Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
longitude
float64
-17.56
51.4
latitude
float64
-34.82
37.4
1990-1992
float64
0.07
0.6
1993-1995
float64
0.07
0.64
1996-1998
float64
0.06
0.66
1999-2001
float64
0.07
0.66
2002-2004
float64
0.07
0.66
2005-2007
float64
0.07
0.66
2008-2010
float64
0.06
0.68
2011-2013
float64
0.05
0.68
2014-2016
float64
0.08
0.7
2017-2019
float64
0.09
0.68
9.662728
37.375665
0.238892
0.23291
0.22762
0.227234
0.220361
0.229834
0.229248
0.202799
0.197998
0.203857
9.481628
37.315298
0.211426
0.216858
0.211426
0.207581
0.207422
0.207397
0.196564
0.188477
0.190369
0.202148
9.541995
37.315298
0.19165
0.201599
0.187663
0.185608
0.186011
0.190186
0.18103
0.181193
0.192139
0.20752
9.602362
37.315298
0.13147
0.154175
0.152507
0.161224
0.1677
0.180176
0.185364
0.176799
0.185547
0.203491
9.662728
37.315298
0.169922
0.184692
0.179321
0.198334
0.206177
0.227246
0.254089
0.270915
0.316528
0.360352
9.723095
37.315298
0.261963
0.280029
0.306315
0.321167
0.328027
0.334326
0.362732
0.363363
0.393311
0.421387
9.783462
37.315298
0.355713
0.389526
0.431234
0.469604
0.500635
0.51748
0.562744
0.58431
0.602051
0.596191
9.843829
37.315298
0.365723
0.36853
0.373291
0.373901
0.367578
0.374609
0.377136
0.365479
0.35376
0.348145
9.300528
37.254931
0.215088
0.220703
0.217489
0.219543
0.218872
0.226367
0.226074
0.225749
0.229736
0.251465
9.360894
37.254931
0.145264
0.139893
0.128947
0.146545
0.146973
0.148364
0.151611
0.144328
0.157959
0.184448
9.421261
37.254931
0.118408
0.116272
0.11145
0.127106
0.124585
0.141516
0.150574
0.154663
0.174866
0.204712
9.481628
37.254931
0.104431
0.109131
0.107259
0.106155
0.118982
0.127747
0.129211
0.130066
0.144958
0.160767
9.541995
37.254931
0.119812
0.130188
0.122253
0.134003
0.148975
0.16311
0.171722
0.192668
0.209656
0.22876
9.602362
37.254931
0.151123
0.136169
0.139933
0.15799
0.153076
0.156738
0.165375
0.169718
0.193726
0.218872
9.662728
37.254931
0.240234
0.270264
0.291829
0.318237
0.301221
0.310742
0.346375
0.358968
0.391724
0.435791
9.723095
37.254931
0.283691
0.291138
0.314046
0.333435
0.366016
0.385059
0.36438
0.43042
0.438354
0.454834
9.783462
37.254931
0.338379
0.389526
0.438314
0.476013
0.521582
0.54707
0.591919
0.61377
0.641602
0.635742
9.843829
37.254931
0.334229
0.355591
0.38623
0.403625
0.423584
0.443359
0.500732
0.546549
0.600098
0.602539
9.904196
37.254931
0.318115
0.343018
0.335938
0.364441
0.377637
0.399072
0.421692
0.43221
0.451294
0.466309
9.964562
37.254931
0.282959
0.295654
0.307454
0.333313
0.347266
0.365576
0.369995
0.378988
0.415161
0.44165
10.024929
37.254931
0.296387
0.296997
0.321859
0.34436
0.355225
0.372314
0.394775
0.403402
0.434937
0.456543
10.085296
37.254931
0.293945
0.295166
0.269531
0.27887
0.273828
0.291357
0.290283
0.279297
0.275635
0.280518
9.05906
37.194565
0.250488
0.239868
0.231771
0.229065
0.219922
0.227881
0.21875
0.201172
0.195801
0.201416
9.119427
37.194565
0.15271
0.143188
0.135946
0.149719
0.15188
0.167554
0.176605
0.192464
0.216431
0.259277
9.179794
37.194565
0.121826
0.115082
0.11322
0.119507
0.129175
0.15459
0.180267
0.202189
0.246094
0.288086
9.240161
37.194565
0.152466
0.172729
0.183228
0.197083
0.219751
0.280811
0.337097
0.372803
0.41687
0.433838
9.300528
37.194565
0.13916
0.143982
0.145996
0.161896
0.180957
0.201367
0.200592
0.203288
0.229614
0.247803
9.360894
37.194565
0.165283
0.145874
0.174398
0.174927
0.197412
0.23855
0.277649
0.315918
0.382813
0.416748
9.421261
37.194565
0.261719
0.257629
0.235026
0.220764
0.213647
0.217163
0.212921
0.223755
0.247559
0.27832
9.481628
37.194565
0.143188
0.152344
0.164063
0.174042
0.203345
0.244189
0.287598
0.316976
0.354248
0.407227
9.541995
37.194565
0.132324
0.138977
0.138631
0.154602
0.163184
0.175513
0.187897
0.215088
0.243103
0.269531
9.602362
