_id
stringlengths 24
24
| id
stringlengths 5
123
| author
stringlengths 2
42
| cardData
stringlengths 2
911k
⌀ | inferenceProviderMapping
listlengths 0
8
⌀ | lastModified
timestamp[ns] | likes
int64 0
11.2k
| trendingScore
float64 0
1.94k
| config
stringlengths 2
37.1k
⌀ | downloads
int64 0
116M
| downloadsAllTime
int64 0
2.17B
| safetensors
dict | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 53
values | transformersInfo
dict | siblings
listlengths 0
10k
| createdAt
timestamp[ns] | gguf
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67c85cdbebd06f51d80ca1c7 | Qwen/QwQ-32B | Qwen | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/Qwen2.5-32B", "tags": ["chat"], "library_name": "transformers"} | [
{
"provider": "hyperbolic",
"providerId": "Qwen/QwQ-32B",
"status": "live",
"task": "conversational"
},
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/qwq-32b",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "Qwen/QwQ-32B",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "QwQ-32B",
"status": "live",
"task": "conversational"
}
] | 2025-03-11T12:15:48 | 2,043 | 1,936 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 207,799 | 207,799 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2309.00071",
"arxiv:2412.15115",
"base_model:Qwen/Qwen2.5-32B",
"base_model:finetune:Qwen/Qwen2.5-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00014.safetensors"
},
{
"rfilename": "model-00002-of-00014.safetensors"
},
{
"rfilename": "model-00003-of-00014.safetensors"
},
{
"rfilename": "model-00004-of-00014.safetensors"
},
{
"rfilename": "model-00005-of-00014.safetensors"
},
{
"rfilename": "model-00006-of-00014.safetensors"
},
{
"rfilename": "model-00007-of-00014.safetensors"
},
{
"rfilename": "model-00008-of-00014.safetensors"
},
{
"rfilename": "model-00009-of-00014.safetensors"
},
{
"rfilename": "model-00010-of-00014.safetensors"
},
{
"rfilename": "model-00011-of-00014.safetensors"
},
{
"rfilename": "model-00012-of-00014.safetensors"
},
{
"rfilename": "model-00013-of-00014.safetensors"
},
{
"rfilename": "model-00014-of-00014.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-05T14:16:59 | null |
678dc6fff905d106be796d8a | deepseek-ai/DeepSeek-R1 | deepseek-ai | {"license": "mit", "library_name": "transformers"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/deepseek-r1",
"status": "live",
"task": "conversational"
},
{
"provider": "together",
"providerId": "deepseek-ai/DeepSeek-R1",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "deepseek-ai/DeepSeek-R1-fast",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "deepseek-ai/DeepSeek-R1",
"status": "live",
"task": "conversational"
},
{
"provider": "replicate",
"providerId": "deepseek-ai/deepseek-r1",
"status": "staging",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "DeepSeek-R1",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "deepseek/deepseek-r1-turbo",
"status": "live",
"task": "conversational"
}
] | 2025-02-24T03:30:31 | 11,215 | 430 | {"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "quantization_config": {"quant_method": "fp8"}, "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\\n\\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- endfor %}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}} | 2,987,585 | 5,605,904 | {
"parameters": {
"BF16": 3918786560,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 41555600,
"F64": null,
"F8_E4M3": 680571043840,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 684531386000
} | [
"transformers",
"safetensors",
"deepseek_v3",
"text-generation",
"conversational",
"custom_code",
"arxiv:2501.12948",
"license:mit",
"autotrain_compatible",
"fp8",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_deepseek.DeepseekV3ForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_deepseek.py"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-000163.safetensors"
},
{
"rfilename": "model-00002-of-000163.safetensors"
},
{
"rfilename": "model-00003-of-000163.safetensors"
},
{
"rfilename": "model-00004-of-000163.safetensors"
},
{
"rfilename": "model-00005-of-000163.safetensors"
},
{
"rfilename": "model-00006-of-000163.safetensors"
},
{
"rfilename": "model-00007-of-000163.safetensors"
},
{
"rfilename": "model-00008-of-000163.safetensors"
},
{
"rfilename": "model-00009-of-000163.safetensors"
},
{
"rfilename": "model-00010-of-000163.safetensors"
},
{
"rfilename": "model-00011-of-000163.safetensors"
},
{
"rfilename": "model-00012-of-000163.safetensors"
},
{
"rfilename": "model-00013-of-000163.safetensors"
},
{
"rfilename": "model-00014-of-000163.safetensors"
},
{
"rfilename": "model-00015-of-000163.safetensors"
},
{
"rfilename": "model-00016-of-000163.safetensors"
},
{
"rfilename": "model-00017-of-000163.safetensors"
},
{
"rfilename": "model-00018-of-000163.safetensors"
},
{
"rfilename": "model-00019-of-000163.safetensors"
},
{
"rfilename": "model-00020-of-000163.safetensors"
},
{
"rfilename": "model-00021-of-000163.safetensors"
},
{
"rfilename": "model-00022-of-000163.safetensors"
},
{
"rfilename": "model-00023-of-000163.safetensors"
},
{
"rfilename": "model-00024-of-000163.safetensors"
},
{
"rfilename": "model-00025-of-000163.safetensors"
},
{
"rfilename": "model-00026-of-000163.safetensors"
},
{
"rfilename": "model-00027-of-000163.safetensors"
},
{
"rfilename": "model-00028-of-000163.safetensors"
},
{
"rfilename": "model-00029-of-000163.safetensors"
},
{
"rfilename": "model-00030-of-000163.safetensors"
},
{
"rfilename": "model-00031-of-000163.safetensors"
},
{
"rfilename": "model-00032-of-000163.safetensors"
},
{
"rfilename": "model-00033-of-000163.safetensors"
},
{
"rfilename": "model-00034-of-000163.safetensors"
},
{
"rfilename": "model-00035-of-000163.safetensors"
},
{
"rfilename": "model-00036-of-000163.safetensors"
},
{
"rfilename": "model-00037-of-000163.safetensors"
},
{
"rfilename": "model-00038-of-000163.safetensors"
},
{
"rfilename": "model-00039-of-000163.safetensors"
},
{
"rfilename": "model-00040-of-000163.safetensors"
},
{
"rfilename": "model-00041-of-000163.safetensors"
},
{
"rfilename": "model-00042-of-000163.safetensors"
},
{
"rfilename": "model-00043-of-000163.safetensors"
},
{
"rfilename": "model-00044-of-000163.safetensors"
},
{
"rfilename": "model-00045-of-000163.safetensors"
},
{
"rfilename": "model-00046-of-000163.safetensors"
},
{
"rfilename": "model-00047-of-000163.safetensors"
},
{
"rfilename": "model-00048-of-000163.safetensors"
},
{
"rfilename": "model-00049-of-000163.safetensors"
},
{
"rfilename": "model-00050-of-000163.safetensors"
},
{
"rfilename": "model-00051-of-000163.safetensors"
},
{
"rfilename": "model-00052-of-000163.safetensors"
},
{
"rfilename": "model-00053-of-000163.safetensors"
},
{
"rfilename": "model-00054-of-000163.safetensors"
},
{
"rfilename": "model-00055-of-000163.safetensors"
},
{
"rfilename": "model-00056-of-000163.safetensors"
},
{
"rfilename": "model-00057-of-000163.safetensors"
},
{
"rfilename": "model-00058-of-000163.safetensors"
},
{
"rfilename": "model-00059-of-000163.safetensors"
},
{
"rfilename": "model-00060-of-000163.safetensors"
},
{
"rfilename": "model-00061-of-000163.safetensors"
},
{
"rfilename": "model-00062-of-000163.safetensors"
},
{
"rfilename": "model-00063-of-000163.safetensors"
},
{
"rfilename": "model-00064-of-000163.safetensors"
},
{
"rfilename": "model-00065-of-000163.safetensors"
},
{
"rfilename": "model-00066-of-000163.safetensors"
},
{
"rfilename": "model-00067-of-000163.safetensors"
},
{
"rfilename": "model-00068-of-000163.safetensors"
},
{
"rfilename": "model-00069-of-000163.safetensors"
},
{
"rfilename": "model-00070-of-000163.safetensors"
},
{
"rfilename": "model-00071-of-000163.safetensors"
},
{
"rfilename": "model-00072-of-000163.safetensors"
},
{
"rfilename": "model-00073-of-000163.safetensors"
},
{
"rfilename": "model-00074-of-000163.safetensors"
},
{
"rfilename": "model-00075-of-000163.safetensors"
},
{
"rfilename": "model-00076-of-000163.safetensors"
},
{
"rfilename": "model-00077-of-000163.safetensors"
},
{
"rfilename": "model-00078-of-000163.safetensors"
},
{
"rfilename": "model-00079-of-000163.safetensors"
},
{
"rfilename": "model-00080-of-000163.safetensors"
},
{
"rfilename": "model-00081-of-000163.safetensors"
},
{
"rfilename": "model-00082-of-000163.safetensors"
},
{
"rfilename": "model-00083-of-000163.safetensors"
},
{
"rfilename": "model-00084-of-000163.safetensors"
},
{
"rfilename": "model-00085-of-000163.safetensors"
},
{
"rfilename": "model-00086-of-000163.safetensors"
},
{
"rfilename": "model-00087-of-000163.safetensors"
},
{
"rfilename": "model-00088-of-000163.safetensors"
},
{
"rfilename": "model-00089-of-000163.safetensors"
},
{
"rfilename": "model-00090-of-000163.safetensors"
},
{
"rfilename": "model-00091-of-000163.safetensors"
},
{
"rfilename": "model-00092-of-000163.safetensors"
},
{
"rfilename": "model-00093-of-000163.safetensors"
},
{
"rfilename": "model-00094-of-000163.safetensors"
},
{
"rfilename": "model-00095-of-000163.safetensors"
},
{
"rfilename": "model-00096-of-000163.safetensors"
},
{
"rfilename": "model-00097-of-000163.safetensors"
},
{
"rfilename": "model-00098-of-000163.safetensors"
},
{
"rfilename": "model-00099-of-000163.safetensors"
},
{
"rfilename": "model-00100-of-000163.safetensors"
},
{
"rfilename": "model-00101-of-000163.safetensors"
},
{
"rfilename": "model-00102-of-000163.safetensors"
},
{
"rfilename": "model-00103-of-000163.safetensors"
},
{
"rfilename": "model-00104-of-000163.safetensors"
},
{
"rfilename": "model-00105-of-000163.safetensors"
},
{
"rfilename": "model-00106-of-000163.safetensors"
},
{
"rfilename": "model-00107-of-000163.safetensors"
},
{
"rfilename": "model-00108-of-000163.safetensors"
},
{
"rfilename": "model-00109-of-000163.safetensors"
},
{
"rfilename": "model-00110-of-000163.safetensors"
},
{
"rfilename": "model-00111-of-000163.safetensors"
},
{
"rfilename": "model-00112-of-000163.safetensors"
},
{
"rfilename": "model-00113-of-000163.safetensors"
},
{
"rfilename": "model-00114-of-000163.safetensors"
},
{
"rfilename": "model-00115-of-000163.safetensors"
},
{
"rfilename": "model-00116-of-000163.safetensors"
},
{
"rfilename": "model-00117-of-000163.safetensors"
},
{
"rfilename": "model-00118-of-000163.safetensors"
},
{
"rfilename": "model-00119-of-000163.safetensors"
},
{
"rfilename": "model-00120-of-000163.safetensors"
},
{
"rfilename": "model-00121-of-000163.safetensors"
},
{
"rfilename": "model-00122-of-000163.safetensors"
},
{
"rfilename": "model-00123-of-000163.safetensors"
},
{
"rfilename": "model-00124-of-000163.safetensors"
},
{
"rfilename": "model-00125-of-000163.safetensors"
},
{
"rfilename": "model-00126-of-000163.safetensors"
},
{
"rfilename": "model-00127-of-000163.safetensors"
},
{
"rfilename": "model-00128-of-000163.safetensors"
},
{
"rfilename": "model-00129-of-000163.safetensors"
},
{
"rfilename": "model-00130-of-000163.safetensors"
},
{
"rfilename": "model-00131-of-000163.safetensors"
},
{
"rfilename": "model-00132-of-000163.safetensors"
},
{
"rfilename": "model-00133-of-000163.safetensors"
},
{
"rfilename": "model-00134-of-000163.safetensors"
},
{
"rfilename": "model-00135-of-000163.safetensors"
},
{
"rfilename": "model-00136-of-000163.safetensors"
},
{
"rfilename": "model-00137-of-000163.safetensors"
},
{
"rfilename": "model-00138-of-000163.safetensors"
},
{
"rfilename": "model-00139-of-000163.safetensors"
},
{
"rfilename": "model-00140-of-000163.safetensors"
},
{
"rfilename": "model-00141-of-000163.safetensors"
},
{
"rfilename": "model-00142-of-000163.safetensors"
},
{
"rfilename": "model-00143-of-000163.safetensors"
},
{
"rfilename": "model-00144-of-000163.safetensors"
},
{
"rfilename": "model-00145-of-000163.safetensors"
},
{
"rfilename": "model-00146-of-000163.safetensors"
},
{
"rfilename": "model-00147-of-000163.safetensors"
},
{
"rfilename": "model-00148-of-000163.safetensors"
},
{
"rfilename": "model-00149-of-000163.safetensors"
},
{
"rfilename": "model-00150-of-000163.safetensors"
},
{
"rfilename": "model-00151-of-000163.safetensors"
},
{
"rfilename": "model-00152-of-000163.safetensors"
},
{
"rfilename": "model-00153-of-000163.safetensors"
},
{
"rfilename": "model-00154-of-000163.safetensors"
},
{
"rfilename": "model-00155-of-000163.safetensors"
},
{
"rfilename": "model-00156-of-000163.safetensors"
},
{
"rfilename": "model-00157-of-000163.safetensors"
},
{
"rfilename": "model-00158-of-000163.safetensors"
},
{
"rfilename": "model-00159-of-000163.safetensors"
},
{
"rfilename": "model-00160-of-000163.safetensors"
},
{
"rfilename": "model-00161-of-000163.safetensors"
},
{
"rfilename": "model-00162-of-000163.safetensors"
},
{
"rfilename": "model-00163-of-000163.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_deepseek.py"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-01-20T03:46:07 | null |
67c35b9bb236f0d365bf29d3 | google/gemma-3-27b-it | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-27b-pt"} | [
{
"provider": "hf-inference",
"providerId": "google/gemma-3-27b-it",
"status": "live",
"task": "image-text-to-text"
}
] | 2025-03-12T08:30:59 | 294 | 294 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 116 | 116 | {
"parameters": {
"BF16": 27432406640,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 27432406640
} | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"base_model:google/gemma-3-27b-pt",
"base_model:finetune:google/gemma-3-27b-pt",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00012.safetensors"
},
{
"rfilename": "model-00002-of-00012.safetensors"
},
{
"rfilename": "model-00003-of-00012.safetensors"
},
{
"rfilename": "model-00004-of-00012.safetensors"
},
{
"rfilename": "model-00005-of-00012.safetensors"
},
{
"rfilename": "model-00006-of-00012.safetensors"
},
{
"rfilename": "model-00007-of-00012.safetensors"
},
{
"rfilename": "model-00008-of-00012.safetensors"
},
{
"rfilename": "model-00009-of-00012.safetensors"
},
{
"rfilename": "model-00010-of-00012.safetensors"
},
{
"rfilename": "model-00011-of-00012.safetensors"
},
{
"rfilename": "model-00012-of-00012.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-01T19:10:19 | null |
67bff1ba4d22a9379b31305a | SparkAudio/Spark-TTS-0.5B | SparkAudio | {"license": "cc-by-nc-sa-4.0", "language": ["en", "zh"], "tags": ["text-to-speech"], "library_tag": "spark-tts"} | null | 2025-03-07T05:44:26 | 326 | 272 | null | 6,806 | 6,806 | null | [
"safetensors",
"text-to-speech",
"en",
"zh",
"arxiv:2503.01710",
"doi:10.57967/hf/4650",
"license:cc-by-nc-sa-4.0",
"region:us"
] | text-to-speech | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "BiCodec/config.yaml"
},
{
"rfilename": "BiCodec/model.safetensors"
},
{
"rfilename": "LLM/added_tokens.json"
},
{
"rfilename": "LLM/config.json"
},
{
"rfilename": "LLM/merges.txt"
},
{
"rfilename": "LLM/model.safetensors"
},
{
"rfilename": "LLM/special_tokens_map.json"
},
{
"rfilename": "LLM/tokenizer.json"
},
{
"rfilename": "LLM/tokenizer_config.json"
},
{
"rfilename": "LLM/vocab.json"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.yaml"
},
{
"rfilename": "src/figures/gradio_TTS.png"
},
{
"rfilename": "src/figures/gradio_control.png"
},
{
"rfilename": "src/figures/infer_control.png"
},
{
"rfilename": "src/figures/infer_voice_cloning.png"
},
{
"rfilename": "src/logo/HKUST.jpg"
},
{
"rfilename": "src/logo/NPU.jpg"
},
{
"rfilename": "src/logo/NTU.jpg"
},
{
"rfilename": "src/logo/SJU.jpg"
},
{
"rfilename": "src/logo/SparkAudio.jpg"
},
{
"rfilename": "src/logo/SparkAudio2.jpg"
},
{
"rfilename": "src/logo/SparkTTS.jpg"
},
{
"rfilename": "src/logo/SparkTTS.png"
},
{
"rfilename": "src/logo/mobvoi.jpg"
},
{
"rfilename": "src/logo/mobvoi.png"
},
{
"rfilename": "wav2vec2-large-xlsr-53/README.md"
},
{
"rfilename": "wav2vec2-large-xlsr-53/config.json"
},
{
"rfilename": "wav2vec2-large-xlsr-53/preprocessor_config.json"
},
{
"rfilename": "wav2vec2-large-xlsr-53/pytorch_model.bin"
}
] | 2025-02-27T05:01:46 | null |
67bcf3bca03bde20d15377c6 | microsoft/Phi-4-multimodal-instruct | microsoft | {"license": "mit", "license_link": "https://huggingface.co/microsoft/Phi-4-multimodal-instruct/resolve/main/LICENSE", "language": ["multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk"], "tags": ["nlp", "code", "audio", "automatic-speech-recognition", "speech-summarization", "speech-translation", "visual-question-answering", "phi-4-multimodal", "phi", "phi-4-mini"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}, {"messages": [{"role": "user", "content": "Transcribe the audio to text, and then translate the audio to French. Use <sep> as a separator between the original transcript and the translation."}]}], "library_name": "transformers", "paper": "arxiv.org/abs/2503.01743"} | null | 2025-03-12T15:20:45 | 1,110 | 246 | {"architectures": ["Phi4MMForCausalLM"], "auto_map": {"AutoConfig": "configuration_phi4mm.Phi4MMConfig", "AutoModelForCausalLM": "modeling_phi4mm.Phi4MMForCausalLM", "AutoTokenizer": "Xenova/gpt-4o"}, "model_type": "phi4mm", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}} | 410,689 | 410,689 | {
"parameters": {
"BF16": 5574460384,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 5574460384
} | [
"transformers",
"safetensors",
"phi4mm",
"text-generation",
"nlp",
"code",
"audio",
"automatic-speech-recognition",
"speech-summarization",
"speech-translation",
"visual-question-answering",
"phi-4-multimodal",
"phi",
"phi-4-mini",
"custom_code",
"multilingual",
"ar",
"zh",
"cs",
"da",
"nl",
"en",
"fi",
"fr",
"de",
"he",
"hu",
"it",
"ja",
"ko",
"no",
"pl",
"pt",
"ru",
"es",
"sv",
"th",
"tr",
"uk",
"arxiv:2407.13833",
"license:mit",
"autotrain_compatible",
"region:us"
] | automatic-speech-recognition | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_phi4mm.Phi4MMForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "CODE_OF_CONDUCT.md"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "SECURITY.md"
},
{
"rfilename": "SUPPORT.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_phi4mm.py"
},
{
"rfilename": "examples/what_is_shown_in_this_image.wav"
},
{
"rfilename": "examples/what_is_the_traffic_sign_in_the_image.wav"
},
{
"rfilename": "figures/audio_understand.png"
},
{
"rfilename": "figures/multi_image.png"
},
{
"rfilename": "figures/speech_qa.png"
},
{
"rfilename": "figures/speech_recog_by_lang.png"
},
{
"rfilename": "figures/speech_recognition.png"
},
{
"rfilename": "figures/speech_summarization.png"
},
{
"rfilename": "figures/speech_translate.png"
},
{
"rfilename": "figures/speech_translate_2.png"
},
{
"rfilename": "figures/vision_radar.png"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00003.safetensors"
},
{
"rfilename": "model-00002-of-00003.safetensors"
},
{
"rfilename": "model-00003-of-00003.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_phi4mm.py"
},
{
"rfilename": "phi_4_mm.tech_report.02252025.pdf"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processing_phi4mm.py"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "sample_finetune_speech.py"
},
{
"rfilename": "sample_finetune_vision.py"
},
{
"rfilename": "sample_inference_phi4mm.py"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "speech-lora/adapter_config.json"
},
{
"rfilename": "speech-lora/adapter_model.safetensors"
},
{
"rfilename": "speech-lora/added_tokens.json"
},
{
"rfilename": "speech-lora/special_tokens_map.json"
},
{
"rfilename": "speech-lora/tokenizer.json"
},
{
"rfilename": "speech-lora/tokenizer_config.json"
},
{
"rfilename": "speech-lora/vocab.json"
},
{
"rfilename": "speech_conformer_encoder.py"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vision-lora/adapter_config.json"
},
{
"rfilename": "vision-lora/adapter_model.safetensors"
},
{
"rfilename": "vision-lora/added_tokens.json"
},
{
"rfilename": "vision-lora/special_tokens_map.json"
},
{
"rfilename": "vision-lora/tokenizer.json"
},
{
"rfilename": "vision-lora/tokenizer_config.json"
},
{
"rfilename": "vision-lora/vocab.json"
},
{
"rfilename": "vision_siglip_navit.py"
},
{
"rfilename": "vocab.json"
}
] | 2025-02-24T22:33:32 | null |
67c818e729514343cee6eb43 | tencent/HunyuanVideo-I2V | tencent | {"license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"} | null | 2025-03-11T09:35:00 | 232 | 232 | null | 1,894 | 1,894 | null | [
"arxiv:2412.03603",
"license:other",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "Notice"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "hunyuan-video-i2v-720p/lora/embrace_kohaya_weights.safetensors"
},
{
"rfilename": "hunyuan-video-i2v-720p/lora/hair_growth_kohaya_weights.safetensors"
},
{
"rfilename": "hunyuan-video-i2v-720p/transformers/mp_rank_00_model_states.pt"
},
{
"rfilename": "hunyuan-video-i2v-720p/vae/config.json"
},
{
"rfilename": "hunyuan-video-i2v-720p/vae/pytorch_model.pt"
}
] | 2025-03-05T09:27:03 | null |
67cf8bc4c956b41df7527244 | RekaAI/reka-flash-3 | RekaAI | {"license": "apache-2.0"} | null | 2025-03-12T01:57:13 | 194 | 194 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% if messages[0]['role'] == 'system' %}{% set merged_content = messages[0]['content'] + ' ' + messages[1]['content'] %}{% set merged_messages = [{'role': messages[1]['role'], 'content': merged_content}] + messages[2:] %}{% else %}{% set merged_messages = messages %}{% endif %}{% for message in merged_messages %}{{('human' if message['role'] == 'user' else message['role']) + ': ' + (message['content'].split('<reasoning>')|first + message['content'].split('</reasoning>')|last if message['role'] == 'assistant' and '</reasoning>' in message['content'] else message['content'])}}{% if (loop.last and add_generation_prompt and merged_messages[-1]['role'] != 'assistant') or not loop.last %}{{ ' <sep> ' }}{% endif %}{% endfor %}{% if add_generation_prompt and merged_messages[-1]['role'] != 'assistant' %}{{ 'assistant:' }}{% endif %}", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}} | 821 | 821 | {
"parameters": {
"BF16": 20905482240,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 20905482240
} | [
"safetensors",
"llama",
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "aime.png"
},
{
"rfilename": "config.json"
},
{
"rfilename": "eval.png"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00005.safetensors"
},
{
"rfilename": "model-00002-of-00005.safetensors"
},
{
"rfilename": "model-00003-of-00005.safetensors"
},
{
"rfilename": "model-00004-of-00005.safetensors"
},
{
"rfilename": "model-00005-of-00005.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-11T01:03:00 | null |
67bd70aaac4a596a43c6706c | Wan-AI/Wan2.1-T2V-14B | Wan-AI | {"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "text-to-video", "tags": ["video generation"], "library_name": "diffusers", "inference": {"parameters": {"num_inference_steps": 10}}} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/wan-t2v",
"status": "live",
"task": "text-to-video"
},
{
"provider": "replicate",
"providerId": "wavespeedai/wan-2.1-t2v-480p",
"status": "live",
"task": "text-to-video"
},
{
"provider": "novita",
"providerId": "wan-t2v",
"status": "staging",
"task": "text-to-video"
}
] | 2025-03-12T03:08:09 | 1,004 | 156 | {"model_type": "t2v"} | 203,387 | 203,387 | null | [
"diffusers",
"safetensors",
"t2v",
"video generation",
"text-to-video",
"en",
"zh",
"license:apache-2.0",
"region:us"
] | text-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.txt"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Wan2.1_VAE.pth"
},
{
"rfilename": "assets/comp_effic.png"
},
{
"rfilename": "assets/data_for_diff_stage.jpg"
},
{
"rfilename": "assets/i2v_res.png"
},
{
"rfilename": "assets/logo.png"
},
{
"rfilename": "assets/t2v_res.jpg"
},
{
"rfilename": "assets/vben_1.3b_vs_sota.png"
},
{
"rfilename": "assets/vben_vs_sota.png"
},
{
"rfilename": "assets/video_dit_arch.jpg"
},
{
"rfilename": "assets/video_vae_res.jpg"
},
{
"rfilename": "config.json"
},
{
"rfilename": "diffusion_pytorch_model-00001-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00002-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00003-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00004-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00005-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00006-of-00006.safetensors"
},
{
"rfilename": "diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "examples/i2v_input.JPG"
},
{
"rfilename": "google/umt5-xxl/special_tokens_map.json"
},
{
"rfilename": "google/umt5-xxl/spiece.model"
},
{
"rfilename": "google/umt5-xxl/tokenizer.json"
},
{
"rfilename": "google/umt5-xxl/tokenizer_config.json"
},
{
"rfilename": "models_t5_umt5-xxl-enc-bf16.pth"
}
] | 2025-02-25T07:26:34 | null |
66aaa908fc35e079a941470d | black-forest-labs/FLUX.1-dev | black-forest-labs | {"language": ["en"], "license": "other", "license_name": "flux-1-dev-non-commercial-license", "license_link": "LICENSE.md", "extra_gated_prompt": "By clicking \"Agree\", you agree to the [FluxDev Non-Commercial License Agreement](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) and acknowledge the [Acceptable Use Policy](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/POLICY.md).", "tags": ["text-to-image", "image-generation", "flux"]} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/flux/dev",
"status": "live",
"task": "text-to-image"
},
{
"provider": "replicate",
"providerId": "black-forest-labs/flux-dev",
"status": "live",
"task": "text-to-image"
},
{
"provider": "together",
"providerId": "black-forest-labs/FLUX.1-dev",
"status": "live",
"task": "text-to-image"
},
{
"provider": "hf-inference",
"providerId": "black-forest-labs/FLUX.1-dev",
"status": "live",
"task": "text-to-image"
},
{
"provider": "nebius",
"providerId": "black-forest-labs/flux-dev",
"status": "live",
"task": "text-to-image"
},
{
"provider": "black-forest-labs",
"providerId": "flux-dev",
"status": "staging",
"task": "text-to-image"
}
] | 2024-08-16T14:38:19 | 9,306 | 139 | {"diffusers": {"_class_name": "FluxPipeline"}} | 2,717,802 | 10,350,902 | null | [
"diffusers",
"safetensors",
"text-to-image",
"image-generation",
"flux",
"en",
"license:other",
"endpoints_compatible",
"diffusers:FluxPipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "ae.safetensors"
},
{
"rfilename": "dev_grid.jpg"
},
{
"rfilename": "flux1-dev.safetensors"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model.safetensors"
},
{
"rfilename": "text_encoder_2/config.json"
},
{
"rfilename": "text_encoder_2/model-00001-of-00002.safetensors"
},
{
"rfilename": "text_encoder_2/model-00002-of-00002.safetensors"
},
{
"rfilename": "text_encoder_2/model.safetensors.index.json"
},
{
"rfilename": "tokenizer/merges.txt"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "tokenizer/vocab.json"
},
{
"rfilename": "tokenizer_2/special_tokens_map.json"
},
{
"rfilename": "tokenizer_2/spiece.model"
},
{
"rfilename": "tokenizer_2/tokenizer.json"
},
{
"rfilename": "tokenizer_2/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2024-07-31T21:13:44 | null |
67c878faab8bd5dc1b2ffbf0 | bartowski/Qwen_QwQ-32B-GGUF | bartowski | {"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "base_model": "Qwen/QwQ-32B", "tags": ["chat"], "language": ["en"]} | null | 2025-03-05T18:46:44 | 135 | 120 | null | 151,152 | 151,152 | null | [
"gguf",
"chat",
"text-generation",
"en",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"imatrix",
"conversational"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "Qwen_QwQ-32B-IQ2_M.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ2_S.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ2_XS.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ2_XXS.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ3_M.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ3_XS.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ3_XXS.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ4_NL.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-IQ4_XS.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q2_K.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q2_K_L.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q3_K_L.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q3_K_M.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q3_K_S.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q3_K_XL.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q4_0.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q4_1.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q4_K_L.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q4_K_M.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q4_K_S.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q5_K_L.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q5_K_M.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q5_K_S.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q6_K.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q6_K_L.gguf"
},
{
"rfilename": "Qwen_QwQ-32B-Q8_0.gguf"
},
{
"rfilename": "Qwen_QwQ-32B.imatrix"
},
{
"rfilename": "README.md"
}
] | 2025-03-05T16:16:58 | {
"architecture": "qwen2",
"bos_token": "<|endoftext|>",
"causal": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
"context_length": 131072,
"eos_token": "<|im_end|>",
"quantize_imatrix_file": "/models_out/QwQ-32B-GGUF/Qwen_QwQ-32B.imatrix",
"total": 32763876352
} |
