Dataset Viewer
Auto-converted to Parquet
UID
stringlengths
25
32
style
stringclasses
7 values
score
int64
0
3
is_multi_object
stringclasses
2 values
is_scene
stringclasses
2 values
is_figure
stringclasses
2 values
is_transparent
stringclasses
2 values
is_single_color
stringclasses
2 values
density
stringclasses
3 values
000074a334c541878360457c672b6c2e
realistic
3
false
false
false
false
false
low
0000d20857dd4651a0bd73a62d6fe155
scanned
2
false
true
false
false
false
high
0001c4ddd54a4a9a8afe5e03ed0bd082
other
1
false
false
false
false
true
mid
000259fe35324ba796ce6e08b2961e3e
other
0
false
false
false
false
false
low
0002b84b1d344b00a351b78df4bedbe5
realistic
3
false
false
false
false
false
low
000329e889134a47aada12bfda4950da
other
3
false
false
false
false
false
high
00033fc37b80452aaa008535bea6c9d5
realistic
2
false
true
false
false
false
low
00035e1a27b74512a639464ed2435683
scanned
2
false
true
false
false
false
high
00041d6a01ed4217b3cd71bdd72f91f4
scanned
2
false
false
false
false
false
high
0004592a6df34a9ea83f46d04ff47ce7
other
0
false
false
false
false
false
high
0004615bc36e42338405db5795e0fe92
realistic
3
false
false
false
false
false
low
0004ad33093b44ad8189747e03bfb2c0
scanned
2
false
false
false
false
false
high
0004d40f827b4ad18aed250fd6edcc2a
other
1
false
false
false
false
true
low
0004dcfff50743e1aace6394fd4a215d
other
1
false
false
false
false
true
mid
0004e882b42844eda8b4ab7379cb04c8
other
1
false
false
false
false
true
low
0005033c6f754d00899127df5e2388f7
realistic
3
false
false
false
false
false
low
0005ccf7f1484fc692db288ab2c1c03b
other
1
false
false
false
false
false
low
0005f4b00efb40e2bedc767f36242f3a
scanned
3
false
false
false
false
false
high
00064c7f7cb7415fa622100e3cadc13f
realistic
2
false
false
false
false
false
low
00064e6f6eec4fd7acf27091b8de4d70
realistic
3
false
false
true
false
false
low
0006fb5d82ea46f9b37f7d77e257b321
other
1
false
false
false
false
true
mid
0007008488014d03bd49cee214766efc
scanned
2
false
false
false
false
false
high
00071c982fed4794a7d4cdae5c48c61b
scanned
2
false
false
false
false
false
high
00071da7aeda4a308f749217542e9521
realistic
3
false
false
false
false
false
low
00079540be164f50b1e267fb11d7db6d
realistic
3
false
false
false
false
false
low
0007ebf0d1e74e3aa61a0a0f0e8aa445
scanned
2
false
false
false
false
false
high
0008079973e64039a4ff846ed989c754
scanned
2
false
true
false
false
false
high
000873fe301b4352b2d0940fea24f424
other
0
false
false
false
false
true
low
00089a40101d4c1487edf050b94f6008
realistic
3
false
false
false
false
false
high
00089cb739bf4b768b118fd16da0034b
realistic
2
false
true
false
false
false
low
0008b2d1c5994077b18600b33d47a048
scanned
2
false
true
false
false
false
high
00093e5b2808425da0fef3c7f96eedf3
realistic
3
false
false
false
false
false
low
00096aa8bdb64803b0177214ee265f1b
arcade
2
false
true
false
false
false
low
0009f74807184fefa8eb58211edba390
arcade
2
false
true
false
true
false
low
000a3db05f4b49c89bc0700446aa6262
arcade
2
false
true
false
false
false
low
000a6774ed02497391fc40ef378faef6
realistic
2
false
false
false
false
false
low
000a7b9613a4431ab602ad0b8eb275dd
scanned
2
false
true
false
false
false
high
000a883519934f4383b9aeb0d535c545
realistic
3
false
false
false
false
false
low
000a90e12ef2447e877ce3d606f0f0fc
other
1
false
false
false
false
true
low
000b35046f6643c0af0237261c09be04
other
2
false
false
false
false
true
high
000b5ec0eec2487a824373a5bc876226
realistic
3
false
true
false
false
false
high
000b662130de4537ad8a233c58b0b4fe
realistic
3
false
false
false
false
false
high
000bf46c8abc481ba7b238d694fb4999
other
0
false
false
false
false
true
low
000c08310a6d403dbce13ab6b67c7901
scanned
2
false
true
false
false
false
high
000c80447f634f5dbaab12aee9050b0f
realistic
3
true
false
false
false
false
low
000c895f9ef6491894ac588634f3d2b5
realistic
2
false
true
false
false
false
low
000c99ea07e24690a556b9ecade1daae
scanned
2
false
false
false
false
false
high
000d1aa935ab4c2094841a212cb5df6e
other
1
true
false
false
false
true
low