37.194565
0.146484
0.148499
0.152384
0.156647
0.169849
0.185107
0.184723
0.192424
0.209595
0.22583
9.662728
37.194565
0.172363
0.185669
0.190674
0.203217
0.226025
0.231226
0.239136
0.253743
0.300903
0.31665
9.723095
37.194565
0.308838
0.303955
0.318604
0.340942
0.340723
0.357422
0.372925
0.386149
0.415894
0.44165
9.783462
37.194565
0.285889
0.299927
0.287028
0.286194
0.272974
0.28335
0.279236
0.247721
0.233887
0.236206
9.843829
37.194565
0.275635
0.276123
0.268677
0.255432
0.243457
0.250635
0.247864
0.226237
0.218506
0.222412
9.904196
37.194565
0.241089
0.292358
0.323324
0.359863
0.383691
0.408594
0.440247
0.48112
0.52124
0.505859
9.964562
37.194565
0.282227
0.31189
0.349528
0.374329
0.412744
0.424951
0.460388
0.480876
0.503174
0.513672
10.024929
37.194565
0.177246
0.208801
0.201375
0.242096
0.245312
0.262646
0.271423
0.293864
0.342041
0.362793
10.085296
37.194565
0.299561
0.335815
0.369466
0.418335
0.436279
0.446924
0.486633
0.505046
0.542236
0.535156
10.145663
37.194565
0.35498
0.383179
0.410075
0.444885
0.463965
0.480078
0.505676
0.501546
0.531982
0.54248
10.206029
37.194565
0.278076
0.293457
0.286214
0.299561
0.304443
0.317334
0.299744
0.293132
0.307251
0.33252
10.266396
37.194565
0.243774
0.239136
0.226725
0.22644
0.224536
0.227124
0.216461
0.206217
0.201965
0.21167
8.938327
37.134198
0.223389
0.21875
0.212443
0.210785
0.205518
0.212939
0.215302
0.192749
0.196899
0.204346
9.05906
37.134198
0.142212
0.152222
0.146444
0.165039
0.172168
0.188501
0.207153
0.213664
0.243164
0.283691
9.119427
37.134198
0.141602
0.141968
0.142944
0.146057
0.150342
0.160107
0.167694
0.183268
0.212463
0.244751
9.179794
37.134198
0.124207
0.123383
0.124288
0.153961
0.166406
0.187061
0.217804
0.238973
0.299072
0.342041
9.240161
37.134198
0.180542
0.176575
0.17395
0.186951
0.201855
0.232422
0.266846
0.31779
0.373535
0.407959
9.421261
37.134198
0.12854
0.139526
0.142253
0.157135
0.162842
0.191553
0.206421
0.219971
0.248291
0.297119
9.481628
37.134198
0.167847
0.170227
0.184245
0.195618
0.218848
0.237354
0.264221
0.280355
0.334106
0.357178
9.541995
37.134198
0.174072
0.175659
0.186646
0.194641
0.220337
0.224268
0.245728
0.254557
0.274414
0.291016
9.602362
37.134198
0.19751
0.199707
0.200684
0.210052
0.222729
0.2396
0.251465
0.251383
0.278442
0.288574
9.662728
37.134198
0.208984
0.224854
0.231079
0.244446
0.257617
0.281299
0.28595
0.291341
0.32251
0.342529
9.723095
37.134198
0.28125
0.313965
0.372721
0.408386
0.446387
0.460254
0.479248
0.472168
0.537842
0.535645
9.783462
37.134198
0.30542
0.317139
0.337321
0.377197
0.404492
0.42417
0.462646
0.460368
0.489868
0.503906
9.843829
37.134198
0.163208
0.194458
0.214925
0.247925
0.266309
0.28667
0.312012
0.342448
0.388916
0.421143
9.904196
37.134198
0.172119
0.167419
0.166016
0.21344
0.222803
0.223975
0.252686
0.276611
0.290161
0.312256
9.964562
37.134198
0.193848
0.235168
0.241862
0.262207
0.289014
0.316504
0.329834
0.353434
0.405029
0.429932
10.024929
37.134198
0.2323
0.257202
0.284424
0.332153
0.34502
0.370557
0.406311
0.422852
0.446167
0.46875
10.085296
37.134198
0.163452
0.173157
0.187378
0.214844
0.209204
0.246729
0.286621
0.301921
0.340942
0.35498
10.145663
37.134198
0.236206
0.239868
0.231771
0.237823
0.239575
0.247485
0.259735
0.266032
0.282837
0.307617
10.206029
37.134198
0.250732
0.251465
0.235067
0.227509
0.227368
0.237891
0.230499
0.222412
0.231934
0.243896
6.282188
37.073831
0.22583
0.228333
0.222819
0.221191
0.223071
0.221606
0.228058
0.220622
0.224731
0.246094
6.342555
37.073831
0.197754
0.183472
0.185791
0.201691
0.217456
0.256616
0.292725
0.315023
0.360962
0.387695
6.402922
37.073831
0.159912
0.140137
0.142822
0.144775
0.174194
0.198584
0.218933
0.252767
0.305908
0.326416
6.463289
37.073831
0.233887
0.202942
0.204224
0.212708
0.218652
0.252466
0.268372