67c49e36c94abe8ba7096280 | CohereForAI/aya-vision-8b | CohereForAI | {"inference": false, "library_name": "transformers", "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"], "license": "cc-by-nc-4.0", "extra_gated_prompt": "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere\u2019s [Privacy Policy]( https://cohere.com/privacy). You\u2019ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time.", "extra_gated_fields": {"Name": "text", "Affiliation": "text", "Country": "country", "I agree to use this model for non-commercial use ONLY": "checkbox"}, "pipeline_tag": "image-text-to-text"} | null | 2025-03-04T16:22:35 | 247 | 117 | {"architectures": ["AyaVisionForConditionalGeneration"], "model_type": "aya_vision", "processor_config": {"chat_template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes. When analyzing images, carefully describe and interpret their content while avoiding any promotion of harm, misinformation, or bias.\n\nYou are Aya Vision, a vision-language model built by Cohere for AI. You have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context. Your responses must maintain the highest standards of quality, accuracy, and safety.\n\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Aya Vision.\n- You are a large language model built by Cohere for AI.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<BOS_TOKEN>", "chat_template": [{"name": "default", "template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># System Preamble\nYou are in contextual safety mode. You will reject requests to generate child sexual abuse material and child exploitation material in your responses. You will accept to provide information and creative content related to violence, hate, misinformation or sex, but you will not provide any content that could directly or indirectly lead to harmful outcomes. When analyzing images, carefully describe and interpret their content while avoiding any promotion of harm, misinformation, or bias.\n\nYou are Aya Vision, a vision-language model built by Cohere for AI. You have been trained on data in English, French, Spanish, Italian, German, Portuguese, Japanese, Korean, Modern Standard Arabic, Mandarin, Russian, Indonesian, Turkish, Dutch, Polish, Persian, Vietnamese, Czech, Hindi, Ukrainian, Romanian, Greek and Hebrew. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context. Your responses must maintain the highest standards of quality, accuracy, and safety.\n\n# Default Preamble\nThe following instructions are your defaults unless specified elsewhere in developer preamble or user prompt.\n- Your name is Aya Vision.\n- You are a large language model built by Cohere for AI.\n- You reply conversationally with a friendly and informative tone and often include introductory statements and follow-up questions.\n- If the input is ambiguous, ask clarifying follow-up questions.\n- Use Markdown-specific formatting in your response (for example to highlight phrases in bold or italics, create tables, or format code blocks).\n- Use LaTeX to generate mathematical notation for complex equations.\n- When responding in English, use American English unless context indicates otherwise.\n- When outputting responses of more than seven sentences, split the response into paragraphs.\n- Prefer the active voice.\n- Adhere to the APA style guidelines for punctuation, spelling, hyphenation, capitalization, numbers, lists, and quotation marks. Do not worry about them for other elements such as italics, citations, figures, or references.\n- Use gender-neutral pronouns for unspecified persons.\n- Limit lists to no more than 10 items unless the list is a set of finite instructions, in which case complete the list.\n- Use the third person when asked to write a summary.\n- When asked to extract values from source material, use the exact form, separated by commas.\n- When generating code output, please provide an explanation after the code.\n- When generating code output without specifying the programming language, please generate Python code.\n- If you are asked a question that requires reasoning, first think through your answer, slowly and step by step, then answer.\n<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}], "eos_token": "<|END_OF_TURN_TOKEN|>", "pad_token": "<PAD>", "unk_token": null, "use_default_system_prompt": false}} | 146,501 | 146,501 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 8631842032,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8631842032
} | [
"transformers",
"safetensors",
"aya_vision",
"image-text-to-text",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"arxiv:2412.04261",
"license:cc-by-nc-4.0",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "AyaVision8BWinRates(AyaVisionBench).png"
},
{
"rfilename": "AyaVision8BWinRates(m-WildVision).png"
},
{
"rfilename": "Aya_Vision_8B_Combined_Win_Rates.png"
},
{
"rfilename": "Aya_Vision_8BvsPangea(AyaVisionBench).png"
},
{
"rfilename": "EfficiencyvsPerformance.png"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Vision_Text_Performance.png"
},
{
"rfilename": "aya-vision-8B.png"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-02T18:06:46 | null |
679802d9c71912514bc8d75b | lodestones/Chroma | lodestones | {"language": ["en"], "license": "apache-2.0", "tags": ["text-to-image", "image-generation", "chroma"]} | null | 2025-03-12T05:53:21 | 126 | 114 | null | 0 | 0 | null | [
"text-to-image",
"image-generation",
"chroma",
"en",
"license:apache-2.0",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "ComfyUI_00038_.png"
},
{
"rfilename": "README.md"
},
{
"rfilename": "chroma-unlocked-v1.safetensors"
},
{
"rfilename": "chroma-unlocked-v10.safetensors"
},
{
"rfilename": "chroma-unlocked-v11.safetensors"
},
{
"rfilename": "chroma-unlocked-v12.safetensors"
},
{
"rfilename": "chroma-unlocked-v2.safetensors"
},
{
"rfilename": "chroma-unlocked-v3.safetensors"
},
{
"rfilename": "chroma-unlocked-v4.safetensors"
},
{
"rfilename": "chroma-unlocked-v5.safetensors"
},
{
"rfilename": "chroma-unlocked-v6.safetensors"
},
{
"rfilename": "chroma-unlocked-v7.safetensors"
},
{
"rfilename": "chroma-unlocked-v8.safetensors"
},
{
"rfilename": "chroma-unlocked-v9.safetensors"
},
{
"rfilename": "chroma-v2.5.safetensors"
},
{
"rfilename": "collage.png"
},
{
"rfilename": "mask.png"
},
{
"rfilename": "prune.png"
},
{
"rfilename": "simple_workflow.json"
},
{
"rfilename": "timestep.png"
}
] | 2025-01-27T22:04:09 | null |
67882547eb36144551980fb3 | allenai/olmOCR-7B-0225-preview | allenai | {"language": ["en"], "license": "apache-2.0", "datasets": ["allenai/olmOCR-mix-0225"], "base_model": ["Qwen/Qwen2-VL-7B-Instruct"], "library_name": "transformers"} | null | 2025-02-25T00:55:05 | 536 | 112 | {"architectures": ["Qwen2VLForConditionalGeneration"], "model_type": "qwen2_vl", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 178,103 | 178,439 | {
"parameters": {
"BF16": 8291375616,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8291375616
} | [
"transformers",
"safetensors",
"qwen2_vl",
"image-text-to-text",
"conversational",
"en",
"dataset:allenai/olmOCR-mix-0225",
"base_model:Qwen/Qwen2-VL-7B-Instruct",
"base_model:finetune:Qwen/Qwen2-VL-7B-Instruct",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-01-15T21:14:47 | null |
67c869f6a3a4e28d00af552b | Qwen/QwQ-32B-GGUF | Qwen | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B-GGUF/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat"]} | null | 2025-03-12T09:50:15 | 122 | 111 | null | 88,367 | 88,367 | null | [
"gguf",
"chat",
"text-generation",
"en",
"arxiv:2309.00071",
"arxiv:2412.15115",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "fp16/qwq-32b-fp16-00001-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00002-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00003-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00004-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00005-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00006-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00007-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00008-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00009-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00010-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00011-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00012-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00013-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00014-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00015-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00016-of-00017.gguf"
},
{
"rfilename": "fp16/qwq-32b-fp16-00017-of-00017.gguf"
},
{
"rfilename": "params"
},
{
"rfilename": "qwq-32b-q2_k.gguf"
},
{
"rfilename": "qwq-32b-q3_k_m.gguf"
},
{
"rfilename": "qwq-32b-q4_0.gguf"
},
{
"rfilename": "qwq-32b-q4_k_m.gguf"
},
{
"rfilename": "qwq-32b-q5_0.gguf"
},
{
"rfilename": "qwq-32b-q5_k_m.gguf"
},
{
"rfilename": "qwq-32b-q6_k.gguf"
},
{
"rfilename": "qwq-32b-q8_0.gguf"
}
] | 2025-03-05T15:12:54 | {
"architecture": "qwen2",
"bos_token": "<|endoftext|>",
"causal": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"context_length": 131072,
"eos_token": "<|im_end|>",
"quantize_imatrix_file": null,
"total": 32763876352
} |
67b3d091b9895fea7fe29e42 | perplexity-ai/r1-1776 | perplexity-ai | {"license": "mit", "base_model": ["deepseek-ai/DeepSeek-R1"], "library_name": "transformers"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/perplexity/models/r1-1776",
"status": "live",
"task": "conversational"
}
] | 2025-02-26T17:40:09 | 2,112 | 105 | {"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\\n\\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' in message %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- endif %}{%- endfor %}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- if message['role'] == 'assistant' and 'tool_calls' not in message %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c>'}}{% endif %}"}} | 40,901 | 40,901 | {
"parameters": {
"BF16": 671026419200,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 671026419200
} | [
"transformers",
"safetensors",
"deepseek_v3",
"text-generation",
"conversational",
"custom_code",
"base_model:deepseek-ai/DeepSeek-R1",
"base_model:finetune:deepseek-ai/DeepSeek-R1",
"license:mit",
"autotrain_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_deepseek.DeepseekV3ForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_deepseek.py"
},
{
"rfilename": "model-00001-of-00252.safetensors"
},
{
"rfilename": "model-00002-of-00252.safetensors"
},
{
"rfilename": "model-00003-of-00252.safetensors"
},
{
"rfilename": "model-00004-of-00252.safetensors"
},
{
"rfilename": "model-00005-of-00252.safetensors"
},
{
"rfilename": "model-00006-of-00252.safetensors"
},
{
"rfilename": "model-00007-of-00252.safetensors"
},
{
"rfilename": "model-00008-of-00252.safetensors"
},
{
"rfilename": "model-00009-of-00252.safetensors"
},
{
"rfilename": "model-00010-of-00252.safetensors"
},
{
"rfilename": "model-00011-of-00252.safetensors"
},
{
"rfilename": "model-00012-of-00252.safetensors"
},
{
"rfilename": "model-00013-of-00252.safetensors"
},
{
"rfilename": "model-00014-of-00252.safetensors"
},
{
"rfilename": "model-00015-of-00252.safetensors"
},
{
"rfilename": "model-00016-of-00252.safetensors"
},
{
"rfilename": "model-00017-of-00252.safetensors"
},
{
"rfilename": "model-00018-of-00252.safetensors"
},
{
"rfilename": "model-00019-of-00252.safetensors"
},
{
"rfilename": "model-00020-of-00252.safetensors"
},
{
"rfilename": "model-00021-of-00252.safetensors"
},
{
"rfilename": "model-00022-of-00252.safetensors"
},
{
"rfilename": "model-00023-of-00252.safetensors"
},
{
"rfilename": "model-00024-of-00252.safetensors"
},
{
"rfilename": "model-00025-of-00252.safetensors"
},
{
"rfilename": "model-00026-of-00252.safetensors"
},
{
"rfilename": "model-00027-of-00252.safetensors"
},
{
"rfilename": "model-00028-of-00252.safetensors"
},
{
"rfilename": "model-00029-of-00252.safetensors"
},
{
"rfilename": "model-00030-of-00252.safetensors"
},
{
"rfilename": "model-00031-of-00252.safetensors"
},
{
"rfilename": "model-00032-of-00252.safetensors"
},
{
"rfilename": "model-00033-of-00252.safetensors"
},
{
"rfilename": "model-00034-of-00252.safetensors"
},
{
"rfilename": "model-00035-of-00252.safetensors"
},
{
"rfilename": "model-00036-of-00252.safetensors"
},
{
"rfilename": "model-00037-of-00252.safetensors"
},
{
"rfilename": "model-00038-of-00252.safetensors"
},
{
"rfilename": "model-00039-of-00252.safetensors"
},
{
"rfilename": "model-00040-of-00252.safetensors"
},
{
"rfilename": "model-00041-of-00252.safetensors"
},
{
"rfilename": "model-00042-of-00252.safetensors"
},
{
"rfilename": "model-00043-of-00252.safetensors"
},
{
"rfilename": "model-00044-of-00252.safetensors"
},
{
"rfilename": "model-00045-of-00252.safetensors"
},
{
"rfilename": "model-00046-of-00252.safetensors"
},
{
"rfilename": "model-00047-of-00252.safetensors"
},
{
"rfilename": "model-00048-of-00252.safetensors"
},
{
"rfilename": "model-00049-of-00252.safetensors"
},
{
"rfilename": "model-00050-of-00252.safetensors"
},
{
"rfilename": "model-00051-of-00252.safetensors"
},
{
"rfilename": "model-00052-of-00252.safetensors"
},
{
"rfilename": "model-00053-of-00252.safetensors"
},
{
"rfilename": "model-00054-of-00252.safetensors"
},
{
"rfilename": "model-00055-of-00252.safetensors"
},
{
"rfilename": "model-00056-of-00252.safetensors"
},
{
"rfilename": "model-00057-of-00252.safetensors"
},
{
"rfilename": "model-00058-of-00252.safetensors"
},
{
"rfilename": "model-00059-of-00252.safetensors"
},
{
"rfilename": "model-00060-of-00252.safetensors"
},
{
"rfilename": "model-00061-of-00252.safetensors"
},
{
"rfilename": "model-00062-of-00252.safetensors"
},
{
"rfilename": "model-00063-of-00252.safetensors"
},
{
"rfilename": "model-00064-of-00252.safetensors"
},
{
"rfilename": "model-00065-of-00252.safetensors"
},
{
"rfilename": "model-00066-of-00252.safetensors"
},
{
"rfilename": "model-00067-of-00252.safetensors"
},
{
"rfilename": "model-00068-of-00252.safetensors"
},
{
"rfilename": "model-00069-of-00252.safetensors"
},
{
"rfilename": "model-00070-of-00252.safetensors"
},
{
"rfilename": "model-00071-of-00252.safetensors"
},
{
"rfilename": "model-00072-of-00252.safetensors"
},
{
"rfilename": "model-00073-of-00252.safetensors"
},
{
"rfilename": "model-00074-of-00252.safetensors"
},
{
"rfilename": "model-00075-of-00252.safetensors"
},
{
"rfilename": "model-00076-of-00252.safetensors"
},
{
"rfilename": "model-00077-of-00252.safetensors"
},
{
"rfilename": "model-00078-of-00252.safetensors"
},
{
"rfilename": "model-00079-of-00252.safetensors"
},
{
"rfilename": "model-00080-of-00252.safetensors"
},
{
"rfilename": "model-00081-of-00252.safetensors"
},
{
"rfilename": "model-00082-of-00252.safetensors"
},
{
"rfilename": "model-00083-of-00252.safetensors"
},
{
"rfilename": "model-00084-of-00252.safetensors"
},
{
"rfilename": "model-00085-of-00252.safetensors"
},
{
"rfilename": "model-00086-of-00252.safetensors"
},
{
"rfilename": "model-00087-of-00252.safetensors"
},
{
"rfilename": "model-00088-of-00252.safetensors"
},
{
"rfilename": "model-00089-of-00252.safetensors"
},
{
"rfilename": "model-00090-of-00252.safetensors"
},
{
"rfilename": "model-00091-of-00252.safetensors"
},
{
"rfilename": "model-00092-of-00252.safetensors"
},
{
"rfilename": "model-00093-of-00252.safetensors"
},
{
"rfilename": "model-00094-of-00252.safetensors"
},
{
"rfilename": "model-00095-of-00252.safetensors"
},
{
"rfilename": "model-00096-of-00252.safetensors"
},
{
"rfilename": "model-00097-of-00252.safetensors"
},
{
"rfilename": "model-00098-of-00252.safetensors"
},
{
"rfilename": "model-00099-of-00252.safetensors"
},
{
"rfilename": "model-00100-of-00252.safetensors"
},
{
"rfilename": "model-00101-of-00252.safetensors"
},
{
"rfilename": "model-00102-of-00252.safetensors"
},
{
"rfilename": "model-00103-of-00252.safetensors"
},
{
"rfilename": "model-00104-of-00252.safetensors"
},
{
"rfilename": "model-00105-of-00252.safetensors"
},
{
"rfilename": "model-00106-of-00252.safetensors"
},
{
"rfilename": "model-00107-of-00252.safetensors"
},
{
"rfilename": "model-00108-of-00252.safetensors"
},
{
"rfilename": "model-00109-of-00252.safetensors"
},
{
"rfilename": "model-00110-of-00252.safetensors"
},
{
"rfilename": "model-00111-of-00252.safetensors"
},
{
"rfilename": "model-00112-of-00252.safetensors"
},
{
"rfilename": "model-00113-of-00252.safetensors"
},
{
"rfilename": "model-00114-of-00252.safetensors"
},
{
"rfilename": "model-00115-of-00252.safetensors"
},
{
"rfilename": "model-00116-of-00252.safetensors"
},
{
"rfilename": "model-00117-of-00252.safetensors"
},
{
"rfilename": "model-00118-of-00252.safetensors"
},
{
"rfilename": "model-00119-of-00252.safetensors"
},
{
"rfilename": "model-00120-of-00252.safetensors"
},
{
"rfilename": "model-00121-of-00252.safetensors"
},
{
"rfilename": "model-00122-of-00252.safetensors"
},
{
"rfilename": "model-00123-of-00252.safetensors"
},
{
"rfilename": "model-00124-of-00252.safetensors"
},
{
"rfilename": "model-00125-of-00252.safetensors"
},
{
"rfilename": "model-00126-of-00252.safetensors"
},
{
"rfilename": "model-00127-of-00252.safetensors"
},
{
"rfilename": "model-00128-of-00252.safetensors"
},
{
"rfilename": "model-00129-of-00252.safetensors"
},
{
"rfilename": "model-00130-of-00252.safetensors"
},
{
"rfilename": "model-00131-of-00252.safetensors"
},
{
"rfilename": "model-00132-of-00252.safetensors"
},
{
"rfilename": "model-00133-of-00252.safetensors"
},
{
"rfilename": "model-00134-of-00252.safetensors"
},
{
"rfilename": "model-00135-of-00252.safetensors"
},
{
"rfilename": "model-00136-of-00252.safetensors"
},
{
"rfilename": "model-00137-of-00252.safetensors"
},
{
"rfilename": "model-00138-of-00252.safetensors"
},
{
"rfilename": "model-00139-of-00252.safetensors"
},
{
"rfilename": "model-00140-of-00252.safetensors"
},
{
"rfilename": "model-00141-of-00252.safetensors"
},
{
"rfilename": "model-00142-of-00252.safetensors"
},
{
"rfilename": "model-00143-of-00252.safetensors"
},
{
"rfilename": "model-00144-of-00252.safetensors"
},
{
"rfilename": "model-00145-of-00252.safetensors"
},
{
"rfilename": "model-00146-of-00252.safetensors"
},
{
"rfilename": "model-00147-of-00252.safetensors"
},
{
"rfilename": "model-00148-of-00252.safetensors"
},
{
"rfilename": "model-00149-of-00252.safetensors"
},
{
"rfilename": "model-00150-of-00252.safetensors"
},
{
"rfilename": "model-00151-of-00252.safetensors"
},
{
"rfilename": "model-00152-of-00252.safetensors"
},
{
"rfilename": "model-00153-of-00252.safetensors"
},
{
"rfilename": "model-00154-of-00252.safetensors"
},
{
"rfilename": "model-00155-of-00252.safetensors"
},
{
"rfilename": "model-00156-of-00252.safetensors"
},
{
"rfilename": "model-00157-of-00252.safetensors"
},
{
"rfilename": "model-00158-of-00252.safetensors"
},
{
"rfilename": "model-00159-of-00252.safetensors"
},
{
"rfilename": "model-00160-of-00252.safetensors"
},
{
"rfilename": "model-00161-of-00252.safetensors"
},
{
"rfilename": "model-00162-of-00252.safetensors"
},
{
"rfilename": "model-00163-of-00252.safetensors"
},
{
"rfilename": "model-00164-of-00252.safetensors"
},
{
"rfilename": "model-00165-of-00252.safetensors"
},
{
"rfilename": "model-00166-of-00252.safetensors"
},
{
"rfilename": "model-00167-of-00252.safetensors"
},
{
"rfilename": "model-00168-of-00252.safetensors"
},
{
"rfilename": "model-00169-of-00252.safetensors"
},
{
"rfilename": "model-00170-of-00252.safetensors"
},
{
"rfilename": "model-00171-of-00252.safetensors"
},
{
"rfilename": "model-00172-of-00252.safetensors"
},
{
"rfilename": "model-00173-of-00252.safetensors"
},
{
"rfilename": "model-00174-of-00252.safetensors"
},
{
"rfilename": "model-00175-of-00252.safetensors"
},
{
"rfilename": "model-00176-of-00252.safetensors"
},
{
"rfilename": "model-00177-of-00252.safetensors"
},
{
"rfilename": "model-00178-of-00252.safetensors"
},
{
"rfilename": "model-00179-of-00252.safetensors"
},
{
"rfilename": "model-00180-of-00252.safetensors"
},
{
"rfilename": "model-00181-of-00252.safetensors"
},
{
"rfilename": "model-00182-of-00252.safetensors"
},
{
"rfilename": "model-00183-of-00252.safetensors"
},
{
"rfilename": "model-00184-of-00252.safetensors"
},
{
"rfilename": "model-00185-of-00252.safetensors"
},
{
"rfilename": "model-00186-of-00252.safetensors"
},
{
"rfilename": "model-00187-of-00252.safetensors"
},
{
"rfilename": "model-00188-of-00252.safetensors"
},
{
"rfilename": "model-00189-of-00252.safetensors"
},
{
"rfilename": "model-00190-of-00252.safetensors"
},
{
"rfilename": "model-00191-of-00252.safetensors"
},
{
"rfilename": "model-00192-of-00252.safetensors"
},
{
"rfilename": "model-00193-of-00252.safetensors"
},
{
"rfilename": "model-00194-of-00252.safetensors"
},
{
"rfilename": "model-00195-of-00252.safetensors"
},
{
"rfilename": "model-00196-of-00252.safetensors"
},
{
"rfilename": "model-00197-of-00252.safetensors"
},
{
"rfilename": "model-00198-of-00252.safetensors"
},
{
"rfilename": "model-00199-of-00252.safetensors"
},
{
"rfilename": "model-00200-of-00252.safetensors"
},
{
"rfilename": "model-00201-of-00252.safetensors"
},
{
"rfilename": "model-00202-of-00252.safetensors"
},
{
"rfilename": "model-00203-of-00252.safetensors"
},
{
"rfilename": "model-00204-of-00252.safetensors"
},
{
"rfilename": "model-00205-of-00252.safetensors"
},
{
"rfilename": "model-00206-of-00252.safetensors"
},
{
"rfilename": "model-00207-of-00252.safetensors"
},
{
"rfilename": "model-00208-of-00252.safetensors"
},
{
"rfilename": "model-00209-of-00252.safetensors"
},
{
"rfilename": "model-00210-of-00252.safetensors"
},
{
"rfilename": "model-00211-of-00252.safetensors"
},
{
"rfilename": "model-00212-of-00252.safetensors"
},
{
"rfilename": "model-00213-of-00252.safetensors"
},
{
"rfilename": "model-00214-of-00252.safetensors"
},
{
"rfilename": "model-00215-of-00252.safetensors"
},
{
"rfilename": "model-00216-of-00252.safetensors"
},
{
"rfilename": "model-00217-of-00252.safetensors"
},
{
"rfilename": "model-00218-of-00252.safetensors"
},
{
"rfilename": "model-00219-of-00252.safetensors"
},
{
"rfilename": "model-00220-of-00252.safetensors"
},
{
"rfilename": "model-00221-of-00252.safetensors"
},
{
"rfilename": "model-00222-of-00252.safetensors"
},
{
"rfilename": "model-00223-of-00252.safetensors"
},
{
"rfilename": "model-00224-of-00252.safetensors"
},
{
"rfilename": "model-00225-of-00252.safetensors"
},
{
"rfilename": "model-00226-of-00252.safetensors"
},
{
"rfilename": "model-00227-of-00252.safetensors"
},
{
"rfilename": "model-00228-of-00252.safetensors"
},
{
"rfilename": "model-00229-of-00252.safetensors"
},
{
"rfilename": "model-00230-of-00252.safetensors"
},
{
"rfilename": "model-00231-of-00252.safetensors"
},
{
"rfilename": "model-00232-of-00252.safetensors"
},
{
"rfilename": "model-00233-of-00252.safetensors"
},
{
"rfilename": "model-00234-of-00252.safetensors"
},
{
"rfilename": "model-00235-of-00252.safetensors"
},
{
"rfilename": "model-00236-of-00252.safetensors"
},
{
"rfilename": "model-00237-of-00252.safetensors"
},
{
"rfilename": "model-00238-of-00252.safetensors"
},
{
"rfilename": "model-00239-of-00252.safetensors"
},
{
"rfilename": "model-00240-of-00252.safetensors"
},
{
"rfilename": "model-00241-of-00252.safetensors"
},
{
"rfilename": "model-00242-of-00252.safetensors"
},
{
"rfilename": "model-00243-of-00252.safetensors"
},
{
"rfilename": "model-00244-of-00252.safetensors"
},
{
"rfilename": "model-00245-of-00252.safetensors"
},
{
"rfilename": "model-00246-of-00252.safetensors"
},
{
"rfilename": "model-00247-of-00252.safetensors"
},
{
"rfilename": "model-00248-of-00252.safetensors"
},
{
"rfilename": "model-00249-of-00252.safetensors"
},
{
"rfilename": "model-00250-of-00252.safetensors"
},
{
"rfilename": "model-00251-of-00252.safetensors"
},
{
"rfilename": "model-00252-of-00252.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_deepseek.py"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-18T00:13:05 | null |
67c35be6eae05d8f94fae4c2 | google/gemma-3-12b-it | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-12b-pt"} | null | 2025-03-12T08:30:33 | 105 | 105 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 69 | 69 | {
"parameters": {
"BF16": 12187325040,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 12187325040
} | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"base_model:google/gemma-3-12b-pt",
"base_model:finetune:google/gemma-3-12b-pt",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00005.safetensors"
},
{
"rfilename": "model-00002-of-00005.safetensors"
},
{
"rfilename": "model-00003-of-00005.safetensors"
},
{
"rfilename": "model-00004-of-00005.safetensors"
},
{
"rfilename": "model-00005-of-00005.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-01T19:11:34 | null |
67b79c8700245b72c5706777 | google/gemma-3-4b-it | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-4b-pt"} | null | 2025-03-12T08:30:08 | 95 | 95 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "processor_config": {"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 1,639 | 1,639 | {
"parameters": {
"BF16": 4300079472,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 4300079472
} | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"conversational",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"base_model:google/gemma-3-4b-pt",
"base_model:finetune:google/gemma-3-4b-pt",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-20T21:20:07 | null |
676ca1388118866906abbd7c | hexgrad/Kokoro-82M | hexgrad | {"license": "apache-2.0", "language": ["en"], "base_model": ["yl4579/StyleTTS2-LJSpeech"], "pipeline_tag": "text-to-speech"} | [
{
"provider": "replicate",
"providerId": "jaaari/kokoro-82m:dfdf537ba482b029e0a761699e6f55e9162cfd159270bfe0e44857caa5f275a6",
"status": "staging",
"task": "text-to-speech"
},
{
"provider": "fal-ai",
"providerId": "fal-ai/kokoro/american-english",
"status": "staging",
"task": "text-to-speech"
}
] | 2025-03-04T05:39:12 | 3,645 | 94 | {} | 1,588,930 | 1,894,440 | null | [
"text-to-speech",
"en",
"arxiv:2306.07691",
"arxiv:2203.02395",
"base_model:yl4579/StyleTTS2-LJSpeech",
"base_model:finetune:yl4579/StyleTTS2-LJSpeech",
"doi:10.57967/hf/4329",
"license:apache-2.0",
"region:us"
] | text-to-speech | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "DONATE.md"
},
{
"rfilename": "EVAL.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "SAMPLES.md"
},
{
"rfilename": "VOICES.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "eval/ArtificialAnalysis-2025-02-26.jpeg"
},
{
"rfilename": "eval/TTS_Arena-2025-02-26.jpeg"
},
{
"rfilename": "eval/TTS_Spaces_Arena-2025-02-26.jpeg"
},
{
"rfilename": "kokoro-v1_0.pth"
},
{
"rfilename": "samples/HEARME.wav"
},
{
"rfilename": "samples/af_heart_0.wav"
},
{
"rfilename": "samples/af_heart_1.wav"
},
{
"rfilename": "samples/af_heart_2.wav"
},
{
"rfilename": "samples/af_heart_3.wav"
},
{
"rfilename": "samples/af_heart_4.wav"
},
{
"rfilename": "samples/af_heart_5.wav"
},
{
"rfilename": "voices/af_alloy.pt"
},
{
"rfilename": "voices/af_aoede.pt"
},
{
"rfilename": "voices/af_bella.pt"
},
{
"rfilename": "voices/af_heart.pt"
},
{
"rfilename": "voices/af_jessica.pt"
},
{
"rfilename": "voices/af_kore.pt"
},
{
"rfilename": "voices/af_nicole.pt"
},
{
"rfilename": "voices/af_nova.pt"
},
{
"rfilename": "voices/af_river.pt"
},
{
"rfilename": "voices/af_sarah.pt"
},
{
"rfilename": "voices/af_sky.pt"
},
{
"rfilename": "voices/am_adam.pt"
},
{
"rfilename": "voices/am_echo.pt"
},
{
"rfilename": "voices/am_eric.pt"
},
{
"rfilename": "voices/am_fenrir.pt"
},
{
"rfilename": "voices/am_liam.pt"
},
{
"rfilename": "voices/am_michael.pt"
},
{
"rfilename": "voices/am_onyx.pt"
},
{
"rfilename": "voices/am_puck.pt"
},
{
"rfilename": "voices/am_santa.pt"
},
{
"rfilename": "voices/bf_alice.pt"
},
{
"rfilename": "voices/bf_emma.pt"
},
{
"rfilename": "voices/bf_isabella.pt"
},
{
"rfilename": "voices/bf_lily.pt"
},
{
"rfilename": "voices/bm_daniel.pt"
},
{
"rfilename": "voices/bm_fable.pt"
},
{
"rfilename": "voices/bm_george.pt"
},
{
"rfilename": "voices/bm_lewis.pt"
},
{
"rfilename": "voices/ef_dora.pt"
},
{
"rfilename": "voices/em_alex.pt"
},
{
"rfilename": "voices/em_santa.pt"
},
{
"rfilename": "voices/ff_siwis.pt"
},
{
"rfilename": "voices/hf_alpha.pt"
},
{
"rfilename": "voices/hf_beta.pt"
},
{
"rfilename": "voices/hm_omega.pt"
},
{
"rfilename": "voices/hm_psi.pt"
},
{
"rfilename": "voices/if_sara.pt"
},
{
"rfilename": "voices/im_nicola.pt"
},
{
"rfilename": "voices/jf_alpha.pt"
},
{
"rfilename": "voices/jf_gongitsune.pt"
},
{
"rfilename": "voices/jf_nezumi.pt"
},
{
"rfilename": "voices/jf_tebukuro.pt"
},
{
"rfilename": "voices/jm_kumo.pt"
},
{
"rfilename": "voices/pf_dora.pt"
},
{
"rfilename": "voices/pm_alex.pt"
},
{
"rfilename": "voices/pm_santa.pt"
},
{
"rfilename": "voices/zf_xiaobei.pt"
},
{
"rfilename": "voices/zf_xiaoni.pt"
},
{
"rfilename": "voices/zf_xiaoxiao.pt"
},
{
"rfilename": "voices/zf_xiaoyi.pt"
},
{
"rfilename": "voices/zm_yunjian.pt"
},
{
"rfilename": "voices/zm_yunxi.pt"
},
{
"rfilename": "voices/zm_yunxia.pt"
},
{
"rfilename": "voices/zm_yunyang.pt"
}
] | 2024-12-26T00:20:08 | null |
67be35b066f702bfed7d3bdc | Comfy-Org/Wan_2.1_ComfyUI_repackaged | Comfy-Org | null | null | 2025-03-07T12:28:15 | 273 | 85 | null | 0 | 0 | null | [
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "example workflows_Wan2.1/image_to_video_wan_480p_example.json"
},
{
"rfilename": "example workflows_Wan2.1/image_to_video_wan_720p_example.json"
},
{
"rfilename": "example workflows_Wan2.1/text_to_video_wan.json"
},
{
"rfilename": "split_files/clip_vision/clip_vision_h.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_e4m3fn.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_480p_14B_fp8_scaled.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp8_e4m3fn.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_i2v_720p_14B_fp8_scaled.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_1.3B_fp16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp8_e4m3fn.safetensors"
},
{
"rfilename": "split_files/diffusion_models/wan2.1_t2v_14B_fp8_scaled.safetensors"
},
{
"rfilename": "split_files/text_encoders/umt5_xxl_fp16.safetensors"
},
{
"rfilename": "split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors"
},
{
"rfilename": "split_files/vae/wan_2.1_vae.safetensors"
}
] | 2025-02-25T21:27:12 | null |
67ced65c9b9a3df71008da90 | google/gemma-3-1b-it | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "text-generation", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-1b-pt"} | null | 2025-03-12T14:50:25 | 81 | 81 | {"architectures": ["Gemma3ForCausalLM"], "model_type": "gemma3_text", "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 2,084 | 2,084 | {
"parameters": {
"BF16": 999885952,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 999885952
} | [
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"conversational",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"base_model:google/gemma-3-1b-pt",
"base_model:finetune:google/gemma-3-1b-pt",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-10T12:09:00 | null |
67473fdfe77182ac96417565 | Qwen/QwQ-32B-Preview | Qwen | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QwQ-32B-Preview/blob/main/LICENSE", "language": ["en"], "base_model": "Qwen/Qwen2.5-32B-Instruct", "tags": ["chat"], "library_name": "transformers"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/qwen-qwq-32b-preview",
"status": "live",
"task": "conversational"
},
{
"provider": "together",
"providerId": "Qwen/QwQ-32B-Preview",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "Qwen/QwQ-32B-Preview",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "Qwen/QwQ-32B-Preview",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "Qwen/QwQ-32B-Preview",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "QwQ-32B",
"status": "live",
"task": "conversational"
}
] | 2025-01-12T01:58:42 | 1,715 | 74 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 254,955 | 672,894 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00017.safetensors"
},
{
"rfilename": "model-00002-of-00017.safetensors"
},
{
"rfilename": "model-00003-of-00017.safetensors"
},
{
"rfilename": "model-00004-of-00017.safetensors"
