \n\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. \nb. Redistribution and Use. \ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. \niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\u00a0\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:\n 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled substances\n 11. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:\n 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 16. Generating, promoting, or further distributing spam\n 17. Impersonating another individual without consent, authorization, or legal right\n 18. Representing that the use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\u00a0\n4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\n\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"}
[ { "provider": "sambanova", "providerId": "Meta-Llama-3.2-1B-Instruct", "status": "live", "task": "conversational" }, { "provider": "hf-inference", "providerId": "meta-llama/Llama-3.2-1B-Instruct", "status": "live", "task": "conversational" }, { "provider": "nebius", "providerId": "meta-llama/Llama-3.2-1B-Instruct", "status": "live", "task": "conversational" }, { "provider": "novita", "providerId": "meta-llama/llama-3.2-1b-instruct", "status": "live", "task": "conversational" } ]
2024-10-24T15:07:51
816
20
{"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}}
2,495,052
8,812,135
{ "parameters": { "BF16": 1235814400, "BF69": null, "BOOL": null, "F16": null, "F32": null, "F64": null, "F8_E4M3": null, "I16": null, "I32": null, "I64": null, "I8": null, "Q4": null, "U32": null, "U8": null, "miku": null }, "total": 1235814400 }
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "arxiv:2405.16406", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
{ "auto_model": "AutoModelForCausalLM", "custom_class": null, "pipeline_tag": "text-generation", "processor": "AutoTokenizer" }
[ { "rfilename": ".gitattributes" }, { "rfilename": "LICENSE.txt" }, { "rfilename": "README.md" }, { "rfilename": "USE_POLICY.md" }, { "rfilename": "config.json" }, { "rfilename": "generation_config.json" }, { "rfilename": "model.safetensors" }, { "rfilename": "original/consolidated.00.pth" }, { "rfilename": "original/params.json" }, { "rfilename": "original/tokenizer.model" }, { "rfilename": "special_tokens_map.json" }, { "rfilename": "tokenizer.json" }, { "rfilename": "tokenizer_config.json" } ]
2024-09-18T15:12:47
null
67bfe99ef0896c9fda5968e7
city96/Wan2.1-I2V-14B-480P-gguf
city96
{"base_model": "Wan-AI/Wan2.1-I2V-14B-480P", "library_name": "gguf", "quantized_by": "city96", "tags": ["video", "video-generation"], "license": "apache-2.0", "pipeline_tag": "image-to-video", "language": ["en", "zh"]}
null
2025-02-27T06:25:47
88
20
null
118,928
118,928
null
[ "gguf", "video", "video-generation", "image-to-video", "en", "zh", "base_model:Wan-AI/Wan2.1-I2V-14B-480P", "base_model:quantized:Wan-AI/Wan2.1-I2V-14B-480P", "license:apache-2.0", "region:us" ]
image-to-video
null
[ { "rfilename": ".gitattributes" }, { "rfilename": "README.md" }, { "rfilename": "wan2.1-i2v-14b-480p-BF16.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-F16.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q3_K_M.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q3_K_S.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q4_0.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q4_1.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q4_K_M.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q4_K_S.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q5_0.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q5_1.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q5_K_M.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q5_K_S.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q6_K.gguf" }, { "rfilename": "wan2.1-i2v-14b-480p-Q8_0.gguf" } ]
2025-02-27T04:27:10
{ "architecture": "wan", "bos_token": null, "causal": null, "chat_template": null, "context_length": null, "eos_token": null, "quantize_imatrix_file": null, "total": 16394878784 }