0.285238
0.314819
0.350342
6.523655
37.073831
0.252441
0.253723
0.241984
0.240845
0.231445
0.231323
0.218262
0.199992
0.19519
0.199829
7.127323
37.073831
0.297363
0.282593
0.278809
0.276978
0.269189
0.283496
0.306213
0.299154
0.323853
0.350098
7.18769
37.073831
0.168457
0.172729
0.201579
0.218201
0.244751
0.287769
0.331421
0.364258
0.405273
0.437988
7.248057
37.073831
0.192261
0.171753
0.168132
0.188019
0.202954
0.226367
0.250916
0.262533
0.292969
0.325439
7.308424
37.073831
0.320313
0.342651
0.357503
0.376648
0.400684
0.42627
0.45636
0.470459
0.501953
0.520996
7.36879
37.073831
0.250977
0.249878
0.243164
0.246887
0.240991
0.261084
0.243439
0.237752
0.225159
0.230225
8.87796
37.073831
0.26416
0.259766
0.246908
0.228088
0.215698
0.214014
0.202881
0.190145
0.190979
0.200073
8.938327
37.073831
0.153198
0.147217
0.160848
0.174133
0.184131
0.197168
0.203949
0.219157
0.255737
0.281982
8.998694
37.073831
0.128296
0.118805
0.132243
0.13913
0.155664
0.190576
0.219666
0.243815
0.271606
0.308838
9.05906
37.073831
0.190674
0.187988
0.194132
0.242798
0.250513
0.257349
0.286133
0.304525
0.320923
0.357666
9.119427
37.073831
0.141968
0.148315
0.149292
0.152161
0.159863
0.180444
0.214569
0.22644
0.267578
0.322998
9.179794
37.073831
0.253906
0.282593
0.296143
0.32251
0.343555
0.369824
0.381958
0.375732
0.442993
0.470459
9.240161
37.073831
0.13916
0.156311
0.16036
0.178986
0.201221
0.22041
0.236053
0.257894
0.293701
0.31543
9.360894
37.073831
0.137939
0.146179
0.147257
0.161957
0.170581
0.172827
0.193451
0.213826
0.25647
0.279053
9.421261
37.073831
0.142578
0.157837
0.158447
0.179932
0.18689
0.213867
0.230652
0.254069
0.301758
0.329834
9.481628
37.073831
0.162476
0.171143
0.183675
0.21109
0.225293
0.247559
0.271179
0.275228
0.325928
0.350098
9.541995
37.073831
0.267578
0.294312
0.307699
0.344177
0.355957
0.360449
0.38562
0.395996
0.415649
0.437988
9.602362
37.073831
0.343018
0.368042
0.378743
0.414734
0.425928
0.446826
0.480896
0.486735
0.497192
0.483398
9.662728
37.073831
0.195557
0.215576
0.199829
0.232147
0.242578
0.27251
0.299438
0.317627
0.371338
0.391602
9.723095
37.073831
0.158447
0.168823
0.174886
0.187683
0.188721
0.207617
0.230286
0.241943
0.274536
0.317139
9.783462
37.073831
0.147827
0.150696
0.155843
0.17746
0.182642
0.19585
0.205872
0.224772
0.250916
0.279053
9.843829
37.073831
0.126953
0.143127
0.138753
0.158112
0.156372
0.185352
0.188171
0.223307
0.257446
0.311035
9.904196
37.073831
0.120361
0.134521
0.139282
0.162445
0.185767
0.230127
0.265076
0.285156
0.34668
0.385986
9.964562
37.073831
0.273193
0.320068
0.349854
0.378845
0.421826
0.4354
0.469482
0.481201
0.526123
0.54248
10.024929
37.073831
0.256348
0.301392
0.33374
0.375244
0.381055
0.379395
0.390808
0.397542
0.428833
0.419922
10.085296
37.073831
0.270264
0.307495
0.331868
0.365112
0.369971
0.388232
0.418823
0.423665
0.462524
0.481445
10.145663
37.073831
0.205811
0.218567
0.218384
0.228729
0.231104
0.230176
0.223938
0.234538
0.243713
0.265137
10.870064
37.073831
0.26709
0.266968
0.276693
0.290314
0.299609
0.314307
0.313904
0.299316
0.297485
0.298096
10.930431
37.073831
0.3479
0.352661
0.351074
0.359497
0.366895
0.38208
0.392883
0.376302
0.389038
0.408691
10.990798
37.073831
0.236816
0.247925
0.264079
0.292419
0.315479
0.338086
0.351379
0.365641
0.390381
0.407715
6.161455
37.013464
0.258301
0.253418
0.239583
0.237335
0.227002
0.227319
0.217041
0.196574
0.194397
0.200073
6.221821
37.013464
0.190674
0.196289
0.19043
0.230652
0.251392
0.267822
0.292419
0.325358
0.365479
0.394775
6.282188
37.013464
0.209717
0.228577
0.250122
0.294922
0.341992
0.389453
0.427124
0.463786
0.496704
0.507813
6.342555
37.013464
0.161621
0.151489
0.146118
0.153076
0.16416
0.183716
0.212372
0.25529
0.304199
0.346924
End of preview. Expand in Data Studio