},
{
"rfilename": "model-00005-of-00017.safetensors"
},
{
"rfilename": "model-00006-of-00017.safetensors"
},
{
"rfilename": "model-00007-of-00017.safetensors"
},
{
"rfilename": "model-00008-of-00017.safetensors"
},
{
"rfilename": "model-00009-of-00017.safetensors"
},
{
"rfilename": "model-00010-of-00017.safetensors"
},
{
"rfilename": "model-00011-of-00017.safetensors"
},
{
"rfilename": "model-00012-of-00017.safetensors"
},
{
"rfilename": "model-00013-of-00017.safetensors"
},
{
"rfilename": "model-00014-of-00017.safetensors"
},
{
"rfilename": "model-00015-of-00017.safetensors"
},
{
"rfilename": "model-00016-of-00017.safetensors"
},
{
"rfilename": "model-00017-of-00017.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2024-11-27T15:50:55 | null |
67c4cf687a31bf4b1d19c639 | CohereForAI/aya-vision-32b | CohereForAI | {"inference": false, "library_name": "transformers", "language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "el", "fa", "pl", "id", "cs", "he", "hi", "nl", "ro", "ru", "tr", "uk", "vi"], "license": "cc-by-nc-4.0", "extra_gated_prompt": "By submitting this form, you agree to the [License Agreement](https://cohere.com/c4ai-cc-by-nc-license) and acknowledge that the information you provide will be collected, used, and shared in accordance with Cohere\u2019s [Privacy Policy]( https://cohere.com/privacy). You\u2019ll receive email updates about C4AI and Cohere research, events, products and services. You can unsubscribe at any time.", "extra_gated_fields": {"Name": "text", "Affiliation": "text", "Country": "country", "I agree to use this model for non-commercial use ONLY": "checkbox"}, "pipeline_tag": "image-text-to-text"} | null | 2025-03-04T16:23:09 | 168 | 74 | {"architectures": ["AyaVisionForConditionalGeneration"], "model_type": "aya_vision", "processor_config": {"chat_template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are Aya Vision, a brilliant, sophisticated, AI-assistant chatbot trained to assist human users by providing thorough responses. You are a large vision language model built by the Cohere For AI. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context.<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}, "tokenizer_config": {"bos_token": "<BOS_TOKEN>", "chat_template": [{"name": "default", "template": "{{ bos_token }}<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are Aya Vision, a brilliant, sophisticated, AI-assistant chatbot trained to assist human users by providing thorough responses. You are a large vision language model built by the Cohere For AI. You are capable of interpreting images, including describing them, answering questions about their contents, extracting textual information, and analyzing visual context.<|END_OF_TURN_TOKEN|>\n{%- for message in messages -%}\n <|START_OF_TURN_TOKEN|>{{ message.role | replace(\"user\", \"<|USER_TOKEN|>\") | replace(\"assistant\", \"<|CHATBOT_TOKEN|><|START_RESPONSE|>\") | replace(\"system\", \"<|SYSTEM_TOKEN|>\") }}\n {%- if message.content is defined -%}\n {%- if message.content is string -%}\n{{ message.content }}\n {%- else -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.content | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- elif message.message is defined -%}\n {%- if message.message is string -%}\n{{ message.message }}\n {%- else -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'image') -%}\n<image>\n {%- endfor -%}\n {%- for item in message.message | selectattr('type', 'equalto', 'text') -%}\n{{ item.text }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {%- if message.role == \"assistant\" -%}\n<|END_RESPONSE|>\n {%- endif -%}\n<|END_OF_TURN_TOKEN|>\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>\n{%- endif -%}\n"}], "eos_token": "<|END_OF_TURN_TOKEN|>", "pad_token": "<PAD>", "unk_token": null, "use_default_system_prompt": false}} | 870 | 870 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 33137288432,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 33137288432
} | [
"transformers",
"safetensors",
"aya_vision",
"image-text-to-text",
"conversational",
"en",
"fr",
"de",
"es",
"it",
"pt",
"ja",
"ko",
"zh",
"ar",
"el",
"fa",
"pl",
"id",
"cs",
"he",
"hi",
"nl",
"ro",
"ru",
"tr",
"uk",
"vi",
"arxiv:2412.04261",
"license:cc-by-nc-4.0",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "Aya_Vision_32B_Combined_Win_Rates.png"
},
{
"rfilename": "EfficiencyvsPerformance.png"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Step_by_Step_Improvement.png"
},
{
"rfilename": "aya-vision-32B.png"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00015.safetensors"
},
{
"rfilename": "model-00002-of-00015.safetensors"
},
{
"rfilename": "model-00003-of-00015.safetensors"
},
{
"rfilename": "model-00004-of-00015.safetensors"
},
{
"rfilename": "model-00005-of-00015.safetensors"
},
{
"rfilename": "model-00006-of-00015.safetensors"
},
{
"rfilename": "model-00007-of-00015.safetensors"
},
{
"rfilename": "model-00008-of-00015.safetensors"
},
{
"rfilename": "model-00009-of-00015.safetensors"
},
{
"rfilename": "model-00010-of-00015.safetensors"
},
{
"rfilename": "model-00011-of-00015.safetensors"
},
{
"rfilename": "model-00012-of-00015.safetensors"
},
{
"rfilename": "model-00013-of-00015.safetensors"
},
{
"rfilename": "model-00014-of-00015.safetensors"
},
{
"rfilename": "model-00015-of-00015.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-02T21:36:40 | null |
67c858e541f1fd865c280520 | Qwen/QwQ-32B-AWQ | Qwen | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B-AWQ/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat"]} | null | 2025-03-11T12:16:21 | 81 | 71 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "quantization_config": {"bits": 4, "quant_method": "awq"}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- if not loop.last %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 67,496 | 67,496 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 1802048512,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": 3931176960,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 5733225472
} | [
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"arxiv:2309.00071",
"arxiv:2412.15115",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"4-bit",
"awq",
"region:us"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00005.safetensors"
},
{
"rfilename": "model-00002-of-00005.safetensors"
},
{
"rfilename": "model-00003-of-00005.safetensors"
},
{
"rfilename": "model-00004-of-00005.safetensors"
},
{
"rfilename": "model-00005-of-00005.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-05T14:00:05 | null |
67c4766ad43a5b1766e00afe | ASLP-lab/DiffRhythm-base | ASLP-lab | {"language": ["zh", "en"], "tags": ["music", "art", "diffusion"], "license": "other", "license_name": "stable-audio-community", "license_link": "LICENSE", "library_name": "DiffRhythm"} | null | 2025-03-11T14:43:54 | 130 | 69 | null | 0 | 0 | null | [
"DiffRhythm",
"music",
"art",
"diffusion",
"zh",
"en",
"arxiv:2503.01183",
"license:other",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "cfm_model.pt"
},
{
"rfilename": "diffrhythm-1b.json"
},
{
"rfilename": "src/ASLP.jpg"
},
{
"rfilename": "src/diffrhythm.jpg"
}
] | 2025-03-02T15:16:58 | null |
67b52d4a824d77f2bba8b0af | microsoft/Phi-4-mini-instruct | microsoft | {"language": ["multilingual", "ar", "zh", "cs", "da", "nl", "en", "fi", "fr", "de", "he", "hu", "it", "ja", "ko", "no", "pl", "pt", "ru", "es", "sv", "th", "tr", "uk"], "library_name": "transformers", "license": "mit", "license_link": "https://huggingface.co/microsoft/Phi-4-mini-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "tags": ["nlp", "code"], "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]} | null | 2025-03-10T22:22:22 | 345 | 67 | {"architectures": ["Phi3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_phi3.Phi3Config", "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM", "AutoTokenizer": "Xenova/gpt-4o"}, "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}} | 142,059 | 142,059 | {
"parameters": {
"BF16": 3836021760,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 3836021760
} | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"nlp",
"code",
"conversational",
"custom_code",
"multilingual",
"ar",
"zh",
"cs",
"da",
"nl",
"en",
"fi",
"fr",
"de",
"he",
"hu",
"it",
"ja",
"ko",
"no",
"pl",
"pt",
"ru",
"es",
"sv",
"th",
"tr",
"uk",
"arxiv:2503.01743",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "CODE_OF_CONDUCT.md"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "NOTICE.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "SECURITY.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_phi3.py"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_phi3.py"
},
{
"rfilename": "sample_finetune.py"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-02-19T01:00:58 | null |
67c59e6ef872c9b6b6f8fc17 | THUDM/CogView4-6B | THUDM | {"license": "apache-2.0", "language": ["zh", "en"], "base_model": ["THUDM/glm-4-9b"], "pipeline_tag": "text-to-image", "library_name": "diffusers"} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/cogview4",
"status": "live",
"task": "text-to-image"
}
] | 2025-03-11T08:10:58 | 192 | 64 | {"diffusers": {"_class_name": "CogView4Pipeline"}} | 13,682 | 13,682 | null | [
"diffusers",
"safetensors",
"text-to-image",
"zh",
"en",
"arxiv:2403.05121",
"base_model:THUDM/glm-4-9b",
"base_model:finetune:THUDM/glm-4-9b",
"license:apache-2.0",
"diffusers:CogView4Pipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model-00001-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00002-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00003-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00004-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model.safetensors.index.json"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2025-03-03T12:19:58 | null |
679ca2b42afc0c3e41a48436 | ElectricAlexis/NotaGen | ElectricAlexis | {"license": "mit", "tags": ["music"]} | null | 2025-02-26T09:26:51 | 106 | 63 | null | 0 | 0 | null | [
"music",
"arxiv:2502.18008",
"license:mit",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "notagen.png"
},
{
"rfilename": "weights_notagen_pretrain-finetune-RL3_beta_0.1_lambda_10_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_1e-06_batch_1.pth"
},
{
"rfilename": "weights_notagen_pretrain-finetune_p_size_16_p_length_1024_p_layers_c_layers_6_20_h_size_1280_lr_1e-05_batch_1.pth"
},
{
"rfilename": "weights_notagen_pretrain_p_size_16_p_length_1024_p_layers_20_c_layers_6_h_size_1280_lr_0.0001_batch_4.pth"
},
{
"rfilename": "weights_notagen_pretrain_p_size_16_p_length_2048_p_layers_12_c_layers_3_h_size_768_lr_0.0002_batch_8.pth"
},
{
"rfilename": "weights_notagen_pretrain_p_size_16_p_length_2048_p_layers_16_c_layers_3_h_size_1024_lr_0.0001_batch_4.pth"
},
{
"rfilename": "weights_notagenx_p_size_16_p_length_1024_p_layers_20_h_size_1280.pth"
}
] | 2025-01-31T10:15:16 | null |
67b5949fc1f004c14454b878 | GSAI-ML/LLaDA-8B-Instruct | GSAI-ML | {"license": "mit", "library_name": "transformers", "pipeline_tag": "text-generation"} | null | 2025-02-27T02:50:10 | 208 | 63 | {"architectures": ["LLaDAModelLM"], "auto_map": {"AutoConfig": "configuration_llada.LLaDAConfig", "AutoModelForCausalLM": "modeling_llada.LLaDAModelLM", "AutoModel": "modeling_llada.LLaDAModelLM"}, "model_type": "llada", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}", "cls_token": "[CLS]", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>"}} | 24,722 | 24,722 | {
"parameters": {
"BF16": 8015581184,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8015581184
} | [
"transformers",
"safetensors",
"llada",
"text-generation",
"conversational",
"custom_code",
"license:mit",
"autotrain_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_llada.LLaDAModelLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_llada.py"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00006.safetensors"
},
{
"rfilename": "model-00002-of-00006.safetensors"
},
{
"rfilename": "model-00003-of-00006.safetensors"
},
{
"rfilename": "model-00004-of-00006.safetensors"
},
{
"rfilename": "model-00005-of-00006.safetensors"
},
{
"rfilename": "model-00006-of-00006.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_llada.py"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-19T08:21:51 | null |
67d01933a3fc55dc44c264c5 | open-r1/OlympicCoder-7B | open-r1 | {"license": "apache-2.0", "datasets": ["open-r1/codeforces-cots"], "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-7B-Instruct"], "pipeline_tag": "text-generation", "library_name": "transformers"} | null | 2025-03-12T07:42:03 | 62 | 62 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}} | 170 | 170 | {
"parameters": {
"BF16": 7615616512,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 7615616512
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"en",
"dataset:open-r1/codeforces-cots",
"base_model:Qwen/Qwen2.5-Coder-7B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "ioi-evals.png"
},
{
"rfilename": "latest"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "trainer_state.json"
},
{
"rfilename": "training_args.bin"
},
{
"rfilename": "vocab.json"
},
{
"rfilename": "zero_to_fp32.py"
}
] | 2025-03-11T11:06:27 | null |
67abf36a4d0bd8ed8ce072e2 | microsoft/OmniParser-v2.0 | microsoft | {"library_name": "transformers", "license": "mit", "pipeline_tag": "image-text-to-text"} | null | 2025-02-18T06:00:11 | 1,141 | 61 | null | 9,251 | 9,251 | null | [
"transformers",
"safetensors",
"image-text-to-text",
"arxiv:2408.00203",
"license:mit",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModel",
"custom_class": null,
"pipeline_tag": null,
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "icon_caption/LICENSE"
},
{
"rfilename": "icon_caption/config.json"
},
{
"rfilename": "icon_caption/generation_config.json"
},
{
"rfilename": "icon_caption/model.safetensors"
},
{
"rfilename": "icon_detect/LICENSE"
},
{
"rfilename": "icon_detect/model.pt"
},
{
"rfilename": "icon_detect/model.yaml"
},
{
"rfilename": "icon_detect/train_args.yaml"
}
] | 2025-02-12T01:03:38 | null |
672379b045bf745cb0f1a79a | Lightricks/LTX-Video | Lightricks | {"tags": ["ltx-video", "image-to-video"], "pinned": true, "language": ["en"], "license": "other", "pipeline_tag": "text-to-video", "library_name": "diffusers"} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/ltx-video",
"status": "live",
"task": "text-to-video"
},
{
"provider": "replicate",
"providerId": "lightricks/ltx-video:8c47da666861d081eeb4d1261853087de23923a268a69b63febdf5dc1dee08e4",
"status": "live",
"task": "text-to-video"
}
] | 2025-03-12T13:14:02 | 1,066 | 56 | {"diffusers": {"_class_name": "LTXPipeline"}} | 149,812 | 608,211 | null | [
"diffusers",
"safetensors",
"ltx-video",
"image-to-video",
"text-to-video",
"en",
"license:other",
"diffusers:LTXPipeline",
"region:us"
] | text-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "ltx-video-2b-v0.9.1.license.txt"
},
{
"rfilename": "ltx-video-2b-v0.9.1.safetensors"
},
{
"rfilename": "ltx-video-2b-v0.9.5.license.txt"
},
{
"rfilename": "ltx-video-2b-v0.9.5.safetensors"
},
{
"rfilename": "ltx-video-2b-v0.9.license.txt"
},
{
"rfilename": "ltx-video-2b-v0.9.safetensors"
},
{
"rfilename": "media/ltx-video_example_00001.gif"
},
{
"rfilename": "media/ltx-video_example_00002.gif"
},
{
"rfilename": "media/ltx-video_example_00003.gif"
},
{
"rfilename": "media/ltx-video_example_00004.gif"
},
{
"rfilename": "media/ltx-video_example_00005.gif"
},
{
"rfilename": "media/ltx-video_example_00006.gif"
},
{
"rfilename": "media/ltx-video_example_00007.gif"
},
{
"rfilename": "media/ltx-video_example_00008.gif"
},
{
"rfilename": "media/ltx-video_example_00009.gif"
},
{
"rfilename": "media/ltx-video_example_00010.gif"
},
{
"rfilename": "media/ltx-video_example_00011.gif"
},
{
"rfilename": "media/ltx-video_example_00012.gif"
},
{
"rfilename": "media/ltx-video_example_00013.gif"
},
{
"rfilename": "media/ltx-video_example_00014.gif"
},
{
"rfilename": "media/ltx-video_example_00015.gif"
},
{
"rfilename": "media/ltx-video_example_00016.gif"
},
{
"rfilename": "media/trailer.gif"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model-00001-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00002-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00003-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model-00004-of-00004.safetensors"
},
{
"rfilename": "text_encoder/model.safetensors.index.json"
},
{
"rfilename": "tokenizer/added_tokens.json"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/spiece.model"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2024-10-31T12:36:00 | null |
67c80feb08ea8978b977031a | huihui-ai/DeepSeek-V3-abliterated | huihui-ai | {"license": "apache-2.0", "language": ["en"], "base_model": ["deepseek-ai/DeepSeek-R1", "perplexity-ai/r1-1776", "deepseek-ai/DeepSeek-V3"], "library_name": "transformers", "tags": ["DeepSeek", "abliterated", "uncensored"]} | null | 2025-03-12T13:44:56 | 64 | 56 | null | 0 | 0 | null | [
"transformers",
"DeepSeek",
"abliterated",
"uncensored",
"en",
"base_model:deepseek-ai/DeepSeek-R1",
"base_model:finetune:deepseek-ai/DeepSeek-R1",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | {
"auto_model": "AutoModel",
"custom_class": null,
"pipeline_tag": null,
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "DeepSeek-V3-bf16.png"
},
{
"rfilename": "README.md"
}
] | 2025-03-05T08:48:43 | null |
67c8ceeb42ab7be22ace58b5 | unsloth/QwQ-32B-GGUF | unsloth | {"base_model": "Qwen/QwQ-32B", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "tags": ["chat", "qwen"]} | null | 2025-03-10T11:20:40 | 56 | 56 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2"} | 67,106 | 67,106 | null | [
"gguf",
"qwen2",
"chat",
"qwen",
"text-generation",
"en",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "BF16/QwQ-32B.BF16-00001-of-00002.gguf"
},
{
"rfilename": "BF16/QwQ-32B.BF16-00002-of-00002.gguf"
},
{
"rfilename": "QwQ-32B-Q2_K.gguf"
},
{
"rfilename": "QwQ-32B-Q2_K_L.gguf"
},
{
"rfilename": "QwQ-32B-Q3_K_M.gguf"
},
{
"rfilename": "QwQ-32B-Q4_K_M.gguf"
},
{
"rfilename": "QwQ-32B-Q5_K_M.gguf"
},
{
"rfilename": "QwQ-32B-Q6_K.gguf"
},
{
"rfilename": "QwQ-32B.Q8_0.gguf"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "params"
}
] | 2025-03-05T22:23:39 | {
"architecture": "qwen2",
"bos_token": null,
"causal": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
"context_length": 131072,
"eos_token": "<|im_end|>",
"quantize_imatrix_file": null,
"total": 32763876352
} |
67175475ab870480b86e7caa | stabilityai/stable-diffusion-3.5-large | stabilityai | {"license": "other", "license_name": "stabilityai-ai-community", "license_link": "LICENSE.md", "tags": ["text-to-image", "stable-diffusion", "diffusers"], "inference": true, "extra_gated_prompt": "By clicking \"Agree\", you agree to the [License Agreement](https://huggingface.co/stabilityai/stable-diffusion-3.5-large/blob/main/LICENSE.md) and acknowledge Stability AI's [Privacy Policy](https://stability.ai/privacy-policy).", "extra_gated_fields": {"Name": "text", "Email": "text", "Country": "country", "Organization or Affiliation": "text", "Receive email updates and promotions on Stability AI products, services, and research?": {"type": "select", "options": ["Yes", "No"]}, "What do you intend to use the model for?": {"type": "select", "options": ["Research", "Personal use", "Creative Professional", "Startup", "Enterprise"]}, "I agree to the License Agreement and acknowledge Stability AI's Privacy Policy": "checkbox"}, "language": ["en"], "pipeline_tag": "text-to-image"} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/stable-diffusion-v35-large",
"status": "live",
"task": "text-to-image"
},
{
"provider": "replicate",
"providerId": "stability-ai/stable-diffusion-3.5-large",
"status": "live",
"task": "text-to-image"
},
{
"provider": "hf-inference",
"providerId": "stabilityai/stable-diffusion-3.5-large",
"status": "live",
"task": "text-to-image"
}
] | 2024-10-22T14:36:33 | 2,456 | 54 | {"diffusers": {"_class_name": "StableDiffusion3Pipeline"}} | 160,516 | 918,778 | null | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"en",
"arxiv:2403.03206",
"license:other",
"diffusers:StableDiffusion3Pipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "SD3.5L_example_workflow.json"
},
{
"rfilename": "mmdit.png"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "sd3.5_large.safetensors"
},
{
"rfilename": "sd3.5_large_demo.png"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model.fp16.safetensors"
},
{
"rfilename": "text_encoder/model.safetensors"
},
{
"rfilename": "text_encoder_2/config.json"
},
{
"rfilename": "text_encoder_2/model.fp16.safetensors"
},
{
"rfilename": "text_encoder_2/model.safetensors"
},
{
"rfilename": "text_encoder_3/config.json"
},
{
"rfilename": "text_encoder_3/model-00001-of-00002.safetensors"
},
{
"rfilename": "text_encoder_3/model-00002-of-00002.safetensors"
},
{
"rfilename": "text_encoder_3/model.fp16-00001-of-00002.safetensors"
},
{
"rfilename": "text_encoder_3/model.fp16-00002-of-00002.safetensors"
},
{
"rfilename": "text_encoder_3/model.safetensors.index.fp16.json"
},
{
"rfilename": "text_encoder_3/model.safetensors.index.json"
},
{
"rfilename": "text_encoders/README.md"
},
{
"rfilename": "text_encoders/clip_g.safetensors"
},
{
"rfilename": "text_encoders/clip_l.safetensors"
},
{
"rfilename": "text_encoders/t5xxl_fp16.safetensors"
},
{
"rfilename": "text_encoders/t5xxl_fp8_e4m3fn.safetensors"
},
{
"rfilename": "tokenizer/merges.txt"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "tokenizer/vocab.json"
},
{
"rfilename": "tokenizer_2/merges.txt"
},
{
"rfilename": "tokenizer_2/special_tokens_map.json"
},
{
"rfilename": "tokenizer_2/tokenizer_config.json"
},
{
"rfilename": "tokenizer_2/vocab.json"
},
{
"rfilename": "tokenizer_3/special_tokens_map.json"
},
{
"rfilename": "tokenizer_3/spiece.model"
},
{
"rfilename": "tokenizer_3/tokenizer.json"
},
{
"rfilename": "tokenizer_3/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2024-10-22T07:29:57 | null |
67c08c2a0cec1569eda32ad5 | ai21labs/AI21-Jamba-Large-1.6 | ai21labs | {"license": "other", "license_name": "jamba-open-model-license", "license_link": "https://www.ai21.com/jamba-open-model-license/", "library_name": "transformers"} | null | 2025-03-06T12:44:57 | 54 | 54 | {"architectures": ["JambaForCausalLM"], "model_type": "jamba", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{# Variables #}\n{% set ns = namespace(message_count=0, is_last_checked_defined=False) %}\n{##}\n{% set bom_str = bom_str or \"<|bom|>\" %}\n{% set eom_str = eom_str or \"<|eom|>\" %}\n{% set default_system_message = default_system_message or \"\" %}\n{##}\n{% set documents_prefix = \"<documents>\" %}\n{% set documents_suffix = \"</documents>\" %}\n{% set tool_definitions_prefix = \"<tool_definitions>\" %}\n{% set tool_definitions_suffix = \"</tool_definitions>\" %}\n{% set active_modes_prefix = \"<active_output_modes>\" %}\n{% set active_modes_suffix = \"</active_output_modes>\" %}\n{##}\n{% set tool_calls_prefix = \"<tool_calls>\" %}\n{% set tool_calls_suffix = \"</tool_calls>\" %}\n{% set citations_prefix = \"<citations>\" %}\n{% set citations_suffix = \"</citations>\" %}\n{##}\n{% if add_generation_prompt is not defined %}\n {% set add_generation_prompt = True %}\n{% endif %}\n{% set role_to_predict = role_to_predict or \"assistant\" %}\n{% if messages|length > 0 and messages[0].role == \"system\" %}\n {% set system_message = messages[0].content %}\n {% set loop_messages = messages[1:] %}\n{% else %}\n {% set system_message = default_system_message %}\n {% set loop_messages = messages %}\n{% endif %}\n{##}\n{##}\n{# Macros #}\n{% macro handle_tool_definitions(tools) %}\n {{- tool_definitions_prefix -}}\n {{- \"\\n# Tools\" -}}\n {{- \"\\n\\n## Functions\" -}}\n {% for tool in tools %}\n {% set _ = is_param_set(tool, field=\"type\") %}\n {% set is_tool_type_set = ns.is_last_checked_defined %}\n {% if is_tool_type_set %}\n {% if tool.type == \"function\" %}\n {% set tool = tool.function %}\n {% else %}\n {{ raise_exception(\"Currently, the only supported tool type is `function`\") }}\n {% endif %}\n {% endif %}\n {{- \"\\n\\n\" + (tool|tojson(indent=2)) -}}\n {% endfor %}\n {{- \"\\n\" + tool_definitions_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_first_system_message(system_message, tools) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set _ = is_param_set(system_message) %}\n {% set is_system_message_set = ns.is_last_checked_defined %}\n {% if is_system_message_set %}\n {{- system_message -}}\n {% endif %}\n {% set _ = is_param_set(tools, check_length=True) %}\n {% set is_tools_set = ns.is_last_checked_defined %}\n {% if is_tools_set %}\n {% if system_message %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- handle_tool_definitions(tools) -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_tool_calls(tool_calls) %}\n {{- tool_calls_prefix + \"[\\n\" -}}\n {% for tool_call in tool_calls %}\n {% set _ = is_param_set(tool_call, field=\"function\") %}\n {% set is_tool_call_function_set = ns.is_last_checked_defined %}\n {% if is_tool_call_function_set %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {% set arguments = tool_call.arguments %}\n {% if arguments is not string %}\n {%- set arguments = arguments|tojson -%}\n {%- endif %}\n {{ \"{\\\"name\\\": \\\"\" + tool_call.name + \"\\\", \\\"arguments\\\": \" + arguments + \"}\" -}}\n {% if not loop.last %}\n {{- \",\" }}\n {% endif %}\n {% endfor %}\n {{- \"\\n]\" + tool_calls_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_documents(documents) %}\n {{- documents_prefix -}}\n {{- \"\\n# Documents\" -}}\n {{- \"\\n\\nYou can use the following documents for reference:\" -}}\n {% for doc in documents %}\n {{- \"\\n\\n## Document ID: \" + loop.index0|string -}}\n {% set _ = is_param_set(doc, field=\"title\") %}\n {% set is_doc_title_set = ns.is_last_checked_defined %}\n {% if is_doc_title_set %}\n {{- \"\\nTitle: \" + doc.title -}}\n {% endif %}\n {% for key, value in doc.items() %}\n {% if key not in [\"title\", \"text\"] %}\n {{- \"\\n\" + key|title + \": \" + value|string -}}\n {% endif %}\n {% endfor %}\n {{- \"\\nText: \" + doc.text -}}\n {% endfor %}\n {{- \"\\n\" + documents_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_knobs(knobs) %}\n {{- active_modes_prefix -}}\n {{- \"\\n# Active Modes\" -}}\n {{ \"\\n\\nThe following modes configure the format or style of your responses. You should adhere to all currently\" -}}\n {{ \" active modes simultaneously.\" -}}\n {% if knobs.citation_mode == \"fast\" %}\n {{- \"\\n\\n## Citation Mode\" -}}\n {{- \"\\n\\nProvide a list of references only for the documents you base your response on. Format your response\" -}}\n {{ \" with the original answer followed by a citation section. Use this template:\" -}}\n {{ \" `{answer}\" + citations_prefix + \"DOCUMENT_IDS\" + citations_suffix + \"`, where DOCUMENT_IDS are the relevant document numbers\" -}}\n {{ \" (e.g. [2, 5, 9]), or [] if the answer cannot be supported by the provided documents.\" -}}\n {% endif %}\n {% if knobs.response_format == \"json_object\" %}\n {{- \"\\n\\n## JSON Mode\" -}}\n {{ \"\\n\\nProvide your response in JSON format. Adhere strictly to any schema given by the user.\" -}}\n {{ \" If an appropriate JSON format exists, use it without modification.\" -}}\n {% endif %}\n {{- \"\\n\" + active_modes_suffix -}}\n{% endmacro %}\n{##}\n{% macro get_last_user_index(messages) %}\n {% set ns.last_user_index = 0 %}\n {% for message in messages %}\n {% if message.role == 'user' %}\n {% set ns.last_user_index = loop.index0 %}\n {% endif %}\n {% endfor %}\n {{- ns.last_user_index -}}\n{% endmacro %}\n{##}\n{% macro handle_last_system_message(documents, knobs, use_documents, use_knobs) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set macros_to_call = [] %}\n {% set params_for_macros = [] %}\n {% if use_documents %}\n {% set macros_to_call = macros_to_call + [handle_documents] %}\n {% set params_for_macros = params_for_macros + [[documents]] %}\n {% endif %}\n {% if use_knobs %}\n {% set macros_to_call = macros_to_call + [handle_knobs] %}\n {% set params_for_macros = params_for_macros + [[knobs]] %}\n {% endif %}\n {% for i in range(macros_to_call|length) %}\n {% if i > 0 %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- macros_to_call[i](*params_for_macros[i]) -}}\n {% endfor %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_role(role, add_space=True) %}\n {{- \"<|\" + role + \"|>\" -}}\n {% if add_space %}\n {{- \" \" -}}\n {% endif %}\n{% endmacro %}\n{##}\n{% macro is_param_set(param, field=none, check_length=False) %}\n {% if field is not none %}\n {% if field in param %}\n {% set param = param[field] %}\n {% else %}\n {% set param = none %}\n {% endif %}\n {% endif %}\n {% set is_defined = param is defined and param is not none %}\n {% if check_length %}\n {% set ns.is_last_checked_defined = is_defined and param|length > 0 %}\n {% else %}\n {% set ns.is_last_checked_defined = is_defined %}\n {% endif %}\n{% endmacro %}\n{##}\n{##}\n{# Template #}\n{% if bos_token is defined and bos_token is not none %}\n {{- bos_token -}}\n{% endif %}\n{% set _ = is_param_set(system_message) %}\n{% set is_system_message_set = ns.is_last_checked_defined %}\n{% set _ = is_param_set(tools, check_length=True) %}\n{% set is_tools_set = ns.is_last_checked_defined %}\n{% set has_system_message = (is_system_message_set or is_tools_set) %}\n{% if has_system_message %}\n {{- handle_first_system_message(system_message, tools) -}}\n{% endif %}\n{% set last_user_index = get_last_user_index(loop_messages)|int %}\n{% for message in loop_messages %}\n {% if loop.index0 == last_user_index %}\n {% set _ = is_param_set(documents, check_length=True) %}\n {% set use_documents = ns.is_last_checked_defined %}\n {% set _ = is_param_set(knobs) %}\n {% set use_knobs = ns.is_last_checked_defined and knobs.is_set %}\n {% set add_last_system_message = use_documents or use_knobs %}\n {% if add_last_system_message %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- handle_last_system_message(documents, knobs, use_documents, use_knobs) -}}\n {% endif %}\n {% endif %}\n {% set role = message.role %}\n {% set _ = is_param_set(message, field=\"name\") %}\n {% set is_message_name_set = ns.is_last_checked_defined %}\n {% if is_message_name_set %}\n {% set message_prefix = handle_role(role) + \"(\" + message.name + \")\" %}\n {% else %}\n {% set message_prefix = handle_role(role) %}\n {% endif %}\n {% set content = (message.content or \"\") %}\n {% if content is not string %}\n {% set content = content|tojson %}\n {% endif %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + message_prefix + content -}}\n {% set _ = is_param_set(message, field=\"tool_calls\", check_length=True) %}\n {% set is_tool_calls_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_tool_calls_set %}\n {{- handle_tool_calls(message.tool_calls) -}}\n {% endif %}\n {% set _ = is_param_set(message, field=\"citations\", check_length=False) %}\n {% set is_citations_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_citations_set and knobs.is_set and knobs.citation_mode != \"off\" %}\n {{- citations_prefix + message.citations|map(attribute=\"document_id\")|list|string + citations_suffix -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endfor %}\n{% if add_generation_prompt %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + handle_role(role_to_predict, add_space=False) -}}\n {% set _ = is_param_set(generation_preamble) %}\n {% set is_generation_preamble_set = ns.is_last_checked_defined %}\n {% if is_generation_preamble_set and generation_preamble.strip() != \"\" %}\n {{- \" \" + generation_preamble -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% else %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n{% endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|pad|>", "unk_token": "<|unk|>", "use_default_system_prompt": false}} | 395 | 395 | {