000d1c5d169f4fda93a32f2eaeac80d8
other
1
false
true
false
false
false
mid
000d386e0bc64a13b93bd18aebdee016
realistic
2
false
false
false
false
false
high
000d4db112fd42c4a351018e8cf1f244
realistic
2
false
false
false
false
false
low
000d860189fc4a8899f9ebe6415bf7f2
other
1
false
false
false
false
true
low
000da17639e4480ca72562bf0ce248bc
other
1
false
false
false
false
true
low
000e40812ba84d5aa7570eda2220c6d4
other
1
false
false
false
false
true
high
000e5481e9824550ab803d0c8b18592d
realistic
2
false
false
false
false
false
low
000e9bec89ac4ca39c0dcc22af2b805c
realistic
3
false
true
false
false
false
low
000f360a4ba3434593c53ea3b57a7365
realistic
2
false
false
false
false
false
low
000f88bb21164319ae797d315be6bc0e
realistic
3
false
false
false
false
false
low
0010073eb18c49c8bcebf12d42a424c1
other
1
true
false
false
false
false
mid
0010245ab5db4f12a18dfcd80fa9df4d
other
3
true
false
false
false
false
high
001055c21b9e434eab2b2d54a39d6b43
other
1
false
false
false
false
true
high
00105612224e48beb50d00a628692a51
other
0
false
false
false
false
false
low
001076878ce64a328303072fe10c0d59
arcade
2
false
true
false
true
false
low
00108276a86c44cd862ab7eeea0c161e
realistic
2
false
false
false
false
false
low
001092f078114ba2ba701b2b17db8704
other
1
false
false
false
false
false
low
0010bdd95c604a25a638499bd7a54355
scanned
2
false
false
false
false
false
high
00110b996d944a658db8f24c6ccf36ec
realistic
3
false
false
false
false
false
low
0011662ee0fc4b4481bfd28314d154c1
other
0
false
false
false
false
false
low
00116695e48c49de967cccd4b9b7455a
realistic
3
true
true
false
false
false
low
0011678e5e3e4b8bb9a35fe48ff369af
realistic
3
false
false
false
false
false
low
0011b0e07fde4491b1f3875f25fff2d7
realistic
3
false
false
false
false
false
high
0011c09932cb4a1995a226b6993071b3
realistic
3
false
false
true
false
false
low
0011ed7823a940f0a0a567e11dfd659d
arcade
2
false
true
false
true
false
low
0012025bf500446a89486448d92eddca
scanned
2
false
true
false
false
false
high
0012053f094f4309808f52b3efb88977
realistic
3
false
false
false
false
false
mid
00121aa7399d41a3886b2a4642a9fc58
other
0
false
false
false
false
false
low
001240570ed643ebb6f9cc1b4286d202
scanned
2
false
false
false
false
false
high
001240db1fd642cd95e876242b0a742e
realistic
3
false
false
true
false
false
low
001277d851f74623917e2253c8bfb3a4
anime
3
false
false
true
false
false
low
00127a0ffbf149608023c0046ec7f2c3
arcade
2
true
true
false
true
false
low
00130eea9e884209be92f68378a817e8
cartoon
2
false
false
false
false
false
mid
00131fe93cd94cf6aed9bcb6bd3187f7
scanned
2
false
false
false
false
false
high
0013289f6eff4efdb17922804bf052c0
arcade
2
false
true
false
true
false
low
001337c586f34fe7b3c7948d577229a3
realistic
3
false
false
false
false
false
high
00134c1f38ec4cf69dc99b007e8db40b
other
1
false
false
false
false
true
low
00138fd8e73f46d6827e9849d0ed86bd
scanned
2
false
false
false
false
false
high
001394255b5d42db9f448e516318ff86
realistic
3
false
true
false
false
false
low
0013bdaec08345ec9fd03214030baeb2
other
2
false
false
false
false
false
low
0013cf5979c846449c817a2439fd8705
realistic
2
true
true
false
false
false
high
0013d88f17a245b0bff5ebe713bd72ab
realistic
3
false
false
false
false
false
low
0013e02f9ed44da697bb8f25c512ce58
realistic
2
false
false
false
false
false
low
0014994de4d24fcf84a3fba73596470b
scanned
2
false
false
false
false
false
high
0014b2aa11384be1bce41ef37090101e
realistic
2
false
false
true
false
false
high
0014e449e6c143bf9085d7c1a48f4bf7
realistic
2
false
false
false
false
false
low
001559b408504642831e6c604eaf583f
scanned
2
false
true
false
false
false
high
0015c579cfa440a7a2bd0a3f14395f05
realistic
3
false
false
true
false
false
low
0016071dd8424bf2873967725f2942f9
other
1
false
false
false
false
true
low
0016094f3676436c8ebee5c1a68d4a8e
anime
3
false
false
true
false
false
low
00165abfda6e48d18570cf984d4609f1
realistic
2
false
false
false
false
false
high
00167262d7f142d6b16f5223a9e71247
realistic
1
false
false
false
false
false
low
End of preview. Expand in Data Studio