Temporal Neighborhood-Level Material Wealth Maps of Africa (1990–2019)

This repository provides neighborhood-level material wealth estimates across Africa for the period 1990–2019. The data are stored in a single GeoTIFF file (wealth_map.tif), where each band corresponds to a three-year interval. These estimates were generated using a deep-learning model trained on Demographic and Health Surveys (DHS) data, as described in Pettersson et al. (2023).

Overview

  • Data File: wealth_map.tif
  • Spatial Resolution: ~6.72 km x 6.72 km
  • Geographic Coverage: Africa
  • Temporal Coverage: 1990–2019 (in 3-year intervals)
  • Measurement Unit: International Wealth Index (IWI), scaled from 0 to 1
  • File Size: ~52.2 MB
  • MD5 Checksum: ab33e78dceeae49c06e753f0bb7eb904

Bands and Time Periods

Band Time Window
1 1990–1992
2 1993–1995
3 1996–1998
4 1999–2001
5 2002–2004
6 2005–2007
7 2008–2010
8 2011–2013
9 2014–2016
10 2017–2019

Description

These maps estimate the International Wealth Index (IWI) at a neighborhood resolution of approximately 6.72 km for all populated areas in Africa, as determined by the Global Human Settlement Layer (GHSL). The IWI is scaled between 0 and 1, representing a relative wealth measure derived from satellite imagery (Landsat, DMSP, and VIIRS).