"parameters": {
"BF16": 398555145696,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 398555145696
} | [
"transformers",
"safetensors",
"jamba",
"text-generation",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00166.safetensors"
},
{
"rfilename": "model-00002-of-00166.safetensors"
},
{
"rfilename": "model-00003-of-00166.safetensors"
},
{
"rfilename": "model-00004-of-00166.safetensors"
},
{
"rfilename": "model-00005-of-00166.safetensors"
},
{
"rfilename": "model-00006-of-00166.safetensors"
},
{
"rfilename": "model-00007-of-00166.safetensors"
},
{
"rfilename": "model-00008-of-00166.safetensors"
},
{
"rfilename": "model-00009-of-00166.safetensors"
},
{
"rfilename": "model-00010-of-00166.safetensors"
},
{
"rfilename": "model-00011-of-00166.safetensors"
},
{
"rfilename": "model-00012-of-00166.safetensors"
},
{
"rfilename": "model-00013-of-00166.safetensors"
},
{
"rfilename": "model-00014-of-00166.safetensors"
},
{
"rfilename": "model-00015-of-00166.safetensors"
},
{
"rfilename": "model-00016-of-00166.safetensors"
},
{
"rfilename": "model-00017-of-00166.safetensors"
},
{
"rfilename": "model-00018-of-00166.safetensors"
},
{
"rfilename": "model-00019-of-00166.safetensors"
},
{
"rfilename": "model-00020-of-00166.safetensors"
},
{
"rfilename": "model-00021-of-00166.safetensors"
},
{
"rfilename": "model-00022-of-00166.safetensors"
},
{
"rfilename": "model-00023-of-00166.safetensors"
},
{
"rfilename": "model-00024-of-00166.safetensors"
},
{
"rfilename": "model-00025-of-00166.safetensors"
},
{
"rfilename": "model-00026-of-00166.safetensors"
},
{
"rfilename": "model-00027-of-00166.safetensors"
},
{
"rfilename": "model-00028-of-00166.safetensors"
},
{
"rfilename": "model-00029-of-00166.safetensors"
},
{
"rfilename": "model-00030-of-00166.safetensors"
},
{
"rfilename": "model-00031-of-00166.safetensors"
},
{
"rfilename": "model-00032-of-00166.safetensors"
},
{
"rfilename": "model-00033-of-00166.safetensors"
},
{
"rfilename": "model-00034-of-00166.safetensors"
},
{
"rfilename": "model-00035-of-00166.safetensors"
},
{
"rfilename": "model-00036-of-00166.safetensors"
},
{
"rfilename": "model-00037-of-00166.safetensors"
},
{
"rfilename": "model-00038-of-00166.safetensors"
},
{
"rfilename": "model-00039-of-00166.safetensors"
},
{
"rfilename": "model-00040-of-00166.safetensors"
},
{
"rfilename": "model-00041-of-00166.safetensors"
},
{
"rfilename": "model-00042-of-00166.safetensors"
},
{
"rfilename": "model-00043-of-00166.safetensors"
},
{
"rfilename": "model-00044-of-00166.safetensors"
},
{
"rfilename": "model-00045-of-00166.safetensors"
},
{
"rfilename": "model-00046-of-00166.safetensors"
},
{
"rfilename": "model-00047-of-00166.safetensors"
},
{
"rfilename": "model-00048-of-00166.safetensors"
},
{
"rfilename": "model-00049-of-00166.safetensors"
},
{
"rfilename": "model-00050-of-00166.safetensors"
},
{
"rfilename": "model-00051-of-00166.safetensors"
},
{
"rfilename": "model-00052-of-00166.safetensors"
},
{
"rfilename": "model-00053-of-00166.safetensors"
},
{
"rfilename": "model-00054-of-00166.safetensors"
},
{
"rfilename": "model-00055-of-00166.safetensors"
},
{
"rfilename": "model-00056-of-00166.safetensors"
},
{
"rfilename": "model-00057-of-00166.safetensors"
},
{
"rfilename": "model-00058-of-00166.safetensors"
},
{
"rfilename": "model-00059-of-00166.safetensors"
},
{
"rfilename": "model-00060-of-00166.safetensors"
},
{
"rfilename": "model-00061-of-00166.safetensors"
},
{
"rfilename": "model-00062-of-00166.safetensors"
},
{
"rfilename": "model-00063-of-00166.safetensors"
},
{
"rfilename": "model-00064-of-00166.safetensors"
},
{
"rfilename": "model-00065-of-00166.safetensors"
},
{
"rfilename": "model-00066-of-00166.safetensors"
},
{
"rfilename": "model-00067-of-00166.safetensors"
},
{
"rfilename": "model-00068-of-00166.safetensors"
},
{
"rfilename": "model-00069-of-00166.safetensors"
},
{
"rfilename": "model-00070-of-00166.safetensors"
},
{
"rfilename": "model-00071-of-00166.safetensors"
},
{
"rfilename": "model-00072-of-00166.safetensors"
},
{
"rfilename": "model-00073-of-00166.safetensors"
},
{
"rfilename": "model-00074-of-00166.safetensors"
},
{
"rfilename": "model-00075-of-00166.safetensors"
},
{
"rfilename": "model-00076-of-00166.safetensors"
},
{
"rfilename": "model-00077-of-00166.safetensors"
},
{
"rfilename": "model-00078-of-00166.safetensors"
},
{
"rfilename": "model-00079-of-00166.safetensors"
},
{
"rfilename": "model-00080-of-00166.safetensors"
},
{
"rfilename": "model-00081-of-00166.safetensors"
},
{
"rfilename": "model-00082-of-00166.safetensors"
},
{
"rfilename": "model-00083-of-00166.safetensors"
},
{
"rfilename": "model-00084-of-00166.safetensors"
},
{
"rfilename": "model-00085-of-00166.safetensors"
},
{
"rfilename": "model-00086-of-00166.safetensors"
},
{
"rfilename": "model-00087-of-00166.safetensors"
},
{
"rfilename": "model-00088-of-00166.safetensors"
},
{
"rfilename": "model-00089-of-00166.safetensors"
},
{
"rfilename": "model-00090-of-00166.safetensors"
},
{
"rfilename": "model-00091-of-00166.safetensors"
},
{
"rfilename": "model-00092-of-00166.safetensors"
},
{
"rfilename": "model-00093-of-00166.safetensors"
},
{
"rfilename": "model-00094-of-00166.safetensors"
},
{
"rfilename": "model-00095-of-00166.safetensors"
},
{
"rfilename": "model-00096-of-00166.safetensors"
},
{
"rfilename": "model-00097-of-00166.safetensors"
},
{
"rfilename": "model-00098-of-00166.safetensors"
},
{
"rfilename": "model-00099-of-00166.safetensors"
},
{
"rfilename": "model-00100-of-00166.safetensors"
},
{
"rfilename": "model-00101-of-00166.safetensors"
},
{
"rfilename": "model-00102-of-00166.safetensors"
},
{
"rfilename": "model-00103-of-00166.safetensors"
},
{
"rfilename": "model-00104-of-00166.safetensors"
},
{
"rfilename": "model-00105-of-00166.safetensors"
},
{
"rfilename": "model-00106-of-00166.safetensors"
},
{
"rfilename": "model-00107-of-00166.safetensors"
},
{
"rfilename": "model-00108-of-00166.safetensors"
},
{
"rfilename": "model-00109-of-00166.safetensors"
},
{
"rfilename": "model-00110-of-00166.safetensors"
},
{
"rfilename": "model-00111-of-00166.safetensors"
},
{
"rfilename": "model-00112-of-00166.safetensors"
},
{
"rfilename": "model-00113-of-00166.safetensors"
},
{
"rfilename": "model-00114-of-00166.safetensors"
},
{
"rfilename": "model-00115-of-00166.safetensors"
},
{
"rfilename": "model-00116-of-00166.safetensors"
},
{
"rfilename": "model-00117-of-00166.safetensors"
},
{
"rfilename": "model-00118-of-00166.safetensors"
},
{
"rfilename": "model-00119-of-00166.safetensors"
},
{
"rfilename": "model-00120-of-00166.safetensors"
},
{
"rfilename": "model-00121-of-00166.safetensors"
},
{
"rfilename": "model-00122-of-00166.safetensors"
},
{
"rfilename": "model-00123-of-00166.safetensors"
},
{
"rfilename": "model-00124-of-00166.safetensors"
},
{
"rfilename": "model-00125-of-00166.safetensors"
},
{
"rfilename": "model-00126-of-00166.safetensors"
},
{
"rfilename": "model-00127-of-00166.safetensors"
},
{
"rfilename": "model-00128-of-00166.safetensors"
},
{
"rfilename": "model-00129-of-00166.safetensors"
},
{
"rfilename": "model-00130-of-00166.safetensors"
},
{
"rfilename": "model-00131-of-00166.safetensors"
},
{
"rfilename": "model-00132-of-00166.safetensors"
},
{
"rfilename": "model-00133-of-00166.safetensors"
},
{
"rfilename": "model-00134-of-00166.safetensors"
},
{
"rfilename": "model-00135-of-00166.safetensors"
},
{
"rfilename": "model-00136-of-00166.safetensors"
},
{
"rfilename": "model-00137-of-00166.safetensors"
},
{
"rfilename": "model-00138-of-00166.safetensors"
},
{
"rfilename": "model-00139-of-00166.safetensors"
},
{
"rfilename": "model-00140-of-00166.safetensors"
},
{
"rfilename": "model-00141-of-00166.safetensors"
},
{
"rfilename": "model-00142-of-00166.safetensors"
},
{
"rfilename": "model-00143-of-00166.safetensors"
},
{
"rfilename": "model-00144-of-00166.safetensors"
},
{
"rfilename": "model-00145-of-00166.safetensors"
},
{
"rfilename": "model-00146-of-00166.safetensors"
},
{
"rfilename": "model-00147-of-00166.safetensors"
},
{
"rfilename": "model-00148-of-00166.safetensors"
},
{
"rfilename": "model-00149-of-00166.safetensors"
},
{
"rfilename": "model-00150-of-00166.safetensors"
},
{
"rfilename": "model-00151-of-00166.safetensors"
},
{
"rfilename": "model-00152-of-00166.safetensors"
},
{
"rfilename": "model-00153-of-00166.safetensors"
},
{
"rfilename": "model-00154-of-00166.safetensors"
},
{
"rfilename": "model-00155-of-00166.safetensors"
},
{
"rfilename": "model-00156-of-00166.safetensors"
},
{
"rfilename": "model-00157-of-00166.safetensors"
},
{
"rfilename": "model-00158-of-00166.safetensors"
},
{
"rfilename": "model-00159-of-00166.safetensors"
},
{
"rfilename": "model-00160-of-00166.safetensors"
},
{
"rfilename": "model-00161-of-00166.safetensors"
},
{
"rfilename": "model-00162-of-00166.safetensors"
},
{
"rfilename": "model-00163-of-00166.safetensors"
},
{
"rfilename": "model-00164-of-00166.safetensors"
},
{
"rfilename": "model-00165-of-00166.safetensors"
},
{
"rfilename": "model-00166-of-00166.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-27T16:00:42 | null |
674f2f8f51a64ee560f8ae65 | Kijai/HunyuanVideo_comfy | Kijai | {"license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"} | null | 2025-03-11T07:01:11 | 349 | 52 | null | 8,677 | 8,677 | null | [
"gguf",
"license:other",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "HunyuanI2V_basic_native_workflow_example.json"
},
{
"rfilename": "HunyuanVideo_dashtoon_keyframe_lora_converted_bf16.safetensors"
},
{
"rfilename": "HunyuanVideo_dashtoon_keyframe_lora_converted_comfy_bf16.safetensors"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "hunyuan_video_720_cfgdistill_bf16.safetensors"
},
{
"rfilename": "hunyuan_video_720_cfgdistill_fp8_e4m3fn.safetensors"
},
{
"rfilename": "hunyuan_video_FastVideo_720_fp8_e4m3fn.safetensors"
},
{
"rfilename": "hunyuan_video_I2V-Q3_K_S.gguf"
},
{
"rfilename": "hunyuan_video_I2V-Q4_K_S.gguf"
},
{
"rfilename": "hunyuan_video_I2V-Q6_K.gguf"
},
{
"rfilename": "hunyuan_video_I2V-Q8_0.gguf"
},
{
"rfilename": "hunyuan_video_I2V_720_fixed_bf16.safetensors"
},
{
"rfilename": "hunyuan_video_I2V_720_fixed_fp8_e4m3fn.safetensors"
},
{
"rfilename": "hunyuan_video_I2V_fp8_e4m3fn.safetensors"
},
{
"rfilename": "hunyuan_video_I2V_fp8_e5m2.safetensors"
},
{
"rfilename": "hunyuan_video_vae_bf16.safetensors"
},
{
"rfilename": "hunyuan_video_vae_fp32.safetensors"
},
{
"rfilename": "hyvid_I2V_lora_embrace.safetensors"
},
{
"rfilename": "hyvid_I2V_lora_hair_growth.safetensors"
},
{
"rfilename": "hyvid_dashtoon_keyframe_native_example_01.json"
},
{
"rfilename": "hyvideo_FastVideo_LoRA-fp8.safetensors"
}
] | 2024-12-03T16:19:27 | {
"architecture": "hyvid",
"bos_token": null,
"causal": null,
"chat_template": null,
"context_length": null,
"eos_token": null,
"quantize_imatrix_file": null,
"total": 12810991680
} |
67c8a7465da042e7d1e03669 | pipecat-ai/smart-turn | pipecat-ai | {"license": "bsd-2-clause"} | null | 2025-03-09T19:59:51 | 51 | 51 | {"architectures": ["Wav2Vec2BertForSequenceClassification"], "model_type": "wav2vec2-bert"} | 1,327 | 1,327 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 581281858,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 581281858
} | [
"coreml",
"safetensors",
"wav2vec2-bert",
"license:bsd-2-clause",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Data/com.apple.CoreML/model.mlmodel"
},
{
"rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Data/com.apple.CoreML/weights/weight.bin"
},
{
"rfilename": "coreml/smart_turn_classifier-250309.mlpackage/Manifest.json"
},
{
"rfilename": "coreml/smart_turn_classifier.mlpackage"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "training_args.bin"
}
] | 2025-03-05T19:34:30 | null |
6795ffcd88cd7c0294702a72 | Qwen/Qwen2.5-VL-7B-Instruct | Qwen | {"license": "apache-2.0", "language": ["en"], "pipeline_tag": "image-text-to-text", "tags": ["multimodal"], "library_name": "transformers"} | null | 2025-03-06T07:54:47 | 657 | 48 | {"architectures": ["Qwen2_5_VLForConditionalGeneration"], "model_type": "qwen2_5_vl", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 3,474,366 | 4,016,812 | {
"parameters": {
"BF16": 8292166656,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8292166656
} | [
"transformers",
"safetensors",
"qwen2_5_vl",
"image-text-to-text",
"multimodal",
"conversational",
"en",
"arxiv:2309.00071",
"arxiv:2409.12191",
"arxiv:2308.12966",
"license:apache-2.0",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00005.safetensors"
},
{
"rfilename": "model-00002-of-00005.safetensors"
},
{
"rfilename": "model-00003-of-00005.safetensors"
},
{
"rfilename": "model-00004-of-00005.safetensors"
},
{
"rfilename": "model-00005-of-00005.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-01-26T09:26:37 | null |
67bd77e73826831672deeec5 | Wan-AI/Wan2.1-I2V-14B-720P | Wan-AI | {"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "image-to-video", "library_name": "diffusers", "tags": ["video", "video genration"]} | null | 2025-02-26T14:35:45 | 354 | 47 | {"model_type": "i2v"} | 70,519 | 70,519 | null | [
"diffusers",
"safetensors",
"i2v",
"video",
"video genration",
"image-to-video",
"en",
"zh",
"license:apache-2.0",
"region:us"
] | image-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Wan2.1_VAE.pth"
},
{
"rfilename": "assets/comp_effic.png"
},
{
"rfilename": "assets/data_for_diff_stage.jpg"
},
{
"rfilename": "assets/i2v_res.png"
},
{
"rfilename": "assets/logo.png"
},
{
"rfilename": "assets/t2v_res.jpg"
},
{
"rfilename": "assets/vben_1.3b_vs_sota.png"
},
{
"rfilename": "assets/vben_vs_sota.png"
},
{
"rfilename": "assets/video_dit_arch.jpg"
},
{
"rfilename": "assets/video_vae_res.jpg"
},
{
"rfilename": "config.json"
},
{
"rfilename": "diffusion_pytorch_model-00001-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00002-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00003-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00004-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00005-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00006-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model-00007-of-00007.safetensors"
},
{
"rfilename": "diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "examples/i2v_input.JPG"
},
{
"rfilename": "google/umt5-xxl/special_tokens_map.json"
},
{
"rfilename": "google/umt5-xxl/spiece.model"
},
{
"rfilename": "google/umt5-xxl/tokenizer.json"
},
{
"rfilename": "google/umt5-xxl/tokenizer_config.json"
},
{
"rfilename": "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"
},
{
"rfilename": "models_t5_umt5-xxl-enc-bf16.pth"
},
{
"rfilename": "xlm-roberta-large/sentencepiece.bpe.model"
},
{
"rfilename": "xlm-roberta-large/special_tokens_map.json"
},
{
"rfilename": "xlm-roberta-large/tokenizer.json"
},
{
"rfilename": "xlm-roberta-large/tokenizer_config.json"
}
] | 2025-02-25T07:57:27 | null |
67b87c3d15b8db13cc755c34 | EuroBERT/EuroBERT-210m | EuroBERT | {"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]} | null | 2025-03-10T14:35:21 | 46 | 46 | {"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}} | 2,667 | 2,667 | null | [
"transformers",
"pytorch",
"eurobert",
"fill-mask",
"code",
"custom_code",
"en",
"fr",
"de",
"es",
"zh",
"it",
"ru",
"pl",
"pt",
"ja",
"vi",
"nl",
"ar",
"tr",
"hi",
"arxiv:2503.05500",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | fill-mask | {
"auto_model": "AutoModelForMaskedLM",
"custom_class": "modeling_eurobert.EuroBertForMaskedLM",
"pipeline_tag": "fill-mask",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_eurobert.py"
},
{
"rfilename": "img/banner.png"
},
{
"rfilename": "img/code_math.png"
},
{
"rfilename": "img/long_context.png"
},
{
"rfilename": "img/multilingual.png"
},
{
"rfilename": "modeling_eurobert.py"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-21T13:14:37 | null |
66eaef786865fea1324edb5d | meta-llama/Llama-3.2-3B-Instruct | meta-llama | {"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "library_name": "transformers", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.2", "extra_gated_prompt": "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version Release Date: September 25, 2024\n\n\u201cAgreement\u201d means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\n\u201cDocumentation\u201d means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\n\u201cLicensee\u201d or \u201cyou\u201d means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\n\u201cLlama 3.2\u201d means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads.\n\n\u201cLlama Materials\u201d means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement.\n\n\u201cMeta\u201d or \u201cwe\u201d means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \n\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. \nb. Redistribution and Use. \ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. \niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\u00a0\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:\n 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled substances\n 11. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:\n 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 16. Generating, promoting, or further distributing spam\n 17. Impersonating another individual without consent, authorization, or legal right\n 18. Representing that the use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\u00a0\n4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\n\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/llama-v3p2-3b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "Meta-Llama-3.2-3B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "together",
"providerId": "meta-llama/Llama-3.2-3B-Instruct-Turbo",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "meta-llama/Llama-3.2-3B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "meta-llama/Llama-3.2-3B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "meta-llama/llama-3.2-3b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "meta-llama/Llama-3.2-3B-Instruct",
"status": "live",
"task": "conversational"
}
] | 2024-10-24T15:07:29 | 1,201 | 45 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}} | 3,029,238 | 9,182,112 | {
"parameters": {
"BF16": 3212749824,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 3212749824
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"arxiv:2204.05149",
"arxiv:2405.16406",
"license:llama3.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.txt"
},
{
"rfilename": "README.md"
},
{
"rfilename": "USE_POLICY.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "original/consolidated.00.pth"
},
{
"rfilename": "original/orig_params.json"
},
{
"rfilename": "original/params.json"
},
{
"rfilename": "original/tokenizer.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-09-18T15:19:20 | null |
67d07c0bbde63e65957d5d46 | open-r1/OlympicCoder-32B | open-r1 | {"license": "apache-2.0", "datasets": ["open-r1/codeforces-cots"], "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-32B-Instruct"], "pipeline_tag": "text-generation"} | null | 2025-03-12T08:53:40 | 45 | 45 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}} | 39 | 39 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"safetensors",
"qwen2",
"text-generation",
"conversational",
"en",
"dataset:open-r1/codeforces-cots",
"base_model:Qwen/Qwen2.5-Coder-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-Coder-32B-Instruct",
"license:apache-2.0",
"region:us"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "ioi-evals.png"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00014.safetensors"
},
{
"rfilename": "model-00002-of-00014.safetensors"
},
{
"rfilename": "model-00003-of-00014.safetensors"
},
{
"rfilename": "model-00004-of-00014.safetensors"
},
{
"rfilename": "model-00005-of-00014.safetensors"
},
{
"rfilename": "model-00006-of-00014.safetensors"
},
{
"rfilename": "model-00007-of-00014.safetensors"
},
{
"rfilename": "model-00008-of-00014.safetensors"
},
{
"rfilename": "model-00009-of-00014.safetensors"
},
{
"rfilename": "model-00010-of-00014.safetensors"
},
{
"rfilename": "model-00011-of-00014.safetensors"
},
{
"rfilename": "model-00012-of-00014.safetensors"
},
{
"rfilename": "model-00013-of-00014.safetensors"
},
{
"rfilename": "model-00014-of-00014.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "trainer_state.json"
},
{
"rfilename": "training_args.bin"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-11T18:08:11 | null |
678e11922b39b4ed1381531b | deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B | deepseek-ai | {"license": "mit", "library_name": "transformers"} | [
{
"provider": "hf-inference",
"providerId": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"status": "live",
"task": "conversational"
}
] | 2025-02-24T03:32:35 | 1,030 | 44 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}} | 1,566,515 | 2,193,634 | {
"parameters": {
"BF16": 1777088000,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 1777088000
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:2501.12948",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-01-20T09:04:18 | null |
67c675f2a87c8e90e3a4144e | qihoo360/Light-R1-32B | qihoo360 | {"license": "apache-2.0", "base_model": ["Qwen/Qwen2.5-32B-Instruct"]} | null | 2025-03-05T13:28:56 | 57 | 43 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|im_end|>", "unk_token": null}} | 436 | 436 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"safetensors",
"qwen2",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "evaluation-results.aime24.json"
},
{
"rfilename": "evaluation-results.aime25.json"
},
{
"rfilename": "evaluation-results.gpqa.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00014.safetensors"
},
{
"rfilename": "model-00002-of-00014.safetensors"
},
{
"rfilename": "model-00003-of-00014.safetensors"
},
{
"rfilename": "model-00004-of-00014.safetensors"
},
{
"rfilename": "model-00005-of-00014.safetensors"
},
{
"rfilename": "model-00006-of-00014.safetensors"
},
{
"rfilename": "model-00007-of-00014.safetensors"
},
{
"rfilename": "model-00008-of-00014.safetensors"
},
{
"rfilename": "model-00009-of-00014.safetensors"
},
{
"rfilename": "model-00010-of-00014.safetensors"
},
{
"rfilename": "model-00011-of-00014.safetensors"
},
{
"rfilename": "model-00012-of-00014.safetensors"
},
{
"rfilename": "model-00013-of-00014.safetensors"
},
{
"rfilename": "model-00014-of-00014.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-04T03:39:30 | null |
6712c76c6757313a2bf70d4b | peakji/steiner-32b-preview | peakji | {"license": "apache-2.0", "language": ["en", "zh"]} | null | 2024-10-21T16:46:13 | 85 | 42 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 41 | 215 | {
"parameters": {
"BF16": 32759944192,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32759944192
} | [
"safetensors",
"qwen2",
"en",
"zh",
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00017.safetensors"
},
{
"rfilename": "model-00002-of-00017.safetensors"
},
{
"rfilename": "model-00003-of-00017.safetensors"
},
{
"rfilename": "model-00004-of-00017.safetensors"
},
{
"rfilename": "model-00005-of-00017.safetensors"
},
{
"rfilename": "model-00006-of-00017.safetensors"
},
{
"rfilename": "model-00007-of-00017.safetensors"
},
{
"rfilename": "model-00008-of-00017.safetensors"
},
{
"rfilename": "model-00009-of-00017.safetensors"
},
{
"rfilename": "model-00010-of-00017.safetensors"
},
{
"rfilename": "model-00011-of-00017.safetensors"
},
{
"rfilename": "model-00012-of-00017.safetensors"
},
{
"rfilename": "model-00013-of-00017.safetensors"
},
{
"rfilename": "model-00014-of-00017.safetensors"
},
{
"rfilename": "model-00015-of-00017.safetensors"
},
{
"rfilename": "model-00016-of-00017.safetensors"
},
{
"rfilename": "model-00017-of-00017.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2024-10-18T20:39:08 | null |
67aa311a52161362fa756fe6 | agents-course/notebooks | agents-course | {"license": "apache-2.0"} | null | 2025-03-04T15:42:35 | 244 | 42 | null | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "bonus-unit1/.DS_Store"
},
{
"rfilename": "bonus-unit1/bonus-unit1.ipynb"
},
{
"rfilename": "dummy_agent_library.ipynb"
},
{
"rfilename": "unit2/llama-index/agents.ipynb"
},
{
"rfilename": "unit2/llama-index/components.ipynb"
},
{
"rfilename": "unit2/llama-index/tools.ipynb"
},
{
"rfilename": "unit2/llama-index/workflows.ipynb"
},
{
"rfilename": "unit2/smolagents/code_agents.ipynb"
},
{
"rfilename": "unit2/smolagents/multiagent_notebook.ipynb"
},
{
"rfilename": "unit2/smolagents/retrieval_agents.ipynb"
},
{
"rfilename": "unit2/smolagents/tool_calling_agents.ipynb"
},
{
"rfilename": "unit2/smolagents/tools.ipynb"
},
{
"rfilename": "unit2/smolagents/vision_agents.ipynb"
},
{
"rfilename": "unit2/smolagents/vision_web_browser.py"
}
] | 2025-02-10T17:02:18 | null |
67be03c930eecba21c83a91e | Kijai/WanVideo_comfy | Kijai | null | null | 2025-03-10T13:16:43 | 280 | 42 | null | 0 | 0 | null | [
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Wan2_1-I2V-14B-480P_fp8_e4m3fn.safetensors"
},
{
"rfilename": "Wan2_1-I2V-14B-480P_fp8_e5m2.safetensors"
},
{
"rfilename": "Wan2_1-I2V-14B-720P_fp8_e4m3fn.safetensors"
},
{
"rfilename": "Wan2_1-T2V-14B_fp8_e4m3fn.safetensors"
},
{
"rfilename": "Wan2_1-T2V-14B_fp8_e5m2.safetensors"
},
{
"rfilename": "Wan2_1-T2V-1_3B_bf16.safetensors"
},
{
"rfilename": "Wan2_1-T2V-1_3B_fp8_e4m3fn.safetensors"
},
{
"rfilename": "Wan2_1_VAE_bf16.safetensors"
},
{
"rfilename": "Wan2_1_VAE_fp32.safetensors"
},
{
"rfilename": "open-clip-xlm-roberta-large-vit-huge-14_visual_fp16.safetensors"
},
{
"rfilename": "open-clip-xlm-roberta-large-vit-huge-14_visual_fp32.safetensors"
},
{
"rfilename": "umt5-xxl-enc-bf16.safetensors"
},
{
"rfilename": "umt5-xxl-enc-fp8_e4m3fn.safetensors"
}
] | 2025-02-25T17:54:17 | null |
66aa974d1f83b210ae7f74ae | black-forest-labs/FLUX.1-schnell | black-forest-labs | {"language": ["en"], "license": "apache-2.0", "tags": ["text-to-image", "image-generation", "flux"]} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/flux/schnell",
"status": "live",
"task": "text-to-image"
},
{
"provider": "replicate",
"providerId": "black-forest-labs/flux-schnell",
"status": "live",
"task": "text-to-image"
},
{
"provider": "together",
"providerId": "black-forest-labs/FLUX.1-pro",
"status": "live",
"task": "text-to-image"
},
{
"provider": "hf-inference",
"providerId": "black-forest-labs/FLUX.1-schnell",
"status": "live",
"task": "text-to-image"
},
{
"provider": "nebius",
"providerId": "black-forest-labs/flux-schnell",
"status": "live",
"task": "text-to-image"
}
] | 2024-08-16T14:37:56 | 3,510 | 41 | {"diffusers": {"_class_name": "FluxPipeline"}} | 1,495,078 | 9,451,200 | null | [
"diffusers",
"safetensors",
"text-to-image",
"image-generation",
"flux",
"en",
"license:apache-2.0",
"endpoints_compatible",
"diffusers:FluxPipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "ae.safetensors"
},
{
"rfilename": "flux1-schnell.safetensors"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "schnell_grid.jpeg"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model.safetensors"
},
{
"rfilename": "text_encoder_2/config.json"
},
{
"rfilename": "text_encoder_2/model-00001-of-00002.safetensors"
},
{
"rfilename": "text_encoder_2/model-00002-of-00002.safetensors"
},
{
"rfilename": "text_encoder_2/model.safetensors.index.json"
},
{
"rfilename": "tokenizer/merges.txt"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "tokenizer/vocab.json"
},
{
"rfilename": "tokenizer_2/special_tokens_map.json"
},
{
"rfilename": "tokenizer_2/spiece.model"
},
{
"rfilename": "tokenizer_2/tokenizer.json"
},
{
"rfilename": "tokenizer_2/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00003-of-00003.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2024-07-31T19:58:05 | null |
67cb276e5432f525e8478cd5 | BlinkDL/rwkv7-g1 | BlinkDL | {"language": ["en", "zh", "fr", "es", "de", "pt", "ru", "it", "ja", "ko", "vi", "ar"], "tags": ["pytorch", "text-generation", "causal-lm", "rwkv"], "license": "apache-2.0", "datasets": ["HuggingFaceFW/fineweb-edu", "mlfoundations/dclm-baseline-1.0", "cerebras/SlimPajama-627B", "EleutherAI/pile", "bigcode/starcoderdata", "oscar-corpus/OSCAR-2301"]} | null | 2025-03-09T03:26:43 | 41 | 41 | null | 0 | 0 | null | [
"pytorch",
"text-generation",
"causal-lm",
"rwkv",
"en",
"zh",
"fr",
"es",
"de",
"pt",
"ru",
"it",
"ja",
"ko",
"vi",
"ar",
"dataset:HuggingFaceFW/fineweb-edu",
"dataset:mlfoundations/dclm-baseline-1.0",
"dataset:cerebras/SlimPajama-627B",
"dataset:EleutherAI/pile",
"dataset:bigcode/starcoderdata",
"dataset:oscar-corpus/OSCAR-2301",
"license:apache-2.0",
"region:us"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "rwkv7-g1-0.1b-20250307-ctx4096.pth"
}
] | 2025-03-07T17:05:50 | null |
6698d8a0653e4babe21e1e7d | meta-llama/Llama-3.1-8B-Instruct | meta-llama | {"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "license": "llama3.1", "base_model": "meta-llama/Meta-Llama-3.1-8B", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "extra_gated_prompt": "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.1 is licensed under the Llama 3.1 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement.\n2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n#### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/llama-v3p1-8b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "Meta-Llama-3.1-8B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "meta-llama/Llama-3.1-8B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "meta-llama/Meta-Llama-3.1-8B-Instruct-fast",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "meta-llama/llama-3.1-8b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"status": "staging",