Objaverse++: Curated 3D Object Dataset with Quality Annotations

Paper Code

Chendi Lin, Heshan Liu, Qunshu Lin, Zachary Bright, Shitao Tang, Yihui He, Minghao Liu, Ling Zhu, Cindy Le

Objaverse++ is a dataset that labels 3D modeling objects in terms of quality score and other important traits for machine learning researchers. We meticulously curated a collection of Objaverse objects and developed an effective classifier capable of scoring the entire Objaverse. Our extensive annotation system considers geometric structure and texture information, enabling researchers to filter training data according to specific requirements.

Less is more. We proved that, with only the high-quality objects in a 3D dataset, you can perform generative AI tasks like text-to-3D and image-to-3D better and faster.

Overview

To address the prevalence of low-quality models in Objaverse, we:

  1. Manually annotated 10,000 3D objects with quality and characteristic attributes;
  2. Trained a neural network capable of annotating tags for the rest of the Objaverse dataset;
  3. Created a curated subset of approximately 500,000 high-quality 3D models.

Our experiments show that:

  • Models trained on our quality-focused subset achieve better performance than those trained on the larger Objaverse dataset in image-to-3D generation tasks;
  • Higher data quality leads to faster training loss convergence;
  • Careful curation and rich annotation can compensate for raw dataset size.

Quality and Attribute Annotations

Quality Score

We define quality score as a metric to assess how useful a 3D object is for machine learning training:

  • Low Quality: No semantic meaning. Objects that annotators cannot identify or are corrupted.
  • Medium Quality: Identifiable objects missing basic material texture and color information.
  • High Quality: Acceptable quality with clear object identity, properly textured with material and color details.
  • Superior Quality: Excellent quality with high semantic clarity and professional texturing with strong aesthetic harmony.

Binary Traits

In addition to quality scores, we annotate several binary tags:

  • Transparency: Identifies models with see-through parts.
  • Scene: Identifies whether the model represents a scenario/environment rather than a standalone object.
  • Single Color: Tags models that are unintentionally monochromatic.
  • Not a Single Object: Marks models consisting of multiple separate components.
  • Figure: Indicates if the model represents a character, person, or figure.

File structure

After downloading and unzipping, two files are included:

annotated_500k.json
annotated_network.pth

annotated_500k.json contains the annotated results of 500k objects from Objaverse. This will be expanded to cover the whole Objaverse in the near future. annotated_network.pth is the pre-trained annotation network weights that can be used to annotate customized 3D object dataset. The detailed instruction is included here.

Citation

If you find this work useful for your research, please cite our paper:

@misc{lin2025objaversecurated3dobject,
      title={Objaverse++: Curated 3D Object Dataset with Quality Annotations}, 
      author={Chendi Lin and Heshan Liu and Qunshu Lin and Zachary Bright and Shitao Tang and Yihui He and Minghao Liu and Ling Zhu and Cindy Le},
      year={2025},
      eprint={2504.07334},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.07334}, 
}

Acknowledgments

We gratefully acknowledge Exascale Labs and Zillion Network for providing the computational resources and supporting our training infrastructure that made this research possible. We thank Abaka AI for their valuable assistance with data labeling. Special thanks to Ang Cao and Liam Fang for their technical and artistic insights that significantly enhanced our understanding of 3D model quality assessment.

Downloads last month
17