For further methodological details, please see:

Pettersson, M. B., Kakooei, M., Ortheden, J., Johansson, F. D., & Daoud, A. (2023).
Time Series of Satellite Imagery Improve Deep Learning Estimates of Neighborhood-Level Poverty in Africa.
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023), 6165–6173.
doi:10.24963/ijcai.2023/684

Lab website: aidevlab.org.

Additional Metadata

  • Deposit Date: 2023-10-20
  • Metadata Release Date: 2023-10-20
  • Publication Date: 2023-10-20
  • Type: TIFF Image
  • Description: Multiband GeoTIFF containing IWI estimates for 10 time windows between 1990 and 2019.

How to Use

Quick Start in Python

import rasterio
import numpy as np

# Open the dataset
with rasterio.open("wealth_map.tif") as src:
    # Read band 1 (1990–1992)
    band1 = src.read(1)
    # Read band 10 (2017–2019)
    band10 = src.read(10)
    
    # Print basic info
    print("Band 1 shape:", band1.shape)
    print("Band 10 shape:", band10.shape)
    
    # Example: compute the mean wealth in 2017–2019
    mean_wealth_2017_2019 = np.nanmean(band10)
    print("Mean IWI (2017–2019):", mean_wealth_2017_2019)

Additional Tabular Data: poverty_improvement_by_state.csv

This CSV file provides an aggregate measure of how average wealth has changed between the early 1990s and the late 2010s at the first-level administrative region (state/province) across Africa. Each row corresponds to a specific country–province pair, along with the estimated improvement in wealth over this period.

Columns

Country: Name of the country. Province: Name of the first-level administrative region (e.g., state or province). Rank: Ordering from largest to smallest improvement (1 indicates the greatest improvement). Improvement: Estimated change in the mean International Wealth Index (IWI) between 1990–1992 and 2017–2019 for that province.

Data Source

Derived from the same deep-learning model as the main dataset (wealth_map.tif), as described in Pettersson et al. (2023). The IWI values for each province were averaged over the initial time window (1990–1992) and final time window (2017–2019). The difference of these two averages forms the Improvement value.

Example Rows

Country, Province, Rank, Improvement
Gambia, Banjul, 1, 0.31955
Mali, Bamako, 2, 0.31376
Botswana, Francistown, 3, 0.28345
Egypt, Kafr ash Shaykh, 4, 0.27021
Algeria, Boumerdès, 5, 0.26634
Egypt, Ash Sharqiyah, 6, 0.26594
Egypt, Bur Said, 7, 0.26321
Egypt, Ad Daqahliyah, 8, 0.26129

This table can help users quickly identify which provinces experienced the most significant gains in material wealth (as measured by IWI) over the nearly three-decade span. It complements the raster dataset by offering a province-level summary of changes in living conditions.

Reference

Pettersson, M. B., Kakooei, M., Ortheden, J., Johansson, F. D., & Daoud, A. (2023). Time Series of Satellite Imagery Improve Deep Learning Estimates of Neighborhood-Level Poverty in Africa. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI 2023), 6165–6173. doi:10.24963/ijcai.2023/684

@inproceedings{pettersson2023time,
  title={Time Series of Satellite Imagery Improve Deep Learning Estimates of Neighborhood-Level Poverty in Africa.},
  author={Pettersson, Markus B and Kakooei, Mohammad and Ortheden, Julia and Johansson, Fredrik D and Daoud, Adel},
  booktitle={IJCAI},
  pages={6165--6173},
  year={2023}
}

Disclaimer

While we have made every effort to ensure the accuracy and reliability of these wealth estimates, they should be interpreted within the context and limitations of the source data and modeling methods. The authors and contributors accept no liability for any loss or damage arising from the use of this data.

Downloads last month
34

Collection including cjerzak/TemporalNeighborhoodMaterialWealthAfrica