"task": "conversational"
}
] | 2024-09-25T17:00:57 | 3,741 | 40 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}} | 6,181,229 | 35,385,850 | {
"parameters": {
"BF16": 8030261248,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8030261248
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"arxiv:2204.05149",
"base_model:meta-llama/Llama-3.1-8B",
"base_model:finetune:meta-llama/Llama-3.1-8B",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "USE_POLICY.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "original/consolidated.00.pth"
},
{
"rfilename": "original/params.json"
},
{
"rfilename": "original/tokenizer.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-07-18T08:56:00 | null |
67cb10ea74f0d88c3243384b | huihui-ai/QwQ-32B-abliterated | huihui-ai | {"license": "apache-2.0", "license_link": "https://huggingface.co/huihui-ai/QwQ-32B-abliterated/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat", "abliterated", "uncensored"], "library_name": "transformers"} | null | 2025-03-12T04:47:38 | 39 | 39 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 768 | 768 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"abliterated",
"uncensored",
"conversational",
"en",
"base_model:Qwen/QwQ-32B",
"base_model:finetune:Qwen/QwQ-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00014.safetensors"
},
{
"rfilename": "model-00002-of-00014.safetensors"
},
{
"rfilename": "model-00003-of-00014.safetensors"
},
{
"rfilename": "model-00004-of-00014.safetensors"
},
{
"rfilename": "model-00005-of-00014.safetensors"
},
{
"rfilename": "model-00006-of-00014.safetensors"
},
{
"rfilename": "model-00007-of-00014.safetensors"
},
{
"rfilename": "model-00008-of-00014.safetensors"
},
{
"rfilename": "model-00009-of-00014.safetensors"
},
{
"rfilename": "model-00010-of-00014.safetensors"
},
{
"rfilename": "model-00011-of-00014.safetensors"
},
{
"rfilename": "model-00012-of-00014.safetensors"
},
{
"rfilename": "model-00013-of-00014.safetensors"
},
{
"rfilename": "model-00014-of-00014.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-07T15:29:46 | null |
67c08c5efe55e4ad077e27c6 | ai21labs/AI21-Jamba-Mini-1.6 | ai21labs | {"license": "other", "license_name": "jamba-open-model-license", "license_link": "https://www.ai21.com/jamba-open-model-license/", "library_name": "transformers"} | null | 2025-03-06T12:44:52 | 38 | 38 | {"architectures": ["JambaForCausalLM"], "model_type": "jamba", "tokenizer_config": {"bos_token": "<|startoftext|>", "chat_template": "{# Variables #}\n{% set ns = namespace(message_count=0, is_last_checked_defined=False) %}\n{##}\n{% set bom_str = bom_str or \"<|bom|>\" %}\n{% set eom_str = eom_str or \"<|eom|>\" %}\n{% set default_system_message = default_system_message or \"\" %}\n{##}\n{% set documents_prefix = \"<documents>\" %}\n{% set documents_suffix = \"</documents>\" %}\n{% set tool_definitions_prefix = \"<tool_definitions>\" %}\n{% set tool_definitions_suffix = \"</tool_definitions>\" %}\n{% set active_modes_prefix = \"<active_output_modes>\" %}\n{% set active_modes_suffix = \"</active_output_modes>\" %}\n{##}\n{% set tool_calls_prefix = \"<tool_calls>\" %}\n{% set tool_calls_suffix = \"</tool_calls>\" %}\n{% set citations_prefix = \"<citations>\" %}\n{% set citations_suffix = \"</citations>\" %}\n{##}\n{% if add_generation_prompt is not defined %}\n {% set add_generation_prompt = True %}\n{% endif %}\n{% set role_to_predict = role_to_predict or \"assistant\" %}\n{% if messages|length > 0 and messages[0].role == \"system\" %}\n {% set system_message = messages[0].content %}\n {% set loop_messages = messages[1:] %}\n{% else %}\n {% set system_message = default_system_message %}\n {% set loop_messages = messages %}\n{% endif %}\n{##}\n{##}\n{# Macros #}\n{% macro handle_tool_definitions(tools) %}\n {{- tool_definitions_prefix -}}\n {{- \"\\n# Tools\" -}}\n {{- \"\\n\\n## Functions\" -}}\n {% for tool in tools %}\n {% set _ = is_param_set(tool, field=\"type\") %}\n {% set is_tool_type_set = ns.is_last_checked_defined %}\n {% if is_tool_type_set %}\n {% if tool.type == \"function\" %}\n {% set tool = tool.function %}\n {% else %}\n {{ raise_exception(\"Currently, the only supported tool type is `function`\") }}\n {% endif %}\n {% endif %}\n {{- \"\\n\\n\" + (tool|tojson(indent=2)) -}}\n {% endfor %}\n {{- \"\\n\" + tool_definitions_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_first_system_message(system_message, tools) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set _ = is_param_set(system_message) %}\n {% set is_system_message_set = ns.is_last_checked_defined %}\n {% if is_system_message_set %}\n {{- system_message -}}\n {% endif %}\n {% set _ = is_param_set(tools, check_length=True) %}\n {% set is_tools_set = ns.is_last_checked_defined %}\n {% if is_tools_set %}\n {% if system_message %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- handle_tool_definitions(tools) -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_tool_calls(tool_calls) %}\n {{- tool_calls_prefix + \"[\\n\" -}}\n {% for tool_call in tool_calls %}\n {% set _ = is_param_set(tool_call, field=\"function\") %}\n {% set is_tool_call_function_set = ns.is_last_checked_defined %}\n {% if is_tool_call_function_set %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {% set arguments = tool_call.arguments %}\n {% if arguments is not string %}\n {%- set arguments = arguments|tojson -%}\n {%- endif %}\n {{ \"{\\\"name\\\": \\\"\" + tool_call.name + \"\\\", \\\"arguments\\\": \" + arguments + \"}\" -}}\n {% if not loop.last %}\n {{- \",\" }}\n {% endif %}\n {% endfor %}\n {{- \"\\n]\" + tool_calls_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_documents(documents) %}\n {{- documents_prefix -}}\n {{- \"\\n# Documents\" -}}\n {{- \"\\n\\nYou can use the following documents for reference:\" -}}\n {% for doc in documents %}\n {{- \"\\n\\n## Document ID: \" + loop.index0|string -}}\n {% set _ = is_param_set(doc, field=\"title\") %}\n {% set is_doc_title_set = ns.is_last_checked_defined %}\n {% if is_doc_title_set %}\n {{- \"\\nTitle: \" + doc.title -}}\n {% endif %}\n {% for key, value in doc.items() %}\n {% if key not in [\"title\", \"text\"] %}\n {{- \"\\n\" + key|title + \": \" + value|string -}}\n {% endif %}\n {% endfor %}\n {{- \"\\nText: \" + doc.text -}}\n {% endfor %}\n {{- \"\\n\" + documents_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_knobs(knobs) %}\n {{- active_modes_prefix -}}\n {{- \"\\n# Active Modes\" -}}\n {{ \"\\n\\nThe following modes configure the format or style of your responses. You should adhere to all currently\" -}}\n {{ \" active modes simultaneously.\" -}}\n {% if knobs.citation_mode == \"fast\" %}\n {{- \"\\n\\n## Citation Mode\" -}}\n {{- \"\\n\\nProvide a list of references only for the documents you base your response on. Format your response\" -}}\n {{ \" with the original answer followed by a citation section. Use this template:\" -}}\n {{ \" `{answer}\" + citations_prefix + \"DOCUMENT_IDS\" + citations_suffix + \"`, where DOCUMENT_IDS are the relevant document numbers\" -}}\n {{ \" (e.g. [2, 5, 9]), or [] if the answer cannot be supported by the provided documents.\" -}}\n {% endif %}\n {% if knobs.response_format == \"json_object\" %}\n {{- \"\\n\\n## JSON Mode\" -}}\n {{ \"\\n\\nProvide your response in JSON format. Adhere strictly to any schema given by the user.\" -}}\n {{ \" If an appropriate JSON format exists, use it without modification.\" -}}\n {% endif %}\n {{- \"\\n\" + active_modes_suffix -}}\n{% endmacro %}\n{##}\n{% macro get_last_user_index(messages) %}\n {% set ns.last_user_index = 0 %}\n {% for message in messages %}\n {% if message.role == 'user' %}\n {% set ns.last_user_index = loop.index0 %}\n {% endif %}\n {% endfor %}\n {{- ns.last_user_index -}}\n{% endmacro %}\n{##}\n{% macro handle_last_system_message(documents, knobs, use_documents, use_knobs) %}\n {{- bom_str + handle_role(\"system\") -}}\n {% set macros_to_call = [] %}\n {% set params_for_macros = [] %}\n {% if use_documents %}\n {% set macros_to_call = macros_to_call + [handle_documents] %}\n {% set params_for_macros = params_for_macros + [[documents]] %}\n {% endif %}\n {% if use_knobs %}\n {% set macros_to_call = macros_to_call + [handle_knobs] %}\n {% set params_for_macros = params_for_macros + [[knobs]] %}\n {% endif %}\n {% for i in range(macros_to_call|length) %}\n {% if i > 0 %}\n {{- \"\\n\\n\" -}}\n {% endif %}\n {{- macros_to_call[i](*params_for_macros[i]) -}}\n {% endfor %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_role(role, add_space=True) %}\n {{- \"<|\" + role + \"|>\" -}}\n {% if add_space %}\n {{- \" \" -}}\n {% endif %}\n{% endmacro %}\n{##}\n{% macro is_param_set(param, field=none, check_length=False) %}\n {% if field is not none %}\n {% if field in param %}\n {% set param = param[field] %}\n {% else %}\n {% set param = none %}\n {% endif %}\n {% endif %}\n {% set is_defined = param is defined and param is not none %}\n {% if check_length %}\n {% set ns.is_last_checked_defined = is_defined and param|length > 0 %}\n {% else %}\n {% set ns.is_last_checked_defined = is_defined %}\n {% endif %}\n{% endmacro %}\n{##}\n{##}\n{# Template #}\n{% if bos_token is defined and bos_token is not none %}\n {{- bos_token -}}\n{% endif %}\n{% set _ = is_param_set(system_message) %}\n{% set is_system_message_set = ns.is_last_checked_defined %}\n{% set _ = is_param_set(tools, check_length=True) %}\n{% set is_tools_set = ns.is_last_checked_defined %}\n{% set has_system_message = (is_system_message_set or is_tools_set) %}\n{% if has_system_message %}\n {{- handle_first_system_message(system_message, tools) -}}\n{% endif %}\n{% set last_user_index = get_last_user_index(loop_messages)|int %}\n{% for message in loop_messages %}\n {% if loop.index0 == last_user_index %}\n {% set _ = is_param_set(documents, check_length=True) %}\n {% set use_documents = ns.is_last_checked_defined %}\n {% set _ = is_param_set(knobs) %}\n {% set use_knobs = ns.is_last_checked_defined and knobs.is_set %}\n {% set add_last_system_message = use_documents or use_knobs %}\n {% if add_last_system_message %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- handle_last_system_message(documents, knobs, use_documents, use_knobs) -}}\n {% endif %}\n {% endif %}\n {% set role = message.role %}\n {% set _ = is_param_set(message, field=\"name\") %}\n {% set is_message_name_set = ns.is_last_checked_defined %}\n {% if is_message_name_set %}\n {% set message_prefix = handle_role(role) + \"(\" + message.name + \")\" %}\n {% else %}\n {% set message_prefix = handle_role(role) %}\n {% endif %}\n {% set content = (message.content or \"\") %}\n {% if content is not string %}\n {% set content = content|tojson %}\n {% endif %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + message_prefix + content -}}\n {% set _ = is_param_set(message, field=\"tool_calls\", check_length=True) %}\n {% set is_tool_calls_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_tool_calls_set %}\n {{- handle_tool_calls(message.tool_calls) -}}\n {% endif %}\n {% set _ = is_param_set(message, field=\"citations\", check_length=False) %}\n {% set is_citations_set = ns.is_last_checked_defined %}\n {% if role == \"assistant\" and is_citations_set and knobs.is_set and knobs.citation_mode != \"off\" %}\n {{- citations_prefix + message.citations|map(attribute=\"document_id\")|list|string + citations_suffix -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endfor %}\n{% if add_generation_prompt %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + handle_role(role_to_predict, add_space=False) -}}\n {% set _ = is_param_set(generation_preamble) %}\n {% set is_generation_preamble_set = ns.is_last_checked_defined %}\n {% if is_generation_preamble_set and generation_preamble.strip() != \"\" %}\n {{- \" \" + generation_preamble -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% else %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n{% endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|pad|>", "unk_token": "<|unk|>", "use_default_system_prompt": false}} | 1,631 | 1,631 | {
"parameters": {
"BF16": 51570323328,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 51570323328
} | [
"transformers",
"safetensors",
"jamba",
"text-generation",
"conversational",
"arxiv:2305.14314",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00021.safetensors"
},
{
"rfilename": "model-00002-of-00021.safetensors"
},
{
"rfilename": "model-00003-of-00021.safetensors"
},
{
"rfilename": "model-00004-of-00021.safetensors"
},
{
"rfilename": "model-00005-of-00021.safetensors"
},
{
"rfilename": "model-00006-of-00021.safetensors"
},
{
"rfilename": "model-00007-of-00021.safetensors"
},
{
"rfilename": "model-00008-of-00021.safetensors"
},
{
"rfilename": "model-00009-of-00021.safetensors"
},
{
"rfilename": "model-00010-of-00021.safetensors"
},
{
"rfilename": "model-00011-of-00021.safetensors"
},
{
"rfilename": "model-00012-of-00021.safetensors"
},
{
"rfilename": "model-00013-of-00021.safetensors"
},
{
"rfilename": "model-00014-of-00021.safetensors"
},
{
"rfilename": "model-00015-of-00021.safetensors"
},
{
"rfilename": "model-00016-of-00021.safetensors"
},
{
"rfilename": "model-00017-of-00021.safetensors"
},
{
"rfilename": "model-00018-of-00021.safetensors"
},
{
"rfilename": "model-00019-of-00021.safetensors"
},
{
"rfilename": "model-00020-of-00021.safetensors"
},
{
"rfilename": "model-00021-of-00021.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-27T16:01:34 | null |
654a84cadff2f49007ce6c37 | openai/whisper-large-v3 | openai | {"language": ["en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su"], "tags": ["audio", "automatic-speech-recognition", "hf-asr-leaderboard"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "pipeline_tag": "automatic-speech-recognition", "license": "apache-2.0"} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/whisper",
"status": "live",
"task": "automatic-speech-recognition"
},
{
"provider": "hf-inference",
"providerId": "openai/whisper-large-v3",
"status": "live",
"task": "automatic-speech-recognition"
}
] | 2024-08-12T10:20:10 | 4,151 | 37 | {"architectures": ["WhisperForConditionalGeneration"], "model_type": "whisper", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}} | 4,110,742 | 50,670,917 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 1543490560,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 1543490560
} | [
"transformers",
"pytorch",
"jax",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"hf-asr-leaderboard",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | {
"auto_model": "AutoModelForSpeechSeq2Seq",
"custom_class": null,
"pipeline_tag": "automatic-speech-recognition",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "flax_model.msgpack"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model.fp32-00001-of-00002.safetensors"
},
{
"rfilename": "model.fp32-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "model.safetensors.index.fp32.json"
},
{
"rfilename": "normalizer.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "pytorch_model.bin.index.fp32.json"
},
{
"rfilename": "pytorch_model.fp32-00001-of-00002.bin"
},
{
"rfilename": "pytorch_model.fp32-00002-of-00002.bin"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2023-11-07T18:41:14 | null |
67b87cc75a5d119f5c6febb6 | EuroBERT/EuroBERT-2.1B | EuroBERT | {"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]} | null | 2025-03-11T13:17:50 | 37 | 37 | {"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}} | 317 | 317 | null | [
"transformers",
"pytorch",
"eurobert",
"fill-mask",
"code",
"custom_code",
"en",
"fr",
"de",
"es",
"zh",
"it",
"ru",
"pl",
"pt",
"ja",
"vi",
"nl",
"ar",
"tr",
"hi",
"arxiv:2503.05500",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | fill-mask | {
"auto_model": "AutoModelForMaskedLM",
"custom_class": "modeling_eurobert.EuroBertForMaskedLM",
"pipeline_tag": "fill-mask",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_eurobert.py"
},
{
"rfilename": "img/banner.png"
},
{
"rfilename": "img/code_math.png"
},
{
"rfilename": "img/long_context.png"
},
{
"rfilename": "img/multilingual.png"
},
{
"rfilename": "modeling_eurobert.py"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-21T13:16:55 | null |
6745f28f9333dfcc06268b1e | meta-llama/Llama-3.3-70B-Instruct | meta-llama | {"library_name": "transformers", "language": ["en", "fr", "it", "pt", "hi", "es", "th", "de"], "base_model": ["meta-llama/Llama-3.1-70B"], "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "extra_gated_prompt": "### LLAMA 3.3 COMMUNITY LICENSE AGREEMENT\nLlama 3.3 Version Release Date: December 6, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.3 distributed by Meta at [https://www.llama.com/docs/overview](https://llama.com/docs/overview).\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at [https://www.llama.com/llama-downloads](https://www.llama.com/llama-downloads).\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\u00a0\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.3 is licensed under the Llama 3.3 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy)), which is hereby incorporated by reference into this Agreement. \n2. Additional Commercial Terms. If, on the Llama 3.3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at [https://about.meta.com/brand/resources/meta/company-brand/](https://about.meta.com/brand/resources/meta/company-brand/)[)](https://en.facebookbrand.com/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.3. If you access or use Llama 3.3, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3\\_3/use-policy](https://www.llama.com/llama3_3/use-policy).\nProhibited Uses\nWe want everyone to use Llama 3.3 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.3 to:\n1. Violate the law or others\u2019 rights, including to:\n\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as: \n 1. Violence or terrorism \n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material \n 3. Human trafficking, exploitation, and sexual violence \n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials. \n 5. Sexual solicitation \n 6. Any other criminal activity\n\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n\n 5. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n\n 8. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\n\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.3 related to the following:\n\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n\n 2. Guns and illegal weapons (including weapon development)\n\n 3. Illegal drugs and regulated/controlled substances\n\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n\n3. Intentionally deceive or mislead others, including use of Llama 3.3 related to the following:\n\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n\n 3. Generating, promoting, or further distributing spam\n\n 4. Impersonating another individual without consent, authorization, or legal right\n\n 5. Representing that the use of Llama 3.3 or outputs are human-generated\n\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n\n4. Fail to appropriately disclose to end users any known dangers of your AI system\n5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.3\nWith respect to any multimodal models included in Llama 3.3, the rights granted under Section 1(a) of the Llama 3.3 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ) * Reporting risky content generated by the model: [developers.facebook.com/llama\\_output\\_feedback](http://developers.facebook.com/llama_output_feedback) * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info) * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.3: [email protected] ", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "license": "llama3.3"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/llama-v3p3-70b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "Meta-Llama-3.3-70B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "together",
"providerId": "meta-llama/Llama-3.3-70B-Instruct-Turbo",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "meta-llama/Llama-3.3-70B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "meta-llama/Llama-3.3-70B-Instruct-fast",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "meta-llama/llama-3.3-70b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "meta-llama/Llama-3.3-70B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "cerebras",
"providerId": "llama-3.3-70b",
"status": "live",
"task": "conversational"
}
] | 2024-12-21T18:28:01 | 2,128 | 36 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>", "pad_token": "<|finetune_right_pad_id|>"}} | 820,652 | 1,948,947 | {
"parameters": {
"BF16": 70553706496,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 70553706496
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"de",
"arxiv:2204.05149",
"base_model:meta-llama/Llama-3.1-70B",
"base_model:finetune:meta-llama/Llama-3.1-70B",
"license:llama3.3",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "USE_POLICY.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00030.safetensors"
},
{
"rfilename": "model-00002-of-00030.safetensors"
},
{
"rfilename": "model-00003-of-00030.safetensors"
},
{
"rfilename": "model-00004-of-00030.safetensors"
},
{
"rfilename": "model-00005-of-00030.safetensors"
},
{
"rfilename": "model-00006-of-00030.safetensors"
},
{
"rfilename": "model-00007-of-00030.safetensors"
},
{
"rfilename": "model-00008-of-00030.safetensors"
},
{
"rfilename": "model-00009-of-00030.safetensors"
},
{
"rfilename": "model-00010-of-00030.safetensors"
},
{
"rfilename": "model-00011-of-00030.safetensors"
},
{
"rfilename": "model-00012-of-00030.safetensors"
},
{
"rfilename": "model-00013-of-00030.safetensors"
},
{
"rfilename": "model-00014-of-00030.safetensors"
},
{
"rfilename": "model-00015-of-00030.safetensors"
},
{
"rfilename": "model-00016-of-00030.safetensors"
},
{
"rfilename": "model-00017-of-00030.safetensors"
},
{
"rfilename": "model-00018-of-00030.safetensors"
},
{
"rfilename": "model-00019-of-00030.safetensors"
},
{
"rfilename": "model-00020-of-00030.safetensors"
},
{
"rfilename": "model-00021-of-00030.safetensors"
},
{
"rfilename": "model-00022-of-00030.safetensors"
},
{
"rfilename": "model-00023-of-00030.safetensors"
},
{
"rfilename": "model-00024-of-00030.safetensors"
},
{
"rfilename": "model-00025-of-00030.safetensors"
},
{
"rfilename": "model-00026-of-00030.safetensors"
},
{
"rfilename": "model-00027-of-00030.safetensors"
},
{
"rfilename": "model-00028-of-00030.safetensors"
},
{
"rfilename": "model-00029-of-00030.safetensors"
},
{
"rfilename": "model-00030-of-00030.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "original/.gitattributes"
},
{
"rfilename": "original/README.md"
},
{
"rfilename": "original/checklist.chk"
},
{
"rfilename": "original/consolidated.00.pth"
},
{
"rfilename": "original/consolidated.01.pth"
},
{
"rfilename": "original/consolidated.02.pth"
},
{
"rfilename": "original/consolidated.03.pth"
},
{
"rfilename": "original/consolidated.04.pth"
},
{
"rfilename": "original/consolidated.05.pth"
},
{
"rfilename": "original/consolidated.06.pth"
},
{
"rfilename": "original/consolidated.07.pth"
},
{
"rfilename": "original/params.json"
},
{
"rfilename": "original/tokenizer.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-11-26T16:08:47 | null |
66fba7309482f97131bf08d6 | openai/whisper-large-v3-turbo | openai | {"language": ["en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su"], "license": "mit", "tags": ["audio", "automatic-speech-recognition"], "widget": [{"example_title": "Librispeech sample 1", "src": "https://cdn-media.huggingface.co/speech_samples/sample1.flac"}, {"example_title": "Librispeech sample 2", "src": "https://cdn-media.huggingface.co/speech_samples/sample2.flac"}], "pipeline_tag": "automatic-speech-recognition", "base_model": ["openai/whisper-large-v3"], "library_name": "transformers"} | [
{
"provider": "hf-inference",
"providerId": "openai/whisper-large-v3-turbo",
"status": "live",
"task": "automatic-speech-recognition"
}
] | 2024-10-04T14:51:11 | 2,102 | 34 | {"architectures": ["WhisperForConditionalGeneration"], "model_type": "whisper", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}} | 7,896,503 | 20,872,661 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 808878080,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 808878080
} | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"en",
"zh",
"de",
"es",
"ru",
"ko",
"fr",
"ja",
"pt",
"tr",
"pl",
"ca",
"nl",
"ar",
"sv",
"it",
"id",
"hi",
"fi",
"vi",
"he",
"uk",
"el",
"ms",
"cs",
"ro",
"da",
"hu",
"ta",
"no",
"th",
"ur",
"hr",
"bg",
"lt",
"la",
"mi",
"ml",
"cy",
"sk",
"te",
"fa",
"lv",
"bn",
"sr",
"az",
"sl",
"kn",
"et",
"mk",
"br",
"eu",
"is",
"hy",
"ne",
"mn",
"bs",
"kk",
"sq",
"sw",
"gl",
"mr",
"pa",
"si",
"km",
"sn",
"yo",
"so",
"af",
"oc",
"ka",
"be",
"tg",
"sd",
"gu",
"am",
"yi",
"lo",
"uz",
"fo",
"ht",
"ps",
"tk",
"nn",
"mt",
"sa",
"lb",
"my",
"bo",
"tl",
"mg",
"as",
"tt",
"haw",
"ln",
"ha",
"ba",
"jw",
"su",
"arxiv:2212.04356",
"base_model:openai/whisper-large-v3",
"base_model:finetune:openai/whisper-large-v3",
"license:mit",
"endpoints_compatible",
"region:us"
] | automatic-speech-recognition | {
"auto_model": "AutoModelForSpeechSeq2Seq",
"custom_class": null,
"pipeline_tag": "automatic-speech-recognition",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "normalizer.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2024-10-01T07:39:28 | null |
67597bd1b9cdca50cb621f94 | microsoft/phi-4 | microsoft | {"license": "mit", "license_link": "https://huggingface.co/microsoft/phi-4/resolve/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "tags": ["phi", "nlp", "math", "code", "chat", "conversational"], "inference": {"parameters": {"temperature": 0}}, "widget": [{"messages": [{"role": "user", "content": "How should I explain the Internet?"}]}], "library_name": "transformers"} | [
{
"provider": "nebius",
"providerId": "microsoft/phi-4",
"status": "live",
"task": "conversational"
}
] | 2025-02-24T11:53:58 | 1,893 | 34 | {"architectures": ["Phi3ForCausalLM"], "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|im_start|>system<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'user') %}{{'<|im_start|>user<|im_sep|>' + message['content'] + '<|im_end|>'}}{% elif (message['role'] == 'assistant') %}{{'<|im_start|>assistant<|im_sep|>' + message['content'] + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant<|im_sep|>' }}{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|dummy_85|>"}} | 509,500 | 1,112,931 | {
"parameters": {
"BF16": 14659507200,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 14659507200
} | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"phi",
"nlp",
"math",
"code",
"chat",
"conversational",
"en",
"arxiv:2412.08905",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "CODE_OF_CONDUCT.md"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "SECURITY.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00006.safetensors"
},
{
"rfilename": "model-00002-of-00006.safetensors"
},
{
"rfilename": "model-00003-of-00006.safetensors"
},
{
"rfilename": "model-00004-of-00006.safetensors"
},
{
"rfilename": "model-00005-of-00006.safetensors"
},
{
"rfilename": "model-00006-of-00006.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2024-12-11T11:47:29 | null |
67c901b9dd505e6a4da1477f | OpenPipe/Deductive-Reasoning-Qwen-32B | OpenPipe | {"license": "mit", "license_link": "https://huggingface.co/OpenPipe/Deductive-Reasoning-Qwen-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": ["Qwen/Qwen2.5-32B-Instruct"], "tags": ["chat"], "library_name": "transformers"} | null | 2025-03-06T18:31:21 | 34 | 34 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 623 | 623 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"chat",
"conversational",
"en",
"base_model:Qwen/Qwen2.5-32B-Instruct",
"base_model:finetune:Qwen/Qwen2.5-32B-Instruct",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.344558.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.348876.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.357567.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.399229.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.400965.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.484201.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.503403.log"
},
{
"rfilename": "chat-completion-logs/2025-03-04T06:55:30.546760.log"
},
{
"rfilename": "config.json"
},
{
"rfilename": "ft-model-00001-of-00017.safetensors"
},
{
"rfilename": "ft-model-00002-of-00017.safetensors"
},
{
"rfilename": "ft-model-00003-of-00017.safetensors"
},
{
"rfilename": "ft-model-00004-of-00017.safetensors"
},
{
"rfilename": "ft-model-00005-of-00017.safetensors"
},
{
"rfilename": "ft-model-00006-of-00017.safetensors"
},
{
"rfilename": "ft-model-00007-of-00017.safetensors"
},
{
"rfilename": "ft-model-00008-of-00017.safetensors"
},
{
"rfilename": "ft-model-00009-of-00017.safetensors"
},
{
"rfilename": "ft-model-00010-of-00017.safetensors"
},
{
"rfilename": "ft-model-00011-of-00017.safetensors"
},
{
"rfilename": "ft-model-00012-of-00017.safetensors"
},
{
"rfilename": "ft-model-00013-of-00017.safetensors"
},
{
"rfilename": "ft-model-00014-of-00017.safetensors"
},
{
"rfilename": "ft-model-00015-of-00017.safetensors"
},
{
"rfilename": "ft-model-00016-of-00017.safetensors"
},
{
"rfilename": "ft-model-00017-of-00017.safetensors"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-06T02:00:25 | null |
621ffdc136468d709f180294 | sentence-transformers/all-MiniLM-L6-v2 | sentence-transformers | {"language": "en", "license": "apache-2.0", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "datasets": ["s2orc", "flax-sentence-embeddings/stackexchange_xml", "ms_marco", "gooaq", "yahoo_answers_topics", "code_search_net", "search_qa", "eli5", "snli", "multi_nli", "wikihow", "natural_questions", "trivia_qa", "embedding-data/sentence-compression", "embedding-data/flickr30k-captions", "embedding-data/altlex", "embedding-data/simple-wiki", "embedding-data/QQP", "embedding-data/SPECTER", "embedding-data/PAQ_pairs", "embedding-data/WikiAnswers"], "pipeline_tag": "sentence-similarity"} | [
{
"provider": "hf-inference",
"providerId": "sentence-transformers/all-MiniLM-L6-v2",
"status": "live",
"task": "sentence-similarity"
}
] | 2025-03-06T13:37:44 | 3,110 | 33 | {"architectures": ["BertModel"], "model_type": "bert", "tokenizer_config": {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}} | 100,200,868 | 802,765,787 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 22713216,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": 512,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 22713728
} | [
"sentence-transformers",
"pytorch",
"tf",
"rust",
"onnx",
"safetensors",
"openvino",
"bert",
"feature-extraction",
"sentence-similarity",
"transformers",
"en",
"dataset:s2orc",
"dataset:flax-sentence-embeddings/stackexchange_xml",
"dataset:ms_marco",
"dataset:gooaq",
"dataset:yahoo_answers_topics",
"dataset:code_search_net",
"dataset:search_qa",
"dataset:eli5",
"dataset:snli",
"dataset:multi_nli",
"dataset:wikihow",
"dataset:natural_questions",
"dataset:trivia_qa",
"dataset:embedding-data/sentence-compression",
"dataset:embedding-data/flickr30k-captions",
"dataset:embedding-data/altlex",
"dataset:embedding-data/simple-wiki",
"dataset:embedding-data/QQP",
"dataset:embedding-data/SPECTER",
"dataset:embedding-data/PAQ_pairs",
"dataset:embedding-data/WikiAnswers",
"arxiv:1904.06472",
"arxiv:2102.07033",
"arxiv:2104.08727",
"arxiv:1704.05179",
"arxiv:1810.09305",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | {
"auto_model": "AutoModel",
"custom_class": null,
"pipeline_tag": "feature-extraction",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "1_Pooling/config.json"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "config_sentence_transformers.json"
},
{
"rfilename": "data_config.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "modules.json"
},
{
"rfilename": "onnx/model.onnx"
},
{
"rfilename": "onnx/model_O1.onnx"
},
{
"rfilename": "onnx/model_O2.onnx"
},
{
"rfilename": "onnx/model_O3.onnx"
},
{
"rfilename": "onnx/model_O4.onnx"
},
{
"rfilename": "onnx/model_qint8_arm64.onnx"
},
{
"rfilename": "onnx/model_qint8_avx512.onnx"
},
{
"rfilename": "onnx/model_qint8_avx512_vnni.onnx"
},
{
"rfilename": "onnx/model_quint8_avx2.onnx"
},
{
"rfilename": "openvino/openvino_model.bin"
},
{
"rfilename": "openvino/openvino_model.xml"
},
{
"rfilename": "openvino/openvino_model_qint8_quantized.bin"
},
{
"rfilename": "openvino/openvino_model_qint8_quantized.xml"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "rust_model.ot"
},
{
"rfilename": "sentence_bert_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tf_model.h5"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "train_script.py"
},
{
"rfilename": "vocab.txt"
}
] | 2022-03-02T23:29:05 | null |
67ba91ad7446c0c46041de5e | microsoft/Magma-8B | microsoft | {"library_name": "transformers", "pipeline_tag": "image-text-to-text", "license": "mit"} | null | 2025-03-05T17:42:13 | 330 | 33 | {"architectures": ["MagmaForCausalLM"], "auto_map": {"AutoConfig": "microsoft/Magma-8B--configuration_magma.MagmaConfig", "AutoModelForCausalLM": "microsoft/Magma-8B--modeling_magma.MagmaForCausalLM"}, "model_type": "magma", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", "eos_token": "<|eot_id|>", "pad_token": "<pad>"}} | 11,874 | 11,874 | {
"parameters": {
"BF16": 8906218368,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8906218368
} | [
"transformers",
"safetensors",
"magma",
"text-generation",
"image-text-to-text",
"conversational",
"custom_code",
"arxiv:2502.13130",
"arxiv:2310.11441",
"license:mit",
"autotrain_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "microsoft/Magma-8B--modeling_magma.MagmaForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_magma.py"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "image_processing_magma.py"
},
{
"rfilename": "image_tower_magma.py"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_magma.py"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processing_magma.py"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-23T03:10:37 | null |
67c8a37781c4f89e2d7132a6 | amd/Instella-3B-Instruct | amd | {"license": "other", "license_link": "LICENSE", "pipeline_tag": "text-generation", "library_name": "transformers"} | null | 2025-03-07T00:00:18 | 33 | 33 | {"architectures": ["InstellaForCausalLM"], "auto_map": {"AutoConfig": "modeling_instella.InstellaConfig", "AutoModelForCausalLM": "modeling_instella.InstellaForCausalLM"}, "model_type": "instella", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{{ bos_token }}{% for message in messages %}{% if message['role'] == 'system' %}{{ '<|system|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '\n' }}{% elif message['role'] == 'assistant' %}{% if not loop.last %}{{ '<|assistant|>\n' + message['content'] + eos_token + '\n' }}{% else %}{{ '<|assistant|>\n' + message['content'] + eos_token }}{% endif %}{% endif %}{% if loop.last and add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}{% endfor %}", "eos_token": "<|endoftext|>", "pad_token": "<padding>", "unk_token": "<|endoftext|>"}} | 1,021 | 1,021 | {
"parameters": {
"BF16": 3112675840,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 3112675840
} | [
"transformers",
"safetensors",
"instella",
"text-generation",
"conversational",
"custom_code",
"license:other",
"autotrain_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_instella.InstellaForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "NOTICES"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_instella.py"
},
{
"rfilename": "scaling_perf_instruct.png"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-05T19:18:15 | null |
65b53851e602b6c2c96e78da | BAAI/bge-m3 | BAAI | {"pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "license": "mit"} | [
{
"provider": "hf-inference",
"providerId": "BAAI/bge-m3",
"status": "live",
"task": "sentence-similarity"
}
] | 2024-07-03T14:50:10 | 1,839 | 32 | {"architectures": ["XLMRobertaModel"], "model_type": "xlm-roberta", "tokenizer_config": {"bos_token": "<s>", "cls_token": "<s>", "eos_token": "</s>", "mask_token": {"__type": "AddedToken", "content": "<mask>", "lstrip": true, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": "<pad>", "sep_token": "</s>", "unk_token": "<unk>"}} | 2,870,886 | 22,916,257 | null | [
"sentence-transformers",
"pytorch",
"onnx",
"xlm-roberta",
"feature-extraction",
"sentence-similarity",
"arxiv:2402.03216",
"arxiv:2004.04906",
"arxiv:2106.14807",
"arxiv:2107.05720",
"arxiv:2004.12832",
"license:mit",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "1_Pooling/config.json"
},
{
"rfilename": "README.md"
},
{
"rfilename": "colbert_linear.pt"
},
{
"rfilename": "config.json"
},
{
"rfilename": "config_sentence_transformers.json"
},
{
"rfilename": "imgs/.DS_Store"
},
{
"rfilename": "imgs/bm25.jpg"
},
{
"rfilename": "imgs/long.jpg"
},
{
"rfilename": "imgs/miracl.jpg"
},
{
"rfilename": "imgs/mkqa.jpg"
},
{
"rfilename": "imgs/nqa.jpg"
},
{
"rfilename": "imgs/others.webp"
},
{
"rfilename": "long.jpg"
},
{
"rfilename": "modules.json"
},
{
"rfilename": "onnx/Constant_7_attr__value"
},
{
"rfilename": "onnx/config.json"
},
{
"rfilename": "onnx/model.onnx"
},
{
"rfilename": "onnx/model.onnx_data"
},
{
"rfilename": "onnx/sentencepiece.bpe.model"
},
{
"rfilename": "onnx/special_tokens_map.json"
},
{
"rfilename": "onnx/tokenizer.json"
},
{
"rfilename": "onnx/tokenizer_config.json"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "sentence_bert_config.json"
},
{
"rfilename": "sentencepiece.bpe.model"
},
{
"rfilename": "sparse_linear.pt"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-01-27T17:07:29 | null |
67c35b8b87a7f49a82593992 | google/gemma-3-27b-pt | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"} | null | 2025-03-12T08:30:44 | 32 | 32 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 80 | 80 | {
"parameters": {
"BF16": 27432406640,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 27432406640
} | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00012.safetensors"
},
{
"rfilename": "model-00002-of-00012.safetensors"
},
{
"rfilename": "model-00003-of-00012.safetensors"
},
{
"rfilename": "model-00004-of-00012.safetensors"
},
{
"rfilename": "model-00005-of-00012.safetensors"
},
{
"rfilename": "model-00006-of-00012.safetensors"
},
{
"rfilename": "model-00007-of-00012.safetensors"
},
{
"rfilename": "model-00008-of-00012.safetensors"
},
{
"rfilename": "model-00009-of-00012.safetensors"
},
{
"rfilename": "model-00010-of-00012.safetensors"
},
{
"rfilename": "model-00011-of-00012.safetensors"
},
{
"rfilename": "model-00012-of-00012.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-01T19:10:03 | null |
664dc170474f2283fa5c8659 | mistralai/Mistral-7B-Instruct-v0.3 | mistralai | {"license": "apache-2.0", "base_model": "mistralai/Mistral-7B-v0.3", "extra_gated_description": "If you want to learn more about how we process your personal data, please read our <a href=\"https://mistral.ai/terms/\">Privacy Policy</a>."} | [
{
"provider": "together",
"providerId": "mistralai/Mistral-7B-Instruct-v0.3",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "mistralai/Mistral-7B-Instruct-v0.3",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "mistralai/mistral-7b-instruct",
"status": "live",
"task": "conversational"
}
] | 2024-08-21T12:18:25 | 1,475 | 31 | {"architectures": ["MistralForCausalLM"], "model_type": "mistral", "tokenizer_config": {"bos_token": "<s>", "chat_template": "{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS] [\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- \"[TOOL_CALLS] [\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- \" \" + message[\"content\"]|trim + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n", "eos_token": "</s>", "pad_token": null, "unk_token": "<unk>", "use_default_system_prompt": false}} | 866,657 | 10,257,769 | {
"parameters": {
"BF16": 7248023552,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 7248023552
} | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"base_model:mistralai/Mistral-7B-v0.3",
"base_model:finetune:mistralai/Mistral-7B-v0.3",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "consolidated.safetensors"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00003.safetensors"
},
{
"rfilename": "model-00002-of-00003.safetensors"
},
{
"rfilename": "model-00003-of-00003.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "params.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer.model.v3"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-05-22T09:57:04 | null |
674bfb827d6748def2e80ef9 | tencent/HunyuanVideo | tencent | {"pipeline_tag": "text-to-video", "license": "other", "license_name": "tencent-hunyuan-community", "license_link": "LICENSE"} | [
{
"provider": "fal-ai",
"providerId": "fal-ai/hunyuan-video",
"status": "live",
"task": "text-to-video"
}
] | 2025-03-06T15:39:29 | 1,750 | 31 | null | 5,682 | 24,886 | null | [
"text-to-video",
"arxiv:2412.03603",
"arxiv:2405.07719",
"license:other",
"region:us"
] | text-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "Notice"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states.pt"
},
{
"rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8.pt"
},
{
"rfilename": "hunyuan-video-t2v-720p/transformers/mp_rank_00_model_states_fp8_map.pt"
},
{
"rfilename": "hunyuan-video-t2v-720p/vae/config.json"
},
{
"rfilename": "hunyuan-video-t2v-720p/vae/pytorch_model.pt"
}
] | 2024-12-01T06:00:34 | null |
67b442dad2004688ce99d314 | dnotitia/DNA-R1 | dnotitia | {"language": ["en", "ko"], "license": "cc-by-nc-4.0", "tags": ["dnotitia", "nlp", "llm", "slm", "conversation", "chat", "reasoning", "r1"], "base_model": ["microsoft/phi-4"], "library_name": "transformers", "pipeline_tag": "text-generation"} | null | 2025-03-11T07:47:55 | 31 | 31 | {"architectures": ["Phi3ForCausalLM"], "auto_map": {}, "model_type": "phi3", "tokenizer_config": {"bos_token": "<|endoftext|>", "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{'<|im_start|>system<|im_sep|>' + system_message + '<|im_end|>'}}{% endif %}{% for message in loop_messages %}{% if message['role'] == 'user' %}{{'<|im_start|>user<|im_sep|>\\n' + message['content'] + '\\n<|im_end|>'}}{% endif %}{% if message['role'] == 'assistant' and message['content'] is not none %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|im_start|>assistant<|im_sep|>' + content + '<|im_end|>'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<|im_start|>assistant<|im_sep|><think>'}}{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|dummy_85|>", "unk_token": "<|endoftext|>"}} | 771 | 771 | {
"parameters": {
"BF16": 14659548160,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 14659548160
} | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"dnotitia",
"nlp",
"llm",
"slm",
"conversation",
"chat",
"reasoning",
"r1",
"conversational",
"custom_code",
"en",
"ko",
"base_model:microsoft/phi-4",
"base_model:finetune:microsoft/phi-4",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "assets/dna-r1-logo.png"
},
{
"rfilename": "assets/dna-r1-pipeline.png"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00006.safetensors"
},
{
"rfilename": "model-00002-of-00006.safetensors"
},
{
"rfilename": "model-00003-of-00006.safetensors"
},
{
"rfilename": "model-00004-of-00006.safetensors"
},
{
"rfilename": "model-00005-of-00006.safetensors"
},
{
"rfilename": "model-00006-of-00006.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-02-18T08:20:42 | null |
67b79cc230e38c400f496b93 | google/gemma-3-1b-pt | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "text-generation", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"} | null | 2025-03-12T08:29:10 | 31 | 31 | {"architectures": ["Gemma3ForCausalLM"], "model_type": "gemma3_text", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 2,139 | 2,139 | {
"parameters": {
"BF16": 999885952,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 999885952
} | [
"transformers",
"safetensors",
"gemma3_text",
"text-generation",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"license:gemma",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-20T21:21:06 | null |
67c17297ca31d05dcf0f8ca2 | Tower-Babel/Babel-9B-Chat | Tower-Babel | {"license": "other", "license_name": "seallm", "license_link": "https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE", "language": ["en", "zh", "hi", "es", "fr", "ar", "bn", "ru", "pt", "id", "ur", "de", "ja", "sw", "ta", "tr", "ko", "vi", "jv", "it", "ha", "th", "fa", "tl", "my"], "tags": ["multilingual", "babel"]} | null | 2025-03-05T14:47:08 | 35 | 31 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|endoftext|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 976 | 976 | {
"parameters": {
"BF16": 9013963264,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 9013963264
} | [
"safetensors",
"qwen2",
"multilingual",
"babel",
"en",
"zh",
"hi",
"es",
"fr",
"ar",
"bn",
"ru",
"pt",
"id",
"ur",
"de",
"ja",
"sw",
"ta",
"tr",
"ko",
"vi",
"jv",
"it",
"ha",
"th",
"fa",
"tl",
"my",
"arxiv:2503.00865",
"arxiv:2009.03300",
"arxiv:2306.05179",
"arxiv:2210.03057",
"arxiv:1809.05053",
"arxiv:2207.04672",
"license:other",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-02-28T08:23:51 | null |
67ad564d95228d8fa2f1a0b0 | ALLaM-AI/ALLaM-7B-Instruct-preview | ALLaM-AI | {"license": "apache-2.0", "language": ["ar", "en"], "pipeline_tag": "text-generation", "tags": ["pytorch"], "library_name": "transformers"} | null | 2025-03-12T13:20:03 | 92 | 30 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + ' [INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}", "eos_token": {"__type": "AddedToken", "content": "</s>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}, "pad_token": null, "unk_token": {"__type": "AddedToken", "content": "<unk>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false}}} | 8,913 | 8,913 | {
"parameters": {
"BF16": 7000559616,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 7000559616
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"pytorch",
"conversational",
"ar",
"en",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-32B-Chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/AceGPT-v2-8B-Chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Allam-7b-instruct-preview/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Falcon3-7B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Llama-3.3-70B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Meta-Llama-3.1-8B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-7B-Instruct-v0.3/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Nemo-Instruct-2407/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Mistral-Small-Instruct-2409/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-14B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-72B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/Qwen2.5-7B-Instruct/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-13b-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-70b-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-adapted-7b-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-13b-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-16k-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-30b-8k-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/acva_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/ar_ifeval_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/araMath_v3_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/araPro_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/arabicmmlu_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/etec_v2_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/exams_ar_5_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/gat_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/moe_ien_mcq_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/moe_ien_tf_0_shot.json"
},
{
"rfilename": "evaluations/ar/jais-family-6p7b-chat/openaimmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-32B-Chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/AceGPT-v2-8B-Chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Allam-7b-instruct-preview/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Falcon3-7B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Llama-3.3-70B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Meta-Llama-3.1-8B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-7B-Instruct-v0.3/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Nemo-Instruct-2407/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Mistral-Small-Instruct-2409/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-14B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-72B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/Qwen2.5-7B-Instruct/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-13b-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-70b-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-adapted-7b-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-13b-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-16k-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-30b-8k-chat/winogrande_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/agieval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/arc_challenge_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/gpqa_main_n_shot_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/gsm8k_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/hellaswag_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/hendrycks_ethics_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/ifeval_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/minerva_math_4_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/mmlu_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/mmlu_pro_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/triviaqa_5_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/truthfulqa_mc2_0_shot.json"
},
{
"rfilename": "evaluations/en/jais-family-6p7b-chat/winogrande_0_shot.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00003.safetensors"
},
{
"rfilename": "model-00002-of-00003.safetensors"
},
{
"rfilename": "model-00003-of-00003.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-13T02:17:49 | null |
67c72cb026926d1f08fe56b1 | google/shieldgemma-2-4b-it | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license", "base_model": "google/gemma-3-4b-pt"} | null | 2025-03-12T15:34:43 | 30 | 30 | {"architectures": ["ShieldGemma2ForImageClassification"], "model_type": "shieldgemma2", "processor_config": {"chat_template": "{{ bos_token }}\n{%- for message in messages -%}\n {%- if message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {{ '<start_of_turn>user\n' }}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ 'You are a policy expert trying to help determine whether a generated or real image is in' }}\n {{ ' violation of the safety policy below. Your decision must very clearly follow the specific'}}\n {{ ' language used in the safety policy and should not include any interpretation outside of the' }}\n {{ ' safety policy.\n\n' }}\n {{ '<BEGIN_SAFETY_POLICY>\n' }}\n {{ item['text'] + '\n' }}\n {{ '</END_SAFETY_POLICY>\n\n' }}\n {{ 'Does the image violate the above policy? Your Answer must start with \\'Yes\\' or \\'No\\'.' }}\n {{ '<end_of_turn>\n' }}\n {%- endif -%}\n {%- endfor -%}\n {{'<start_of_turn>model\n'}}\n {%- else -%}\n {{ raise_exception(\"Conversation messages must contain iterable content containing images and policy definitions in text.\") }}\n {%- endif -%}\n{%- endfor -%}\n"}, "tokenizer_config": {"bos_token": "<bos>", "chat_template": "{{ bos_token }}\n{%- for message in messages -%}\n {%- if message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {{ '<start_of_turn>user\n' }}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ 'You are a policy expert trying to help determine whether a generated or real image is in' }}\n {{ ' violation of the safety policy below. Your decision must very clearly follow the specific'}}\n {{ ' language used in the safety policy and should not include any interpretation outside of the' }}\n {{ ' safety policy.\n\n' }}\n {{ '<BEGIN_SAFETY_POLICY>\n' }}\n {{ item['text'] + '\n' }}\n {{ '</END_SAFETY_POLICY>\n\n' }}\n {{ 'Does the image violate the above policy? Your Answer must start with \\'Yes\\' or \\'No\\'.' }}\n {{ '<end_of_turn>\n' }}\n {%- endif -%}\n {%- endfor -%}\n {{'<start_of_turn>model\n'}}\n {%- else -%}\n {{ raise_exception(\"Conversation messages must contain iterable content containing images and policy definitions in text.\") }}\n {%- endif -%}\n{%- endfor -%}\n", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 0 | 0 | {
"parameters": {
"BF16": 4300079472,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 4300079472
} | [
"transformers",
"safetensors",
"shieldgemma2",
"image-text-to-text",
"conversational",
"arxiv:2209.06794",
"base_model:google/gemma-3-4b-pt",
"base_model:finetune:google/gemma-3-4b-pt",
"license:gemma",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "ShieldGemma2ForImageClassification",
"custom_class": null,
"pipeline_tag": null,
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-04T16:39:12 | null |
67c74d900d5b8345f9d2bbf3 | TheDrummer/Cydonia-24B-v2.1 | TheDrummer | {"license": "other"} | null | 2025-03-07T17:55:33 | 30 | 30 | {"architectures": ["MistralForCausalLM"], "model_type": "mistral", "tokenizer_config": {"bos_token": "<s>", "chat_template": "{%- set today = strftime_now(\"%Y-%m-%d\") %}\n{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris.\\nYour knowledge base was last updated on 2023-10-01. The current date is \" + today + \".\\n\\nWhen you're not sure about some information, you say that you don't have the information and don't make up anything.\\nIf the user's question is not clear, ambiguous, or does not provide enough context for you to accurately answer the question, you do not try to answer it right away and you rather ask the user to clarify their request (e.g. \\\"What are some good restaurants around me?\\\" => \\\"Where are you?\\\" or \\\"When is the next flight to Tokyo\\\" => \\\"Where do you travel from?\\\")\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content'] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set system_message = default_system_message %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n {%- if message['role'] == 'user' %}\n {{- '[INST]' + message['content'] + '[/INST]' }}\n {%- elif message['role'] == 'system' %}\n {{- '[SYSTEM_PROMPT]' + message['content'] + '[/SYSTEM_PROMPT]' }}\n {%- elif message['role'] == 'assistant' %}\n {{- message['content'] + eos_token }}\n {%- else %}\n {{- raise_exception('Only user, system and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}", "eos_token": "</s>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 346 | 346 | {
"parameters": {
"BF16": 23572403200,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 23572403200
} | [
"safetensors",
"mistral",
"license:other",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "model-00001-of-00010.safetensors"
},
{
"rfilename": "model-00002-of-00010.safetensors"
},
{
"rfilename": "model-00003-of-00010.safetensors"
},
{
"rfilename": "model-00004-of-00010.safetensors"
},
{
"rfilename": "model-00005-of-00010.safetensors"
},
{
"rfilename": "model-00006-of-00010.safetensors"
},
{
"rfilename": "model-00007-of-00010.safetensors"
},
{
"rfilename": "model-00008-of-00010.safetensors"
},
{
"rfilename": "model-00009-of-00010.safetensors"
},
{
"rfilename": "model-00010-of-00010.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-04T18:59:28 | null |
67c8a34aeca481f7b6cade02 | amd/Instella-3B | amd | {"license": "other", "license_link": "LICENSE", "pipeline_tag": "text-generation", "library_name": "transformers"} | null | 2025-03-06T23:58:03 | 30 | 30 | {"architectures": ["InstellaForCausalLM"], "auto_map": {"AutoConfig": "modeling_instella.InstellaConfig", "AutoModelForCausalLM": "modeling_instella.InstellaForCausalLM"}, "model_type": "instella", "tokenizer_config": {"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "pad_token": "<|padding|>", "unk_token": "<|endoftext|>"}} | 326 | 326 | {
"parameters": {
"BF16": 3112675840,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 3112675840
} | [
"transformers",
"safetensors",
"instella",
"text-generation",
"custom_code",
"license:other",
"autotrain_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_instella.InstellaForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "NOTICES"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_instella.py"
},
{
"rfilename": "scaling_perf_instruct.png"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-03-05T19:17:30 | null |
676c000762cee1f3abc3ed5f | deepseek-ai/DeepSeek-V3 | deepseek-ai | {"library_name": "transformers"} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/deepseek-v3",
"status": "live",
"task": "conversational"
},
{
"provider": "fal-ai",
"providerId": "deepseek-v3",
"status": "staging",
"task": "conversational"
},
{
"provider": "replicate",
"providerId": "deepseek-v3",
"status": "staging",
"task": "conversational"
},
{
"provider": "together",
"providerId": "deepseek-ai/DeepSeek-V3",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "deepseek-ai/DeepSeek-V3",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "deepseek/deepseek-v3-turbo",
"status": "live",
"task": "conversational"
}
] | 2025-02-24T03:29:50 | 3,623 | 29 | {"architectures": ["DeepseekV3ForCausalLM"], "auto_map": {"AutoConfig": "configuration_deepseek.DeepseekV3Config", "AutoModel": "modeling_deepseek.DeepseekV3Model", "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"}, "model_type": "deepseek_v3", "quantization_config": {"quant_method": "fp8"}, "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='', is_first_sp=true) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\n' + '```json' + '\n' + tool['function']['arguments'] + '\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{{'<\uff5cAssistant\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c>'}}{% endif %}"}} | 3,127,646 | 4,445,017 | {
"parameters": {
"BF16": 3918786560,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 41555600,
"F64": null,
"F8_E4M3": 680571043840,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 684531386000
} | [
"transformers",
"safetensors",
"deepseek_v3",
"text-generation",
"conversational",
"custom_code",
"arxiv:2412.19437",
"autotrain_compatible",
"fp8",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": "modeling_deepseek.DeepseekV3ForCausalLM",
"pipeline_tag": "text-generation",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE-CODE"
},
{
"rfilename": "LICENSE-MODEL"
},
{
"rfilename": "README.md"
},
{
"rfilename": "README_WEIGHTS.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_deepseek.py"
},
{
"rfilename": "figures/benchmark.png"
},
{
"rfilename": "figures/niah.png"
},
{
"rfilename": "inference/configs/config_16B.json"
},
{
"rfilename": "inference/configs/config_236B.json"
},
{
"rfilename": "inference/configs/config_671B.json"
},
{
"rfilename": "inference/convert.py"
},
{
"rfilename": "inference/fp8_cast_bf16.py"
},
{
"rfilename": "inference/generate.py"
},
{
"rfilename": "inference/kernel.py"
},
{
"rfilename": "inference/model.py"
},
{
"rfilename": "inference/requirements.txt"
},
{
"rfilename": "model-00001-of-000163.safetensors"
},
{
"rfilename": "model-00002-of-000163.safetensors"
},
{
"rfilename": "model-00003-of-000163.safetensors"
},
{
"rfilename": "model-00004-of-000163.safetensors"
},
{
"rfilename": "model-00005-of-000163.safetensors"
},
{
"rfilename": "model-00006-of-000163.safetensors"
},
{
"rfilename": "model-00007-of-000163.safetensors"
},
{
"rfilename": "model-00008-of-000163.safetensors"
},
{
"rfilename": "model-00009-of-000163.safetensors"
},
{
"rfilename": "model-00010-of-000163.safetensors"
},
{
"rfilename": "model-00011-of-000163.safetensors"
},
{
"rfilename": "model-00012-of-000163.safetensors"
},
{
"rfilename": "model-00013-of-000163.safetensors"
},
{
"rfilename": "model-00014-of-000163.safetensors"
},
{
"rfilename": "model-00015-of-000163.safetensors"
},
{
"rfilename": "model-00016-of-000163.safetensors"
},
{
"rfilename": "model-00017-of-000163.safetensors"
},
{
"rfilename": "model-00018-of-000163.safetensors"
},
{
"rfilename": "model-00019-of-000163.safetensors"
},
{
"rfilename": "model-00020-of-000163.safetensors"
},
{
"rfilename": "model-00021-of-000163.safetensors"
},
{
"rfilename": "model-00022-of-000163.safetensors"
},
{
"rfilename": "model-00023-of-000163.safetensors"
},
{
"rfilename": "model-00024-of-000163.safetensors"
},
{
"rfilename": "model-00025-of-000163.safetensors"
},
{
"rfilename": "model-00026-of-000163.safetensors"
},
{
"rfilename": "model-00027-of-000163.safetensors"
},
{
"rfilename": "model-00028-of-000163.safetensors"
},
{
"rfilename": "model-00029-of-000163.safetensors"
},
{
"rfilename": "model-00030-of-000163.safetensors"
},
{
"rfilename": "model-00031-of-000163.safetensors"
},
{
"rfilename": "model-00032-of-000163.safetensors"
},
{
"rfilename": "model-00033-of-000163.safetensors"
},
{
"rfilename": "model-00034-of-000163.safetensors"
},
{
"rfilename": "model-00035-of-000163.safetensors"
},
{
"rfilename": "model-00036-of-000163.safetensors"
},
{
"rfilename": "model-00037-of-000163.safetensors"
},
{
"rfilename": "model-00038-of-000163.safetensors"
},
{
"rfilename": "model-00039-of-000163.safetensors"
},
{
"rfilename": "model-00040-of-000163.safetensors"
},
{
"rfilename": "model-00041-of-000163.safetensors"
},
{
"rfilename": "model-00042-of-000163.safetensors"
},
{
"rfilename": "model-00043-of-000163.safetensors"
},
{
"rfilename": "model-00044-of-000163.safetensors"
},
{
"rfilename": "model-00045-of-000163.safetensors"
},
{
"rfilename": "model-00046-of-000163.safetensors"
},
{
"rfilename": "model-00047-of-000163.safetensors"
},
{
"rfilename": "model-00048-of-000163.safetensors"
},
{
"rfilename": "model-00049-of-000163.safetensors"
},
{
"rfilename": "model-00050-of-000163.safetensors"
},
{
"rfilename": "model-00051-of-000163.safetensors"
},
{
"rfilename": "model-00052-of-000163.safetensors"
},
{
"rfilename": "model-00053-of-000163.safetensors"
},
{
"rfilename": "model-00054-of-000163.safetensors"
},
{
"rfilename": "model-00055-of-000163.safetensors"
},
{
"rfilename": "model-00056-of-000163.safetensors"
},
{
"rfilename": "model-00057-of-000163.safetensors"
},
{
"rfilename": "model-00058-of-000163.safetensors"
},
{
"rfilename": "model-00059-of-000163.safetensors"
},
{
"rfilename": "model-00060-of-000163.safetensors"
},
{
"rfilename": "model-00061-of-000163.safetensors"
},
{
"rfilename": "model-00062-of-000163.safetensors"
},
{
"rfilename": "model-00063-of-000163.safetensors"
},
{
"rfilename": "model-00064-of-000163.safetensors"
},
{
"rfilename": "model-00065-of-000163.safetensors"
},
{
"rfilename": "model-00066-of-000163.safetensors"
},
{
"rfilename": "model-00067-of-000163.safetensors"
},
{
"rfilename": "model-00068-of-000163.safetensors"
},
{
"rfilename": "model-00069-of-000163.safetensors"
},
{
"rfilename": "model-00070-of-000163.safetensors"
},
{
"rfilename": "model-00071-of-000163.safetensors"
},
{
"rfilename": "model-00072-of-000163.safetensors"
},
{
"rfilename": "model-00073-of-000163.safetensors"
},
{
"rfilename": "model-00074-of-000163.safetensors"
},
{
"rfilename": "model-00075-of-000163.safetensors"
},
{
"rfilename": "model-00076-of-000163.safetensors"
},
{
"rfilename": "model-00077-of-000163.safetensors"
},
{
"rfilename": "model-00078-of-000163.safetensors"
},
{
"rfilename": "model-00079-of-000163.safetensors"
},
{
"rfilename": "model-00080-of-000163.safetensors"
},
{
"rfilename": "model-00081-of-000163.safetensors"
},
{
"rfilename": "model-00082-of-000163.safetensors"
},
{
"rfilename": "model-00083-of-000163.safetensors"
},
{
"rfilename": "model-00084-of-000163.safetensors"
},
{
"rfilename": "model-00085-of-000163.safetensors"
},
{
"rfilename": "model-00086-of-000163.safetensors"
},
{
"rfilename": "model-00087-of-000163.safetensors"
},
{
"rfilename": "model-00088-of-000163.safetensors"
},
{
"rfilename": "model-00089-of-000163.safetensors"
},
{
"rfilename": "model-00090-of-000163.safetensors"
},
{
"rfilename": "model-00091-of-000163.safetensors"
},
{
"rfilename": "model-00092-of-000163.safetensors"
},
{
"rfilename": "model-00093-of-000163.safetensors"
},
{
"rfilename": "model-00094-of-000163.safetensors"
},
{
"rfilename": "model-00095-of-000163.safetensors"
},
{
"rfilename": "model-00096-of-000163.safetensors"
},
{
"rfilename": "model-00097-of-000163.safetensors"
},
{
"rfilename": "model-00098-of-000163.safetensors"
},
{
"rfilename": "model-00099-of-000163.safetensors"
},
{
"rfilename": "model-00100-of-000163.safetensors"
},
{
"rfilename": "model-00101-of-000163.safetensors"
},
{
"rfilename": "model-00102-of-000163.safetensors"
},
{
"rfilename": "model-00103-of-000163.safetensors"
},
{
"rfilename": "model-00104-of-000163.safetensors"
},
{
"rfilename": "model-00105-of-000163.safetensors"
},
{
"rfilename": "model-00106-of-000163.safetensors"
},
{
"rfilename": "model-00107-of-000163.safetensors"
},
{
"rfilename": "model-00108-of-000163.safetensors"
},
{
"rfilename": "model-00109-of-000163.safetensors"
},
{
"rfilename": "model-00110-of-000163.safetensors"
},
{
"rfilename": "model-00111-of-000163.safetensors"
},
{
"rfilename": "model-00112-of-000163.safetensors"
},
{
"rfilename": "model-00113-of-000163.safetensors"
},
{
"rfilename": "model-00114-of-000163.safetensors"
},
{
"rfilename": "model-00115-of-000163.safetensors"
},
{
"rfilename": "model-00116-of-000163.safetensors"
},
{
"rfilename": "model-00117-of-000163.safetensors"
},
{
"rfilename": "model-00118-of-000163.safetensors"
},
{
"rfilename": "model-00119-of-000163.safetensors"
},
{
"rfilename": "model-00120-of-000163.safetensors"
},
{
"rfilename": "model-00121-of-000163.safetensors"
},
{
"rfilename": "model-00122-of-000163.safetensors"
},
{
"rfilename": "model-00123-of-000163.safetensors"
},
{
"rfilename": "model-00124-of-000163.safetensors"
},
{
"rfilename": "model-00125-of-000163.safetensors"
},
{
"rfilename": "model-00126-of-000163.safetensors"
},
{
"rfilename": "model-00127-of-000163.safetensors"
},
{
"rfilename": "model-00128-of-000163.safetensors"
},
{
"rfilename": "model-00129-of-000163.safetensors"
},
{
"rfilename": "model-00130-of-000163.safetensors"
},
{
"rfilename": "model-00131-of-000163.safetensors"
},
{
"rfilename": "model-00132-of-000163.safetensors"
},
{
"rfilename": "model-00133-of-000163.safetensors"
},
{
"rfilename": "model-00134-of-000163.safetensors"
},
{
"rfilename": "model-00135-of-000163.safetensors"
},
{
"rfilename": "model-00136-of-000163.safetensors"
},
{
"rfilename": "model-00137-of-000163.safetensors"
},
{
"rfilename": "model-00138-of-000163.safetensors"
},
{
"rfilename": "model-00139-of-000163.safetensors"
},
{
"rfilename": "model-00140-of-000163.safetensors"
},
{
"rfilename": "model-00141-of-000163.safetensors"
},
{
"rfilename": "model-00142-of-000163.safetensors"
},
{
"rfilename": "model-00143-of-000163.safetensors"
},
{
"rfilename": "model-00144-of-000163.safetensors"
},
{
"rfilename": "model-00145-of-000163.safetensors"
},
{
"rfilename": "model-00146-of-000163.safetensors"
},
{
"rfilename": "model-00147-of-000163.safetensors"
},
{
"rfilename": "model-00148-of-000163.safetensors"
},
{
"rfilename": "model-00149-of-000163.safetensors"
},
{
"rfilename": "model-00150-of-000163.safetensors"
},
{
"rfilename": "model-00151-of-000163.safetensors"
},
{
"rfilename": "model-00152-of-000163.safetensors"
},
{
"rfilename": "model-00153-of-000163.safetensors"
},
{
"rfilename": "model-00154-of-000163.safetensors"
},
{
"rfilename": "model-00155-of-000163.safetensors"
},
{
"rfilename": "model-00156-of-000163.safetensors"
},
{
"rfilename": "model-00157-of-000163.safetensors"
},
{
"rfilename": "model-00158-of-000163.safetensors"
},
{
"rfilename": "model-00159-of-000163.safetensors"
},
{
"rfilename": "model-00160-of-000163.safetensors"
},
{
"rfilename": "model-00161-of-000163.safetensors"
},
{
"rfilename": "model-00162-of-000163.safetensors"
},
{
"rfilename": "model-00163-of-000163.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "modeling_deepseek.py"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-12-25T12:52:23 | null |
6796251e22990ae89b1f60f1 | deepseek-ai/Janus-Pro-7B | deepseek-ai | {"license": "mit", "license_name": "deepseek", "license_link": "LICENSE", "pipeline_tag": "any-to-any", "library_name": "transformers", "tags": ["muiltimodal", "text-to-image", "unified-model"]} | null | 2025-02-01T08:00:16 | 3,206 | 29 | {"model_type": "multi_modality", "tokenizer_config": {"bos_token": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "eos_token": "<\uff5cend\u2581of\u2581sentence\uff5c>", "pad_token": null, "unk_token": null, "use_default_system_prompt": true}} | 262,095 | 628,802 | null | [
"transformers",
"pytorch",
"multi_modality",
"muiltimodal",
"text-to-image",
"unified-model",
"any-to-any",
"arxiv:2501.17811",
"license:mit",
"endpoints_compatible",
"region:us"
] | any-to-any | {
"auto_model": "AutoModel",
"custom_class": null,
"pipeline_tag": null,
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "janus_pro_teaser1.png"
},
{
"rfilename": "janus_pro_teaser2.png"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "pytorch_model-00001-of-00002.bin"
},
{
"rfilename": "pytorch_model-00002-of-00002.bin"
},
{
"rfilename": "pytorch_model.bin.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-01-26T12:05:50 | null |
6540d2d50cb8e9d8e63a1e1f | coqui/XTTS-v2 | coqui | {"license": "other", "license_name": "coqui-public-model-license", "license_link": "https://coqui.ai/cpml", "library_name": "coqui", "pipeline_tag": "text-to-speech", "widget": [{"text": "Once when I was six years old I saw a magnificent picture"}]} | null | 2023-12-11T17:50:00 | 2,473 | 28 | null | 2,616,311 | 15,500,710 | null | [
"coqui",
"text-to-speech",
"license:other",
"region:us"
] | text-to-speech | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.txt"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "dvae.pth"
},
{
"rfilename": "hash.md5"
},
{
"rfilename": "mel_stats.pth"
},
{
"rfilename": "model.pth"
},
{
"rfilename": "samples/de_sample.wav"
},
{
"rfilename": "samples/en_sample.wav"
},
{
"rfilename": "samples/es_sample.wav"
},
{
"rfilename": "samples/fr_sample.wav"
},
{
"rfilename": "samples/ja-sample.wav"
},
{
"rfilename": "samples/pt_sample.wav"
},
{
"rfilename": "samples/tr_sample.wav"
},
{
"rfilename": "samples/zh-cn-sample.wav"
},
{
"rfilename": "speakers_xtts.pth"
},
{
"rfilename": "vocab.json"
}
] | 2023-10-31T10:11:33 | null |
678e15048143a819dd01a3c1 | deepseek-ai/DeepSeek-R1-Distill-Qwen-32B | deepseek-ai | {"license": "mit", "library_name": "transformers"} | [
{
"provider": "hf-inference",
"providerId": "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "deepseek/deepseek-r1-distill-qwen-32b",
"status": "live",
"task": "conversational"
}
] | 2025-02-24T03:31:29 | 1,252 | 28 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": {"__type": "AddedToken", "content": "<\uff5cbegin\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "eos_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "pad_token": {"__type": "AddedToken", "content": "<\uff5cend\u2581of\u2581sentence\uff5c>", "lstrip": false, "normalized": true, "rstrip": false, "single_word": false}, "unk_token": null, "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<\uff5cUser\uff5c>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<\uff5cAssistant\uff5c><\uff5ctool\u2581calls\u2581begin\uff5c><\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{%- set ns.is_first = true -%}{%- else %}{{'\\n' + '<\uff5ctool\u2581call\u2581begin\uff5c>' + tool['type'] + '<\uff5ctool\u2581sep\uff5c>' + tool['function']['name'] + '\\n' + '```json' + '\\n' + tool['function']['arguments'] + '\\n' + '```' + '<\uff5ctool\u2581call\u2581end\uff5c>'}}{{'<\uff5ctool\u2581calls\u2581end\uff5c><\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>' + message['content'] + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<\uff5cAssistant\uff5c>' + content + '<\uff5cend\u2581of\u2581sentence\uff5c>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<\uff5ctool\u2581outputs\u2581begin\uff5c><\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\\n<\uff5ctool\u2581output\u2581begin\uff5c>' + message['content'] + '<\uff5ctool\u2581output\u2581end\uff5c>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<\uff5ctool\u2581outputs\u2581end\uff5c>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<\uff5cAssistant\uff5c><think>\\n'}}{% endif %}"}} | 1,561,175 | 2,087,410 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"arxiv:2501.12948",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "figures/benchmark.jpg"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-000008.safetensors"
},
{
"rfilename": "model-00002-of-000008.safetensors"
},
{
"rfilename": "model-00003-of-000008.safetensors"
},
{
"rfilename": "model-00004-of-000008.safetensors"
},
{
"rfilename": "model-00005-of-000008.safetensors"
},
{
"rfilename": "model-00006-of-000008.safetensors"
},
{
"rfilename": "model-00007-of-000008.safetensors"
},
{
"rfilename": "model-00008-of-000008.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-01-20T09:19:00 | null |
67bda5ec3a3a100900815991 | Wan-AI/Wan2.1-T2V-1.3B | Wan-AI | {"license": "apache-2.0", "language": ["en", "zh"], "pipeline_tag": "text-to-video", "library_name": "diffusers", "tags": ["video", "video-generation"]} | [
{
"provider": "replicate",
"providerId": "wan-video/wan-2.1-1.3b",
"status": "live",
"task": "text-to-video"
},
{
"provider": "fal-ai",
"providerId": "fal-ai/wan/v2.1/1.3b/text-to-video",
"status": "live",
"task": "text-to-video"
}
] | 2025-03-01T09:31:33 | 270 | 28 | {"model_type": "t2v"} | 21,173 | 21,173 | null | [
"diffusers",
"safetensors",
"t2v",
"video",
"video-generation",
"text-to-video",
"en",
"zh",
"license:apache-2.0",
"region:us"
] | text-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.txt"
},
{
"rfilename": "README.md"
},
{
"rfilename": "Wan2.1_VAE.pth"
},
{
"rfilename": "assets/.DS_Store"
},
{
"rfilename": "assets/comp_effic.png"
},
{
"rfilename": "assets/data_for_diff_stage.jpg"
},
{
"rfilename": "assets/i2v_res.png"
},
{
"rfilename": "assets/logo.png"
},
{
"rfilename": "assets/t2v_res.jpg"
},
{
"rfilename": "assets/vben_1.3b_vs_sota.png"
},
{
"rfilename": "assets/vben_vs_sota.png"
},
{
"rfilename": "assets/video_dit_arch.jpg"
},
{
"rfilename": "assets/video_vae_res.jpg"
},
{
"rfilename": "config.json"
},
{
"rfilename": "diffusion_pytorch_model.safetensors"
},
{
"rfilename": "examples/i2v_input.JPG"
},
{
"rfilename": "google/umt5-xxl/special_tokens_map.json"
},
{
"rfilename": "google/umt5-xxl/spiece.model"
},
{
"rfilename": "google/umt5-xxl/tokenizer.json"
},
{
"rfilename": "google/umt5-xxl/tokenizer_config.json"
},
{
"rfilename": "models_t5_umt5-xxl-enc-bf16.pth"
}
] | 2025-02-25T11:13:48 | null |
67c6bafabc746f6280f7d2d1 | tensorart/stable-diffusion-3.5-large-TurboX | tensorart | {"license": "other", "license_name": "stabilityai-ai-community", "license_link": "LICENSE"} | null | 2025-03-06T10:19:42 | 47 | 27 | {"diffusers": {"_class_name": "StableDiffusion3Pipeline"}} | 7,448 | 7,448 | null | [
"diffusers",
"safetensors",
"gguf",
"license:other",
"diffusers:StableDiffusion3Pipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "TensorArt-SD3.5-Large-TurboX-Q4_1-8steps.gguf"
},
{
"rfilename": "TensorArt-SD3.5-Large-TurboX-Q8_0-8steps.gguf"
},
{
"rfilename": "TensorArt-SD3.5-Large-TurboX.safetensors"
},
{
"rfilename": "Tensorart_TurboX_sd3.5L_8steps.safetensors"
},
{
"rfilename": "ckpt_ad.webp"
},
{
"rfilename": "contrast_imgs/1-1.jpg"
},
{
"rfilename": "contrast_imgs/1-2.jpg"
},
{
"rfilename": "contrast_imgs/2-1.jpg"
},
{
"rfilename": "contrast_imgs/2-2.jpg"
},
{
"rfilename": "contrast_imgs/3-1.jpg"
},
{
"rfilename": "contrast_imgs/3-2.jpg"
},
{
"rfilename": "contrast_sd3.5L_TurboX_turbo_diff_cfg.json"
},
{
"rfilename": "contrast_sd3.5L_normal_TurboX.json"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/model.safetensors"
},
{
"rfilename": "text_encoder_2/config.json"
},
{
"rfilename": "text_encoder_2/model.safetensors"
},
{
"rfilename": "text_encoder_3/config.json"
},
{
"rfilename": "text_encoder_3/model-00001-of-00003.safetensors"
},
{
"rfilename": "text_encoder_3/model-00002-of-00003.safetensors"
},
{
"rfilename": "text_encoder_3/model-00003-of-00003.safetensors"
},
{
"rfilename": "text_encoder_3/model.safetensors.index.json"
},
{
"rfilename": "tokenizer/merges.txt"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "tokenizer/vocab.json"
},
{
"rfilename": "tokenizer_2/merges.txt"
},
{
"rfilename": "tokenizer_2/special_tokens_map.json"
},
{
"rfilename": "tokenizer_2/tokenizer_config.json"
},
{
"rfilename": "tokenizer_2/vocab.json"
},
{
"rfilename": "tokenizer_3/special_tokens_map.json"
},
{
"rfilename": "tokenizer_3/spiece.model"
},
{
"rfilename": "tokenizer_3/tokenizer.json"
},
{
"rfilename": "tokenizer_3/tokenizer_config.json"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00001-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model-00002-of-00002.safetensors"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors.index.json"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
}
] | 2025-03-04T08:34:02 | {
"architecture": "sd3",
"bos_token": null,
"causal": null,
"chat_template": null,
"context_length": null,
"eos_token": null,
"quantize_imatrix_file": null,
"total": 8146280768
} |
67cdb388999766d8cd8115f3 | zer0int/CLIP-Registers-Gated_MLP-ViT-L-14 | zer0int | {"license": "mit", "datasets": ["SPRIGHT-T2I/spright_coco"], "base_model": ["openai/clip-vit-large-patch14"]} | null | 2025-03-12T19:50:02 | 27 | 27 | null | 0 | 0 | null | [
"dataset:SPRIGHT-T2I/spright_coco",
"base_model:openai/clip-vit-large-patch14",
"base_model:finetune:openai/clip-vit-large-patch14",
"license:mit",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "ViT-L-14-REG-GATED-balanced-ckpt12.pt"
},
{
"rfilename": "ViT-L-14-REG-GATED-balanced-ckpt12.safetensors"
},
{
"rfilename": "ViT-L-14-REG-GATED-xtreme-ckpt20.pt"
},
{
"rfilename": "ViT-L-14-REG-GATED-xtreme-ckpt20.safetensors"
},
{
"rfilename": "ViT-L-14-REG-TE-only-balanced-HF-format-ckpt12.safetensors"
},
{
"rfilename": "ViT-L-14-REG-TE-only-xtreme-HF-format-ckpt20.safetensors"
}
] | 2025-03-09T15:28:08 | null |
67c878fb4b48288e074dc3c9 | lmstudio-community/QwQ-32B-GGUF | lmstudio-community | {"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "base_model": "Qwen/QwQ-32B", "tags": ["chat"], "language": ["en"]} | null | 2025-03-05T19:43:22 | 32 | 26 | null | 96,902 | 96,902 | null | [
"gguf",
"chat",
"text-generation",
"en",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "QwQ-32B-Q3_K_L.gguf"
},
{
"rfilename": "QwQ-32B-Q4_K_M.gguf"
},
{
"rfilename": "QwQ-32B-Q6_K.gguf"
},
{
"rfilename": "QwQ-32B-Q8_0.gguf"
},
{
"rfilename": "README.md"
}
] | 2025-03-05T16:16:59 | {
"architecture": "qwen2",
"bos_token": "<|endoftext|>",
"causal": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = (message.content.split('</think>')|last).lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = (message.content.split('</think>')|last).lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"context_length": 131072,
"eos_token": "<|im_end|>",
"quantize_imatrix_file": null,
"total": 32763876352
} |
67ce4c20733c1bea6bce2e86 | StarJiaxing/R1-Omni-0.5B | StarJiaxing | {"license": "apache-2.0"} | null | 2025-03-10T11:43:51 | 26 | 26 | {"architectures": ["HumanOmniQwen2ForCausalLM"], "model_type": "HumanOmni_qwen2", "processor_config": {"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"}, "tokenizer_config": {"bos_token": null, "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 27 | 27 | {
"parameters": {
"BF16": 1373177925,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 1373177925
} | [
"safetensors",
"HumanOmni_qwen2",
"arxiv:2503.05379",
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "chat_template.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-10T02:19:12 | null |
672b1f9e956e6880fdb8c1e5 | Qwen/Qwen2.5-Coder-32B-Instruct | Qwen | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct/blob/main/LICENSE", "language": ["en"], "base_model": ["Qwen/Qwen2.5-Coder-32B"], "pipeline_tag": "text-generation", "library_name": "transformers", "tags": ["code", "codeqwen", "chat", "qwen", "qwen-coder"]} | [
{
"provider": "fireworks-ai",
"providerId": "accounts/fireworks/models/qwen2p5-coder-32b-instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "sambanova",
"providerId": "Qwen2.5-Coder-32B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "together",
"providerId": "Qwen/Qwen2.5-Coder-32B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "Qwen/Qwen2.5-Coder-32B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "Qwen/Qwen2.5-Coder-32B-Instruct-fast",
"status": "live",
"task": "conversational"
},
{
"provider": "hyperbolic",
"providerId": "Qwen/Qwen2.5-Coder-32B-Instruct",
"status": "live",
"task": "conversational"
}
] | 2025-01-12T02:02:22 | 1,707 | 25 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 209,241 | 891,380 | {
"parameters": {
"BF16": 32763876352,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32763876352
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"code",
"codeqwen",
"chat",
"qwen",
"qwen-coder",
"conversational",
"en",
"arxiv:2409.12186",
"arxiv:2309.00071",
"arxiv:2407.10671",
"base_model:Qwen/Qwen2.5-Coder-32B",
"base_model:finetune:Qwen/Qwen2.5-Coder-32B",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00014.safetensors"
},
{
"rfilename": "model-00002-of-00014.safetensors"
},
{
"rfilename": "model-00003-of-00014.safetensors"
},
{
"rfilename": "model-00004-of-00014.safetensors"
},
{
"rfilename": "model-00005-of-00014.safetensors"
},
{
"rfilename": "model-00006-of-00014.safetensors"
},
{
"rfilename": "model-00007-of-00014.safetensors"
},
{
"rfilename": "model-00008-of-00014.safetensors"
},
{
"rfilename": "model-00009-of-00014.safetensors"
},
{
"rfilename": "model-00010-of-00014.safetensors"
},
{
"rfilename": "model-00011-of-00014.safetensors"
},
{
"rfilename": "model-00012-of-00014.safetensors"
},
{
"rfilename": "model-00013-of-00014.safetensors"
},
{
"rfilename": "model-00014-of-00014.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2024-11-06T07:49:50 | null |
678df3695dec6df8ec20e664 | tencent/Hunyuan3D-2 | tencent | {"library_name": "hunyuan3d-2", "license": "other", "license_name": "tencent-hunyuan-community", "license_link": "https://huggingface.co/tencent/Hunyuan3D-2/blob/main/LICENSE.txt", "language": ["en", "zh"], "tags": ["image-to-3d", "text-to-3d"], "pipeline_tag": "image-to-3d"} | null | 2025-02-28T05:51:36 | 1,051 | 25 | null | 32,975 | 81,244 | null | [
"hunyuan3d-2",
"diffusers",
"safetensors",
"image-to-3d",
"text-to-3d",
"en",
"zh",
"arxiv:2501.12202",
"arxiv:2411.02293",
"license:other",
"region:us"
] | image-to-3d | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "NOTICE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "assets/demo.png"
},
{
"rfilename": "assets/images/arch.jpg"
},
{
"rfilename": "assets/images/e2e-1.gif"
},
{
"rfilename": "assets/images/e2e-2.gif"
},
{
"rfilename": "assets/images/system.jpg"
},
{
"rfilename": "assets/images/teaser.jpg"
},
{
"rfilename": "config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/feature_extractor/preprocessor_config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/model_index.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/scheduler/scheduler_config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/text_encoder/config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/text_encoder/model.safetensors"
},
{
"rfilename": "hunyuan3d-delight-v2-0/tokenizer/merges.txt"
},
{
"rfilename": "hunyuan3d-delight-v2-0/tokenizer/special_tokens_map.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/tokenizer/tokenizer_config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/tokenizer/vocab.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/unet/config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/unet/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "hunyuan3d-delight-v2-0/vae/config.json"
},
{
"rfilename": "hunyuan3d-delight-v2-0/vae/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "hunyuan3d-dit-v2-0-fast/config.yaml"
},
{
"rfilename": "hunyuan3d-dit-v2-0-fast/model.fp16.ckpt"
},
{
"rfilename": "hunyuan3d-dit-v2-0-fast/model.fp16.safetensors"
},
{
"rfilename": "hunyuan3d-dit-v2-0/config.yaml"
},
{
"rfilename": "hunyuan3d-dit-v2-0/model.ckpt"
},
{
"rfilename": "hunyuan3d-dit-v2-0/model.safetensors"
},
{
"rfilename": "hunyuan3d-dit-v2-0/model_fp16.ckpt"
},
{
"rfilename": "hunyuan3d-paint-v2-0/.gitattributes"
},
{
"rfilename": "hunyuan3d-paint-v2-0/feature_extractor/preprocessor_config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/model_index.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/scheduler/scheduler_config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/text_encoder/config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/text_encoder/pytorch_model.bin"
},
{
"rfilename": "hunyuan3d-paint-v2-0/tokenizer/merges.txt"
},
{
"rfilename": "hunyuan3d-paint-v2-0/tokenizer/special_tokens_map.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/tokenizer/tokenizer_config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/tokenizer/vocab.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/unet/config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.bin"
},
{
"rfilename": "hunyuan3d-paint-v2-0/unet/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "hunyuan3d-paint-v2-0/unet/modules.py"
},
{
"rfilename": "hunyuan3d-paint-v2-0/vae/config.json"
},
{
"rfilename": "hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.bin"
},
{
"rfilename": "hunyuan3d-paint-v2-0/vae/diffusion_pytorch_model.safetensors"
}
] | 2025-01-20T06:55:37 | null |
66944f1fe0c5c2e493a804f5 | meta-llama/Llama-3.1-8B | meta-llama | {"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.1", "extra_gated_prompt": "### LLAMA 3.1 COMMUNITY LICENSE AGREEMENT\nLlama 3.1 Version Release Date: July 23, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Llama 3.1 distributed by Meta at https://llama.meta.com/doc/overview.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Llama 3.1\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Llama 3.1 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.1 is licensed under the Llama 3.1 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3_1/use-policy), which is hereby incorporated by reference into this Agreement.\n2. Additional Commercial Terms. If, on the Llama 3.1 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.1 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Llama 3.1 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.1. If you access or use Llama 3.1, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3_1/use-policy](https://llama.meta.com/llama3_1/use-policy)\n#### Prohibited Uses\nWe want everyone to use Llama 3.1 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.1 to:\n 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 3. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 4. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 5. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 6. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 7. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 8. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.1 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.1 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Llama 3.1 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://github.com/meta-llama/llama-models/issues)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "library_name": "transformers"} | null | 2024-10-16T22:00:37 | 1,486 | 23 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "eos_token": "<|end_of_text|>"}} | 1,299,624 | 6,655,491 | {
"parameters": {
"BF16": 8030261248,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 8030261248
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-3",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"arxiv:2204.05149",
"license:llama3.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "USE_POLICY.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "original/consolidated.00.pth"
},
{
"rfilename": "original/params.json"
},
{
"rfilename": "original/tokenizer.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-07-14T22:20:15 | null |
67613064cf3eda466ab41b6f | Comfy-Org/HunyuanVideo_repackaged | Comfy-Org | null | null | 2025-03-09T09:29:56 | 150 | 23 | null | 0 | 0 | null | [
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "split_files/clip_vision/llava_llama3_vision.safetensors"
},
{
"rfilename": "split_files/diffusion_models/hunyuan_video_image_to_video_720p_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/hunyuan_video_t2v_720p_bf16.safetensors"
},
{
"rfilename": "split_files/diffusion_models/hunyuan_video_v2_replace_image_to_video_720p_bf16.safetensors"
},
{
"rfilename": "split_files/text_encoders/clip_l.safetensors"
},
{
"rfilename": "split_files/text_encoders/llava_llama3_fp16.safetensors"
},
{
"rfilename": "split_files/text_encoders/llava_llama3_fp8_scaled.safetensors"
},
{
"rfilename": "split_files/vae/hunyuan_video_vae_bf16.safetensors"
}
] | 2024-12-17T08:03:48 | null |
67a093ec8f047b67c314351b | lerobot/pi0 | lerobot | {"license": "apache-2.0", "library_name": "lerobot", "pipeline_tag": "robotics"} | null | 2025-03-06T17:00:18 | 157 | 23 | {"tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 8,910 | 10,672 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 3501372176,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 3501372176
} | [
"lerobot",
"safetensors",
"robotics",
"arxiv:2410.24164",
"license:apache-2.0",
"region:us"
] | robotics | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "model-00001-of-00003.safetensors"
},
{
"rfilename": "model-00002-of-00003.safetensors"
},
{
"rfilename": "model-00003-of-00003.safetensors"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-03T10:01:16 | null |
67bda7564d1a6d38f8189107 | EuroBERT/EuroBERT-610m | EuroBERT | {"library_name": "transformers", "license": "apache-2.0", "language": ["en", "fr", "de", "es", "zh", "it", "ru", "pl", "pt", "ja", "vi", "nl", "ar", "tr", "hi"], "pipeline_tag": "fill-mask", "tags": ["code"]} | null | 2025-03-11T13:21:16 | 23 | 23 | {"architectures": ["EuroBertForMaskedLM"], "auto_map": {"AutoConfig": "configuration_eurobert.EuroBertConfig", "AutoModel": "modeling_eurobert.EuroBertModel", "AutoModelForPreTraining": "modeling_eurobert.EuroBertPreTrainedModel", "AutoModelForMaskedLM": "modeling_eurobert.EuroBertForMaskedLM", "AutoModelForSequenceClassification": "modeling_eurobert.EuroBertForSequenceClassification"}, "model_type": "eurobert", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|end_of_text|>", "mask_token": "<|mask|>", "pad_token": "<|end_of_text|>"}} | 770 | 770 | null | [
"transformers",
"pytorch",
"eurobert",
"fill-mask",
"code",
"custom_code",
"en",
"fr",
"de",
"es",
"zh",
"it",
"ru",
"pl",
"pt",
"ja",
"vi",
"nl",
"ar",
"tr",
"hi",
"arxiv:2503.05500",
"license:apache-2.0",
"autotrain_compatible",
"region:us"
] | fill-mask | {
"auto_model": "AutoModelForMaskedLM",
"custom_class": "modeling_eurobert.EuroBertForMaskedLM",
"pipeline_tag": "fill-mask",
"processor": null
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "configuration_eurobert.py"
},
{
"rfilename": "img/banner.png"
},
{
"rfilename": "img/code_math.png"
},
{
"rfilename": "img/long_context.png"
},
{
"rfilename": "img/multilingual.png"
},
{
"rfilename": "modeling_eurobert.py"
},
{
"rfilename": "pytorch_model.bin"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-25T11:19:50 | null |
67c8a13c5360c9649186e9fd | mlx-community/QwQ-32B-4bit | mlx-community | {"license": "apache-2.0", "license_link": "https://huggingface.co/Qwen/QWQ-32B/blob/main/LICENSE", "language": ["en"], "pipeline_tag": "text-generation", "base_model": "Qwen/QwQ-32B", "tags": ["chat", "mlx"]} | null | 2025-03-05T19:55:39 | 23 | 23 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "quantization_config": {"bits": 4}, "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 3,078 | 3,078 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": 1024955392,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": 4095344640,
"U8": null,
"miku": null
},
"total": 5120300032
} | [
"mlx",
"safetensors",
"qwen2",
"chat",
"text-generation",
"conversational",
"en",
"base_model:Qwen/QwQ-32B",
"base_model:quantized:Qwen/QwQ-32B",
"license:apache-2.0",
"4-bit",
"region:us"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00004.safetensors"
},
{
"rfilename": "model-00002-of-00004.safetensors"
},
{
"rfilename": "model-00003-of-00004.safetensors"
},
{
"rfilename": "model-00004-of-00004.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-05T19:08:44 | null |
64bfcd5ff462a99a04fd1ec8 | stabilityai/stable-diffusion-xl-base-1.0 | stabilityai | {"license": "openrail++", "tags": ["text-to-image", "stable-diffusion"]} | [
{
"provider": "replicate",
"providerId": "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
"status": "live",
"task": "text-to-image"
},
{
"provider": "together",
"providerId": "stabilityai/stable-diffusion-xl-base-1.0",
"status": "live",
"task": "text-to-image"
},
{
"provider": "hf-inference",
"providerId": "stabilityai/stable-diffusion-xl-base-1.0",
"status": "live",
"task": "text-to-image"
},
{
"provider": "nebius",
"providerId": "stability-ai/sdxl",
"status": "live",
"task": "text-to-image"
}
] | 2023-10-30T16:03:47 | 6,392 | 22 | {"diffusers": {"_class_name": "StableDiffusionXLPipeline"}} | 4,132,748 | 81,227,140 | null | [
"diffusers",
"onnx",
"safetensors",
"text-to-image",
"stable-diffusion",
"arxiv:2307.01952",
"arxiv:2211.01324",
"arxiv:2108.01073",
"arxiv:2112.10752",
"license:openrail++",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "01.png"
},
{
"rfilename": "LICENSE.md"
},
{
"rfilename": "README.md"
},
{
"rfilename": "comparison.png"
},
{
"rfilename": "model_index.json"
},
{
"rfilename": "pipeline.png"
},
{
"rfilename": "scheduler/scheduler_config.json"
},
{
"rfilename": "sd_xl_base_1.0.safetensors"
},
{
"rfilename": "sd_xl_base_1.0_0.9vae.safetensors"
},
{
"rfilename": "sd_xl_offset_example-lora_1.0.safetensors"
},
{
"rfilename": "text_encoder/config.json"
},
{
"rfilename": "text_encoder/flax_model.msgpack"
},
{
"rfilename": "text_encoder/model.fp16.safetensors"
},
{
"rfilename": "text_encoder/model.onnx"
},
{
"rfilename": "text_encoder/model.safetensors"
},
{
"rfilename": "text_encoder/openvino_model.bin"
},
{
"rfilename": "text_encoder/openvino_model.xml"
},
{
"rfilename": "text_encoder_2/config.json"
},
{
"rfilename": "text_encoder_2/flax_model.msgpack"
},
{
"rfilename": "text_encoder_2/model.fp16.safetensors"
},
{
"rfilename": "text_encoder_2/model.onnx"
},
{
"rfilename": "text_encoder_2/model.onnx_data"
},
{
"rfilename": "text_encoder_2/model.safetensors"
},
{
"rfilename": "text_encoder_2/openvino_model.bin"
},
{
"rfilename": "text_encoder_2/openvino_model.xml"
},
{
"rfilename": "tokenizer/merges.txt"
},
{
"rfilename": "tokenizer/special_tokens_map.json"
},
{
"rfilename": "tokenizer/tokenizer_config.json"
},
{
"rfilename": "tokenizer/vocab.json"
},
{
"rfilename": "tokenizer_2/merges.txt"
},
{
"rfilename": "tokenizer_2/special_tokens_map.json"
},
{
"rfilename": "tokenizer_2/tokenizer_config.json"
},
{
"rfilename": "tokenizer_2/vocab.json"
},
{
"rfilename": "unet/config.json"
},
{
"rfilename": "unet/diffusion_flax_model.msgpack"
},
{
"rfilename": "unet/diffusion_pytorch_model.fp16.safetensors"
},
{
"rfilename": "unet/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "unet/model.onnx"
},
{
"rfilename": "unet/model.onnx_data"
},
{
"rfilename": "unet/openvino_model.bin"
},
{
"rfilename": "unet/openvino_model.xml"
},
{
"rfilename": "vae/config.json"
},
{
"rfilename": "vae/diffusion_flax_model.msgpack"
},
{
"rfilename": "vae/diffusion_pytorch_model.fp16.safetensors"
},
{
"rfilename": "vae/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "vae_1_0/config.json"
},
{
"rfilename": "vae_1_0/diffusion_pytorch_model.fp16.safetensors"
},
{
"rfilename": "vae_1_0/diffusion_pytorch_model.safetensors"
},
{
"rfilename": "vae_decoder/config.json"
},
{
"rfilename": "vae_decoder/model.onnx"
},
{
"rfilename": "vae_decoder/openvino_model.bin"
},
{
"rfilename": "vae_decoder/openvino_model.xml"
},
{
"rfilename": "vae_encoder/config.json"
},
{
"rfilename": "vae_encoder/model.onnx"
},
{
"rfilename": "vae_encoder/openvino_model.bin"
},
{
"rfilename": "vae_encoder/openvino_model.xml"
}
] | 2023-07-25T13:25:51 | null |
6745f026cc4caa5db9508d0e | strangerzonehf/Flux-Midjourney-Mix2-LoRA | strangerzonehf | {"tags": ["text-to-image", "lora", "diffusers", "template:diffusion-lora"], "widget": [{"text": "MJ v6, Portrait photography of a woman in a red dress, in the style of unsplash photography, street photography, dark green background --ar 47:64 --v 6.0 --style raw", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/1.png"}}, {"text": "MJ v6, A portrait of a Bird in the dark, illuminated by an intense yellow light from above, with a soft blue gradient background. This scene evokes a sense of mystery or contemplation, highlighting the beauty of the subjects features against the contrasting backdrop, lens glossy effect, high contrast, star bokeh ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/2.png"}}, {"text": "MJ v6, A photo of an attractive man in his thirties, wearing a black coat and yellow scarf with a brown pattern inside a building talking on a phone standing near a modern glass skyscraper in London, shot from below looking up at him in the style of street photography, cinematic. --ar 85:128 --v 6.0 --style raw", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/3.png"}}, {"text": "MJ v6, banana bread with chocolate chips and pecans, in the style of tabletop photography, y2k aesthetic, spiky mounds, flawless line work, schlieren photography, 8k, natural fibers, minimal --ar 123:185 --v 5 ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/4.png"}}, {"text": "MJ v6, A portrait of Woman, fashion photography, big shapes in the background, on top of colorful squares with stars, in the style of retro vintage photography, pastel colors, soft purple and yellow ", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/6.png"}}, {"text": "MJ v6, delicious dipped chocolate pastry japo gallery, white background, in the style of dark brown, close-up intensity, duckcore, rounded, high resolution --ar 2:3 --v 5", "output": {"url": "https://huggingface.co/strangerzonehf/Flux-Midjourney-Mix2-LoRA/resolve/main/images/5.png"}}], "base_model": "black-forest-labs/FLUX.1-dev", "instance_prompt": "MJ v6", "license": "creativeml-openrail-m"} | [
{
"provider": "hf-inference",
"providerId": "black-forest-labs/FLUX.1-dev",
"status": "live",
"task": "text-to-image"
}
] | 2024-11-27T10:48:27 | 441 | 22 | null | 49,471 | 184,127 | null | [
"diffusers",
"text-to-image",
"lora",
"template:diffusion-lora",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:adapter:black-forest-labs/FLUX.1-dev",
"license:creativeml-openrail-m",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "images/1.png"
},
{
"rfilename": "images/2.png"
},
{
"rfilename": "images/3.png"
},
{
"rfilename": "images/4.png"
},
{
"rfilename": "images/5.png"
},
{
"rfilename": "images/6.png"
},
{
"rfilename": "images/mjv6.png"
},
{
"rfilename": "mjV6.safetensors"
}
] | 2024-11-26T15:58:30 | null |
679a09e0fc4b676ca9103c6f | agentica-org/DeepScaleR-1.5B-Preview | agentica-org | {"license": "mit", "library_name": "transformers", "datasets": ["AI-MO/NuminaMath-CoT", "KbsdJames/Omni-MATH", "RUC-AIBOX/STILL-3-Preview-RL-Data", "hendrycks/competition_math"], "language": ["en"], "base_model": ["deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"], "pipeline_tag": "text-generation"} | [
{
"provider": "hf-inference",
"providerId": "agentica-org/DeepScaleR-1.5B-Preview",
"status": "live",
"task": "text-generation"
}
] | 2025-02-23T03:29:24 | 520 | 22 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2"} | 73,928 | 74,027 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 1777088000,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 1777088000
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"en",
"dataset:AI-MO/NuminaMath-CoT",
"dataset:KbsdJames/Omni-MATH",
"dataset:RUC-AIBOX/STILL-3-Preview-RL-Data",
"dataset:hendrycks/competition_math",
"base_model:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"base_model:finetune:deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"license:mit",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-01-29T10:58:40 | null |
67b79c6c01ad68cfed14677a | google/gemma-3-4b-pt | google | {"license": "gemma", "library_name": "transformers", "pipeline_tag": "image-text-to-text", "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"} | null | 2025-03-12T08:29:53 | 22 | 22 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3", "tokenizer_config": {"bos_token": "<bos>", "eos_token": "<eos>", "pad_token": "<pad>", "unk_token": "<unk>", "use_default_system_prompt": false}} | 582 | 582 | {
"parameters": {
"BF16": 4300079472,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 4300079472
} | [
"transformers",
"safetensors",
"gemma3",
"image-text-to-text",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"license:gemma",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model-00001-of-00002.safetensors"
},
{
"rfilename": "model-00002-of-00002.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "preprocessor_config.json"
},
{
"rfilename": "processor_config.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer.model"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-20T21:19:40 | null |
67c6dcd177ec8abe84bc82e2 | primecai/dsd_model | primecai | {"license": "apache-2.0", "language": ["en"], "pinned": true, "tags": ["personalization", "dreambooth", "lora", "customized image"]} | null | 2025-03-05T06:09:26 | 22 | 22 | null | 465 | 465 | null | [
"diffusers",
"safetensors",
"personalization",
"dreambooth",
"lora",
"customized image",
"en",
"arxiv:2411.18616",
"license:apache-2.0",
"region:us"
] | null | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "pytorch_lora_weights.safetensors"
},
{
"rfilename": "transformer/config.json"
},
{
"rfilename": "transformer/diffusion_pytorch_model.safetensors"
}
] | 2025-03-04T10:58:25 | null |
67cbf068771ab966f4a3833c | trashpanda-org/QwQ-32B-Snowdrop-v0 | trashpanda-org | {"base_model": ["trashpanda-org/Qwen2.5-32B-Marigold-v0", "Qwen/QwQ-32B", "Qwen/Qwen2.5-32B", "trashpanda-org/Qwen2.5-32B-Marigold-v0-exp"], "library_name": "transformers", "tags": ["mergekit", "mergekitty", "merge"]} | null | 2025-03-12T23:19:52 | 22 | 22 | {"architectures": ["Qwen2ForCausalLM"], "model_type": "qwen2", "tokenizer_config": {"bos_token": null, "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", "eos_token": "<|im_end|>", "pad_token": "<|endoftext|>", "unk_token": null}} | 946 | 946 | {
"parameters": {
"BF16": 32759790592,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 32759790592
} | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"mergekitty",
"merge",
"conversational",
"arxiv:2306.01708",
"base_model:Qwen/QwQ-32B",
"base_model:merge:Qwen/QwQ-32B",
"base_model:Qwen/Qwen2.5-32B",
"base_model:merge:Qwen/Qwen2.5-32B",
"base_model:trashpanda-org/Qwen2.5-32B-Marigold-v0",
"base_model:merge:trashpanda-org/Qwen2.5-32B-Marigold-v0",
"base_model:trashpanda-org/Qwen2.5-32B-Marigold-v0-exp",
"base_model:merge:trashpanda-org/Qwen2.5-32B-Marigold-v0-exp",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "added_tokens.json"
},
{
"rfilename": "config.json"
},
{
"rfilename": "mergekitty_config.yml"
},
{
"rfilename": "merges.txt"
},
{
"rfilename": "model-00001-of-00007.safetensors"
},
{
"rfilename": "model-00002-of-00007.safetensors"
},
{
"rfilename": "model-00003-of-00007.safetensors"
},
{
"rfilename": "model-00004-of-00007.safetensors"
},
{
"rfilename": "model-00005-of-00007.safetensors"
},
{
"rfilename": "model-00006-of-00007.safetensors"
},
{
"rfilename": "model-00007-of-00007.safetensors"
},
{
"rfilename": "model.safetensors.index.json"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
},
{
"rfilename": "vocab.json"
}
] | 2025-03-08T07:23:20 | null |
67d15ebf10a3c2d2b5ec914f | unsloth/gemma-3-27b-it-GGUF | unsloth | {"base_model": "google/gemma-3-27b-it", "language": ["en"], "library_name": "transformers", "license": "gemma", "tags": ["unsloth", "transformers", "gemma3", "gemma", "google"]} | null | 2025-03-12T10:24:16 | 22 | 22 | {"architectures": ["Gemma3ForConditionalGeneration"], "model_type": "gemma3"} | 0 | 0 | null | [
"transformers",
"gguf",
"gemma3",
"image-text-to-text",
"unsloth",
"gemma",
"google",
"en",
"arxiv:1905.07830",
"arxiv:1905.10044",
"arxiv:1911.11641",
"arxiv:1904.09728",
"arxiv:1705.03551",
"arxiv:1911.01547",
"arxiv:1907.10641",
"arxiv:1903.00161",
"arxiv:2009.03300",
"arxiv:2304.06364",
"arxiv:2103.03874",
"arxiv:2110.14168",
"arxiv:2311.12022",
"arxiv:2108.07732",
"arxiv:2107.03374",
"arxiv:2210.03057",
"arxiv:2106.03193",
"arxiv:1910.11856",
"arxiv:2502.12404",
"arxiv:2502.21228",
"arxiv:2404.16816",
"arxiv:2104.12756",
"arxiv:2311.16502",
"arxiv:2203.10244",
"arxiv:2404.12390",
"arxiv:1810.12440",
"arxiv:1908.02660",
"arxiv:2312.11805",
"base_model:google/gemma-3-27b-it",
"base_model:quantized:google/gemma-3-27b-it",
"license:gemma",
"endpoints_compatible",
"region:us",
"conversational"
] | image-text-to-text | {
"auto_model": "AutoModelForImageTextToText",
"custom_class": null,
"pipeline_tag": "image-text-to-text",
"processor": "AutoProcessor"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "BF16/gemma-3-27b-it.BF16-00001-of-00002.gguf"
},
{
"rfilename": "BF16/gemma-3-27b-it.BF16-00002-of-00002.gguf"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "gemma-3-27b-it-Q2_K.gguf"
},
{
"rfilename": "gemma-3-27b-it-Q2_K_L.gguf"
},
{
"rfilename": "gemma-3-27b-it-Q3_K_M.gguf"
},
{
"rfilename": "gemma-3-27b-it-Q4_K_M.gguf"
},
{
"rfilename": "gemma-3-27b-it-Q5_K_M.gguf"
},
{
"rfilename": "gemma-3-27b-it-Q6_K.gguf"
},
{
"rfilename": "gemma-3-27b-it.Q8_0.gguf"
},
{
"rfilename": "params"
}
] | 2025-03-12T10:15:27 | {
"architecture": "gemma3",
"bos_token": "<bos>",
"causal": null,
"chat_template": "{{ bos_token }}\n{%- if messages[0]['role'] == 'system' -%}\n {%- if messages[0]['content'] is string -%}\n {%- set first_user_prefix = messages[0]['content'] + '\n\n' -%}\n {%- else -%}\n {%- set first_user_prefix = messages[0]['content'][0]['text'] + '\n\n' -%}\n {%- endif -%}\n {%- set loop_messages = messages[1:] -%}\n{%- else -%}\n {%- set first_user_prefix = \"\" -%}\n {%- set loop_messages = messages -%}\n{%- endif -%}\n{%- for message in loop_messages -%}\n {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}\n {{ raise_exception(\"Conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif -%}\n {%- if (message['role'] == 'assistant') -%}\n {%- set role = \"model\" -%}\n {%- else -%}\n {%- set role = message['role'] -%}\n {%- endif -%}\n {{ '<start_of_turn>' + role + '\n' + (first_user_prefix if loop.first else \"\") }}\n {%- if message['content'] is string -%}\n {{ message['content'] | trim }}\n {%- elif message['content'] is iterable -%}\n {%- for item in message['content'] -%}\n {%- if item['type'] == 'image' -%}\n {{ '<start_of_image>' }}\n {%- elif item['type'] == 'text' -%}\n {{ item['text'] | trim }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ raise_exception(\"Invalid content type\") }}\n {%- endif -%}\n {{ '<end_of_turn>\n' }}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{'<start_of_turn>model\n'}}\n{%- endif -%}\n",
"context_length": 131072,
"eos_token": "<end_of_turn>",
"quantize_imatrix_file": null,
"total": 27009346304
} |
67a68e1f9d0295d4578134d8 | nomic-ai/nomic-embed-text-v2-moe | nomic-ai | {"base_model": ["nomic-ai/nomic-embed-text-v2-moe-unsupervised"], "library_name": "sentence-transformers", "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction"], "license": "apache-2.0", "language": ["en", "es", "fr", "de", "it", "pt", "pl", "nl", "tr", "ja", "vi", "ru", "id", "ar", "cs", "ro", "sv", "el", "uk", "zh", "hu", "da", "no", "hi", "fi", "bg", "ko", "sk", "th", "he", "ca", "lt", "fa", "ms", "sl", "lv", "mr", "bn", "sq", "cy", "be", "ml", "kn", "mk", "ur", "fy", "te", "eu", "sw", "so", "sd", "uz", "co", "hr", "gu", "ce", "eo", "jv", "la", "zu", "mn", "si", "ga", "ky", "tg", "my", "km", "mg", "pa", "sn", "ha", "ht", "su", "gd", "ny", "ps", "ku", "am", "ig", "lo", "mi", "nn", "sm", "yi", "st", "tl", "xh", "yo", "af", "ta", "tn", "ug", "az", "ba", "bs", "dv", "et", "gl", "gn", "gv", "hy"]} | null | 2025-03-11T20:32:20 | 296 | 21 | {"architectures": ["NomicBertModel"], "auto_map": {"AutoConfig": "nomic-ai/nomic-bert-2048--configuration_hf_nomic_bert.NomicBertConfig", "AutoModel": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertModel", "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining", "AutoModelForMultipleChoice": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForMultipleChoice", "AutoModelForQuestionAnswering": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForQuestionAnswering", "AutoModelForSequenceClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForSequenceClassification", "AutoModelForTokenClassification": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForTokenClassification"}, "model_type": "nomic_bert", "tokenizer_config": {"bos_token": "<s>", "cls_token": "<s>", "eos_token": "</s>", "mask_token": "<mask>", "pad_token": "<pad>", "sep_token": "</s>", "unk_token": "<unk>"}} | 161,028 | 161,030 | {
"parameters": {
"BF16": null,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": 475292928,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 475292928
} | [
"sentence-transformers",
"safetensors",
"nomic_bert",
"sentence-similarity",
"feature-extraction",
"custom_code",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"nl",
"tr",
"ja",
"vi",
"ru",
"id",
"ar",
"cs",
"ro",
"sv",
"el",
"uk",
"zh",
"hu",
"da",
"no",
"hi",
"fi",
"bg",
"ko",
"sk",
"th",
"he",
"ca",
"lt",
"fa",
"ms",
"sl",
"lv",
"mr",
"bn",
"sq",
"cy",
"be",
"ml",
"kn",
"mk",
"ur",
"fy",
"te",
"eu",
"sw",
"so",
"sd",
"uz",
"co",
"hr",
"gu",
"ce",
"eo",
"jv",
"la",
"zu",
"mn",
"si",
"ga",
"ky",
"tg",
"my",
"km",
"mg",
"pa",
"sn",
"ha",
"ht",
"su",
"gd",
"ny",
"ps",
"ku",
"am",
"ig",
"lo",
"mi",
"nn",
"sm",
"yi",
"st",
"tl",
"xh",
"yo",
"af",
"ta",
"tn",
"ug",
"az",
"ba",
"bs",
"dv",
"et",
"gl",
"gn",
"gv",
"hy",
"arxiv:2502.07972",
"arxiv:2205.13147",
"base_model:nomic-ai/nomic-embed-text-v2-moe-unsupervised",
"base_model:finetune:nomic-ai/nomic-embed-text-v2-moe-unsupervised",
"license:apache-2.0",
"autotrain_compatible",
"text-embeddings-inference",
"endpoints_compatible",
"region:us"
] | sentence-similarity | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "1_Pooling/config.json"
},
{
"rfilename": "README.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "config_sentence_transformers.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "modules.json"
},
{
"rfilename": "sentence_bert_config.json"
},
{
"rfilename": "sentencepiece.bpe.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2025-02-07T22:50:07 | null |
67d05df90d346a0280700185 | bartowski/RekaAI_reka-flash-3-GGUF | bartowski | {"quantized_by": "bartowski", "pipeline_tag": "text-generation", "license": "apache-2.0", "base_model": "RekaAI/reka-flash-3"} | null | 2025-03-12T07:40:45 | 21 | 21 | null | 3,540 | 3,540 | null | [
"gguf",
"text-generation",
"base_model:RekaAI/reka-flash-3",
"base_model:quantized:RekaAI/reka-flash-3",
"license:apache-2.0",
"endpoints_compatible",
"region:us",
"conversational"
] | text-generation | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ2_M.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ2_S.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ2_XS.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ2_XXS.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ3_M.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ3_XS.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ3_XXS.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ4_NL.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-IQ4_XS.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q2_K.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q2_K_L.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q3_K_L.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q3_K_M.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q3_K_S.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q3_K_XL.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q4_0.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q4_1.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q4_K_L.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q4_K_M.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q4_K_S.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q5_K_L.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q5_K_M.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q5_K_S.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q6_K.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q6_K_L.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-Q8_0.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3-bf16.gguf"
},
{
"rfilename": "RekaAI_reka-flash-3.imatrix"
}
] | 2025-03-11T15:59:53 | {
"architecture": "llama",
"bos_token": "<|endoftext|>",
"causal": null,
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set merged_content = messages[0]['content'] + ' ' + messages[1]['content'] %}{% set merged_messages = [{'role': messages[1]['role'], 'content': merged_content}] + messages[2:] %}{% else %}{% set merged_messages = messages %}{% endif %}{% for message in merged_messages %}{{('human' if message['role'] == 'user' else message['role']) + ': ' + (message['content'].split('<reasoning>')|first + message['content'].split('</reasoning>')|last if message['role'] == 'assistant' and '</reasoning>' in message['content'] else message['content'])}}{% if (loop.last and add_generation_prompt and merged_messages[-1]['role'] != 'assistant') or not loop.last %}{{ ' <sep> ' }}{% endif %}{% endfor %}{% if add_generation_prompt and merged_messages[-1]['role'] != 'assistant' %}{{ 'assistant:' }}{% endif %}",
"context_length": 32768,
"eos_token": "<|endoftext|>",
"quantize_imatrix_file": null,
"total": 20905482240
} |
66c8663a1c056a550878e7d1 | Shakker-Labs/FLUX.1-dev-ControlNet-Union-Pro | Shakker-Labs | {"license": "other", "license_name": "flux-1-dev-non-commercial-license", "license_link": "https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md", "language": ["en"], "library_name": "diffusers", "pipeline_tag": "text-to-image", "tags": ["Text-to-Image", "ControlNet", "Diffusers", "Flux.1-dev", "image-generation", "Stable Diffusion"], "base_model": "black-forest-labs/FLUX.1-dev"} | null | 2024-08-29T05:11:08 | 489 | 20 | {} | 50,013 | 205,108 | null | [
"diffusers",
"safetensors",
"Text-to-Image",
"ControlNet",
"Diffusers",
"Flux.1-dev",
"image-generation",
"Stable Diffusion",
"text-to-image",
"en",
"base_model:black-forest-labs/FLUX.1-dev",
"base_model:finetune:black-forest-labs/FLUX.1-dev",
"license:other",
"region:us"
] | text-to-image | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "assets/blur.jpg"
},
{
"rfilename": "assets/blur_result.jpg"
},
{
"rfilename": "assets/canny.jpg"
},
{
"rfilename": "assets/canny_result.jpg"
},
{
"rfilename": "assets/depth.jpg"
},
{
"rfilename": "assets/depth_result.jpg"
},
{
"rfilename": "assets/gray.jpg"
},
{
"rfilename": "assets/gray_result.jpg"
},
{
"rfilename": "assets/noise.jpg"
},
{
"rfilename": "assets/noise_result.jpg"
},
{
"rfilename": "assets/openpose.jpg"
},
{
"rfilename": "assets/openpose_result.jpg"
},
{
"rfilename": "assets/poster.png"
},
{
"rfilename": "assets/teaser1.png"
},
{
"rfilename": "assets/teaser2.png"
},
{
"rfilename": "assets/teaser3.png"
},
{
"rfilename": "assets/tile.jpg"
},
{
"rfilename": "assets/tile_result.jpg"
},
{
"rfilename": "config.json"
},
{
"rfilename": "diffusion_pytorch_model.safetensors"
}
] | 2024-08-23T10:36:42 | null |
66eaedefece5ee215637cc82 | meta-llama/Llama-3.2-1B-Instruct | meta-llama | {"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "library_name": "transformers", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "license": "llama3.2", "extra_gated_prompt": "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version Release Date: September 25, 2024\n\n\u201cAgreement\u201d means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\n\u201cDocumentation\u201d means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\n\u201cLicensee\u201d or \u201cyou\u201d means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\n\u201cLlama 3.2\u201d means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads.\n\n\u201cLlama Materials\u201d means, collectively, Meta\u2019s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement.\n\n\u201cMeta\u201d or \u201cwe\u201d means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \n\nBy clicking \u201cI Accept\u201d below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. \nb. Redistribution and Use. \ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Llama\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. \niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cLlama 3.2 is licensed under the Llama 3.2 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (\u201c**Policy**\u201d). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals\u2019 identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta\u00a0\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:\n 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled substances\n 11. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:\n 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 16. Generating, promoting, or further distributing spam\n 17. Impersonating another individual without consent, authorization, or legal right\n 18. Representing that the use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\u00a0\n4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\n\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"} | [
{
"provider": "sambanova",
"providerId": "Meta-Llama-3.2-1B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "hf-inference",
"providerId": "meta-llama/Llama-3.2-1B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "nebius",
"providerId": "meta-llama/Llama-3.2-1B-Instruct",
"status": "live",
"task": "conversational"
},
{
"provider": "novita",
"providerId": "meta-llama/llama-3.2-1b-instruct",
"status": "live",
"task": "conversational"
}
] | 2024-10-24T15:07:51 | 816 | 20 | {"architectures": ["LlamaForCausalLM"], "model_type": "llama", "tokenizer_config": {"bos_token": "<|begin_of_text|>", "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n", "eos_token": "<|eot_id|>"}} | 2,495,052 | 8,812,135 | {
"parameters": {
"BF16": 1235814400,
"BF69": null,
"BOOL": null,
"F16": null,
"F32": null,
"F64": null,
"F8_E4M3": null,
"I16": null,
"I32": null,
"I64": null,
"I8": null,
"Q4": null,
"U32": null,
"U8": null,
"miku": null
},
"total": 1235814400
} | [
"transformers",
"safetensors",
"llama",
"text-generation",
"facebook",
"meta",
"pytorch",
"llama-3",
"conversational",
"en",
"de",
"fr",
"it",
"pt",
"hi",
"es",
"th",
"arxiv:2204.05149",
"arxiv:2405.16406",
"license:llama3.2",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | {
"auto_model": "AutoModelForCausalLM",
"custom_class": null,
"pipeline_tag": "text-generation",
"processor": "AutoTokenizer"
} | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "LICENSE.txt"
},
{
"rfilename": "README.md"
},
{
"rfilename": "USE_POLICY.md"
},
{
"rfilename": "config.json"
},
{
"rfilename": "generation_config.json"
},
{
"rfilename": "model.safetensors"
},
{
"rfilename": "original/consolidated.00.pth"
},
{
"rfilename": "original/params.json"
},
{
"rfilename": "original/tokenizer.model"
},
{
"rfilename": "special_tokens_map.json"
},
{
"rfilename": "tokenizer.json"
},
{
"rfilename": "tokenizer_config.json"
}
] | 2024-09-18T15:12:47 | null |
67bfe99ef0896c9fda5968e7 | city96/Wan2.1-I2V-14B-480P-gguf | city96 | {"base_model": "Wan-AI/Wan2.1-I2V-14B-480P", "library_name": "gguf", "quantized_by": "city96", "tags": ["video", "video-generation"], "license": "apache-2.0", "pipeline_tag": "image-to-video", "language": ["en", "zh"]} | null | 2025-02-27T06:25:47 | 88 | 20 | null | 118,928 | 118,928 | null | [
"gguf",
"video",
"video-generation",
"image-to-video",
"en",
"zh",
"base_model:Wan-AI/Wan2.1-I2V-14B-480P",
"base_model:quantized:Wan-AI/Wan2.1-I2V-14B-480P",
"license:apache-2.0",
"region:us"
] | image-to-video | null | [
{
"rfilename": ".gitattributes"
},
{
"rfilename": "README.md"
},
{
"rfilename": "wan2.1-i2v-14b-480p-BF16.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-F16.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q3_K_M.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q3_K_S.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q4_0.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q4_1.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q4_K_M.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q4_K_S.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q5_0.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q5_1.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q5_K_M.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q5_K_S.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q6_K.gguf"
},
{
"rfilename": "wan2.1-i2v-14b-480p-Q8_0.gguf"
}
] | 2025-02-27T04:27:10 | {
"architecture": "wan",
"bos_token": null,
"causal": null,
"chat_template": null,
"context_length": null,
"eos_token": null,
"quantize_imatrix_file": null,
"total": 16394878784
} |
Subsets and Splits